
PHYSICAL REVIEW B 95, 075204 (2017)

Magneto-optical properties of Rydberg excitons: Center-of-mass quantization approach
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We show how to compute the magneto-optical functions (absorption, reflection, and transmission) when
Rydberg exciton polaritons appear, including the effect of the coherence between the electron-hole pair and the
electromagnetic field, and the polaritonic effect. Using the real density-matrix approach the analytical expressions
for magneto-optical functions are obtained and numerical calculations for Cu2O crystal are performed. The
influence of the strength of applied external magnetic field on the resonance displacement of excitonic spectra is
discussed. We report a good agreement with recently published experimental data.
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I. INTRODUCTION

The concept of excitons was formulated more than 80
years ago by Frenkel [1], who predicted their existence in
molecular crystals. A few years later, Wannier [2] and de Mott
[3] described these electron-hole bound states for inorganic
semiconductors. In 1952 Gross and Karriiev [4] discovered
such Wannier-Mott excitons experimentally in a copper oxide
semiconductor. Since that time excitons have remained an
important topic of experimental and theoretical research,
since they play a dominant role in the optical properties
of semiconductors (molecular crystals, etc.). Excitons have
been studied in great detail in various types of semiconductor
nanostructures and in bulk crystals. Since there is a large
number of papers, monographs, and review articles devoted to
excitons, we refer to only a small collection of them [5–10]. In
the past decades the main effort of the researchers was focused
on excitons in nanostructures [11–21], but very recently, new
attention has been drawn back to the subject of excitons in bulk
crystals by an experimental observation of the so-called yellow
exciton series in Cu2O up to a large principal quantum number
of n = 25. [22] Such excitons in copper oxide, in analogy to
atomic physics, have been named Rydberg excitons. By virtue
of their special properties Rydberg excitons are of fascination
in solid and optical physics. These objects whose size scales
as the square of the Rydberg principal quantum number n are
ideally suited for fundamental quantum interrogations, as well
as detailed classical analysis. Several theoretical approaches
to calculate optical properties of Rydberg excitons have been
presented [23–35]. Recently quantum coherence of Rydberg
excitons in this system has been investigated [34] which
opens an avenue for their further implementation in quantum
information processing.

When external constant fields (electric or/and magnetic)
are applied, the Rydberg excitons, especially those with high
principal number n, show effects which are not observable in
exciton systems with a low number of excitonic states. This
effect ranges from a large Stark shift, overlapping of states,
creation of higher-order excitons (F , H , etc.) to quantum chaos
and type of statistics for exciton states [31]. Although the Stark
and other electro-optic effects on Rydberg excitons in Cu2O
have been measured and analyzed [24,25,32], there are only
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few results available regarding the magneto-optic properties of
Rydberg excitons [31] where the excitonic spectra of cuprous
oxide subjected to an external magnetic field up to 7 T have
been measured and the complex splitting patterns of crossing
and overlapping levels have been demonstrated.

Highly excited Rydberg excitons in Cu2O crystal provide
a well-accessible venue for combined theoretical and ex-
perimental studies of magnetic field effects on the systems.
From a different perspective magnetic fields may offer a
promising possibility for a controlled manipulation of Rydberg
excitons, which would be otherwise difficult to trap by standard
optical techniques, developed for ground states. Due to the
fact that free-space Rydberg polaritons have recently drawn
intense interest as tools for quantum information processing
one can expect that Rydberg excitons in solid may become
highly required object for creating high-fidelity photonic
quantum materials [36]. Magnetic fields can strongly affect
the Rydberg-Rydberg interactions by breaking the Zeeman
degeneracy that produces Foster zeros.

In the present paper we will focus on magneto-optical
properties of Rydberg excitons in Cu2O motivated by the
results presented in Ref. [31]. As in our previous papers
[26,32], we will use the method based on the real density-
matrix approach (RDMA). Our main purpose is to obtain
the analytical expressions for the magneto-optical functions
of semiconductor crystals (reflectivity, transmissivity, ab-
sorption, and bulk magnetosusceptibility), including a high
number of Rydberg excitons, taking into account the effect of
anisotropic dispersion and the coherence of the electron and
hole with the radiation field, as well to calculate the positions
of excitonic resonances in the situation when degeneracies
of exciton states with different orbital and spin angular
momentum are lifted by magnetic field. The present approach,
owing to application of the full form of Hamiltonian for
excitons in an external magnetic field, allows one to get
so-called positive shifts of resonances (connected with a
linear dependence on the field strength and quadratic exciton
diamagnetic shifts). Due to the specific structure of Cu2O
crystal, particulary to a small radius of Wannier excitons, it
is justified to assume infinite confinement potentials at the
crystal surface. All these factors result in a complex pattern of
spectra which, especially for higher order of excitons, becomes
even more intricate for states with higher principal number n.

In a very recent paper Schweiner et al. [34] have pointed out
that an external magnetic field influences the system, reducing
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its cubic symmetry, and leads to the complex splitting of
excitonic lines in absorption spectra. They have solved numer-
ically the Schrödinger equation and then calculated oscillator
strengths including the complete valence-band structure into
their considerations. The most results for Rydberg excitons
was concentrated on the energy values of the excitonic states
(for example, [33]). We, in turn, extend such an approach
including the polariton effects. This will be done by means
of the so-called center-of-mass (COM) quantization approach
[37–47]. Thanks to this approach one can include into account
the influence of the internal structure of the electromagnetic
wave propagating in the crystal. It is important because in
the experiments on the Rydberg excitons in Cu2O [22,24,31]
the crystal size in the propagation direction exceeds largely
the wavelength. Finally, we will examine the influence of the
effective-mass anisotropy on the magneto-optic properties.

The paper is organized as follows. In Sec. II we recall the
basic equations of the RDMA and formulate the equations
for the case when the constant magnetic field is applied.
In Sec. III we describe an iteration procedure, which will
be applied to solve a system of coupled integrodifferential
equations and finally obtain the magneto-optic functions. The
second iteration step, from which the magneto-optic functions,
including the polariton effects, will be calculated, is given
in Sec. IV. The formulas, derived in this section, are than
applied in Sec. V to calculate the magneto-optic functions for
a Cu2O crystal, considered in Ref. [31]. Finally, in Sec. VI
we draw conclusions of the model studied in this paper. The
derivations of useful matrix elements and calculations with a
lot of technical details are established in the appendixes.

II. DENSITY-MATRIX FORMULATION

Having in mind the above-mentioned experiments on
Rydberg excitons, we will compute the linear response of a
semiconductor slab to a plain electromagnetic wave, whose
electric-field vector has a component of the form

Ei(z,t) = Ein exp(ik0z − iωt), k0 = ω

c
, (1)

attaining the boundary surface of the semiconductor located at
the plane z = 0. The second boundary is located at the plane
z = L. In the case of the examined Cu2O crystals the extension
will be of the order 30 μm.

The electromagnetic wave is then reflected, transmitted,
and partially absorbed. The wave propagating in the medium
has the form of polaritons, defined as joint field-medium
excitations. Polaritons are mixed modes of the electromagnetic
wave and discrete excitations of the crystal (excitons). Below
we assume the separation of the relative electron-hole motion
with well defined quantum levels and the center-of-mass
motion which interacts with the radiation field and produces
the mixed modes.

The real density-matrix approach (RDMA), which we wish
to apply below, is the extension to crystal states of the Bloch
equations of atomic physics, and allows the calculation of
transition probability amplitudes including lifetime effects.
It takes into account the following contributions: (a) the
electron-hole interaction, (b) the dipole interaction between
the electron-hole pairs and the electromagnetic field, (c) the

particle-surface interaction, (d) effects of external fields. We
consider a semiconductor in the real-space representation,
characterized by a number of valence and conduction bands.
Electrons at site j in the conduction band are described by
fermion operators ĉ

c†
j (ĉc

j ) which correspond to the creation

(annihilation) operators. Similarly, operators d̂
v†
j (d̂v

j ) are cre-
ation (annihilation) operators for holes in valence bands at
site j . The physical quantities which are most relevant for the
optical properties can be expressed in terms of mean values of
the following pair operators:

excitonic transition density amplitude, Yα b
12 = 〈

d̂α
1 ĉb

2

〉
,

electron density, Cab
12 = 〈

ĉ
a†
1 ĉb

2

〉
, (2)

hole density, D
α β

12 = 〈
d̂

α†
1 d̂

β

2

〉
,

where the indices a,b, . . . label the conduction bands, and
α,β, . . . label the valence bands. The detailed derivation, which
leads to the constitutive equations for the above quantities, can
be found in Refs. [7,9]. Here we restrict our consideration
to the lowest order related to linear optics, by setting the
matrices C = D = 0, and use only the excitonic amplitudes
Y ν(re,rh) of the electron-hole pair of coordinates rh (hole)
and re (electron). In the case of Cu2O, ν means P,F,H, . . .

excitons. The constitutive equations have the form (see also
[26,32])

Ẏ (R,r) + (i/h̄)HehY (R,r) + (1/h̄)Γ Y (R,r)

= (i/h̄)M(r)E(R), (3)

where R is just the excitonic center-of-mass coordinate,
r = re − rh is the relative coordinate, M(r) is the smeared-out
transition dipole density, E(R) is the electric-field vector of
the wave propagating in the crystal, and operator Γ stands
for the dissipation processes; we assume that it is nonnegative
and commutes with Heh. The smeared-out transition dipole
density M(r) is related to the bilocality of the amplitude Y and
describes the quantum coherence between the macroscopic
electromagnetic field and the interband transitions. The two-
band Hamiltonian Heh includes the electron- and hole-kinetic-
energy terms, the electron-hole interaction potential, and the
confinement potentials. When constant fields, magnetic and
electric, are applied, the Hamiltonian has the form

H = Eg + 1

2me

(
pe − e

re × B
2

)2

+ 1

2mhz

(
ph + e

rh × B
2

)2

z

+ 1

2mh‖

(
ph + e

rh × B
2

)2

‖
+ eF · (re − rh)

+Vconf(re,rh) − e2

4πε0εb|re − rh| . (4)

B is the magnetic field vector, F is the electric-field vector,
Vconf are the surface potentials for electrons and holes, mhz,mh‖
are the components of the hole effective-mass tensor, and the
electron mass is assumed to be isotropic. Separating the exciton
center-of-mass and relative motion, and considering the case
when B ‖ z, F = 0, we transform the Hamiltonian (4) into the
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form

H = H0 + P 2
z

2Mz

+ P2
‖

2M‖
+ 1

8
μ‖ω2

cρ
2 + e

2μ′
‖
BLz

− e

M‖
P‖ · (r‖ × B) + Vconf(R,r), (5)

where ωc = eB/μ‖ is the cyclotron frequency, the reduced
mass μ′

‖ is defined as

1

μ′
‖

= 1

me

− 1

mh‖
, (6)

and H0 is the two-band Hamiltonian for the relative electron-
hole motion,

H0 = − h̄2

2μ‖
∇μ∇ − e2

4πε0εb|re − rh| , (7)

as used in the papers [26,32], with μ being the exciton reduced

mass tensor. The operator Lz is the z component of the angular
momentum operator. We must solve the constitutive equations
with the above Hamiltonian to obtain the polarization and
finally the polariton modes.

The coherent amplitudes Y define the excitonic counterpart
of the polarization,

Pexc(R) = 2
∫

d3rM∗(r)Y (R,r), (8)

which is that used in the Maxwell field equation,

c2∇2
RE − ε

b
Ë(R) = 1

ε0
P̈exc(R), (9)

with the use of the bulk dielectric tensor ε
b

and the vacuum di-
electric constant ε0. In the present paper we solve Eqs. (3)–(9)
with the aim to compute the magneto-optical functions
(reflectivity, transmission, and absorption) for the case of
Cu2O.

In semiconductors like, e.g., GaAs, when only a few lowest
excitonic states are excited, it is possible to solve the polariton
dispersion relation and to determine the amplitudes of the
polariton waves. Analogous methods cannot be applied in the
case of Rydberg excitons, whereas, for example, in Cu2O, even
25 excitonic states are observed. There is a question of what
approach is appropriate for such a case. One of the possibilities
is to use the above-mentioned exciton center-of-mass quanti-
zation. In this approach it is assumed that no electron or hole
separately is confined, but their center-of-mass is confined
within the crystal [37–47]. This approach is justified for
small-radius Wannier excitons, as is the case of Cu2O (about
1 nm), and certainly not appropriate for semiconductors with
large-radius excitons, like GaAs (about 15 nm). In the COM
approach mostly infinite confinement potentials at the crystal
surfaces z = 0,L are assumed, therefore the eigenfunctions
and eigenvalues of the COM motion have the form

wN (Z) =
√

2

L∗ sin

(
Nπ

L∗ Z

)
, WN = h̄2

2Mz

N2π2

L∗2
= N2S,

S = μ‖
Mz

(
πa∗

L∗

)2

R∗, (10)

where Mz is the total excitonic mass in the z direction, a∗ is
the excitonic radius, R∗ is the excitonic Rydberg, and L∗ is
the effective crystal size in the z direction. When assuming the
existence of exciton free surface layers with the thickness Lef ,
we are left with the bulk region of the dimension L∗ = L −
2Lef where the exciton polaritons are formed. This dimension
is sometimes called the effective crystal size. Since, in the case
of Cu2O, the Lef , being comparable with the excitonic Bohr
radius, are very small, we assume L∗ = L (L being the crystal
size in the z direction).

Having the confinement functions, we look for a solution
of the form

Y (Z,r) =
∑
Nn
m

cNn
mRn
m(r)Y
m(θ,φ)wN (Z), (11)

where Rn
m are the radial functions of an anisotropic
Schrödinger equation [32],

Rn
m(r) =
(

2η
m

na∗

)3/2 1

(2
 + 1)!

√
(n + 
)!

2n(n − 
 − 1)!

×
(

2η
mr

na∗

)


e−η
mr/na∗

(12)

×M

(
− n + 
 + 1,2
 + 2,

2η
mr

na∗

)
,

η
m =
∫

d�
|Y
m|2

sin2 θ + (μ‖/μz) cos2 θ
,

and En
m are the corresponding eigenvalues,

En
m = −η2

m

n2
R∗, (13)

M(a,b,z) being the confluent hypergeometric function in the
notation of [48].

III. ITERATION PROCEDURE

The electric field E(Z) of the wave propagating in the
crystal, acting as a source in Eq. (3), must satisfy the Maxwell
equation (9) which, for the wave propagating in the Z direction
and with the harmonic time dependence fulfills the propagation
equation

d2E

dZ2
+ k2

bE(Z) = − ω2

c2ε0
Pexc(Z), kb = √

εb

ω

c
, (14)

and Pexc(Z) is the Z- dependent excitonic part of the crystal
polarization (8). The function Y (Z,r), with regard to (3) and
(11), and for the Faraday configuration, satisfies the equation∑

Nn
m

(
Eg − h̄ω + WN + En
m + m

μ‖
μ′

‖
γR∗ − iΓ

+ R∗

4a∗2
γ 2r2 sin2 θ

)
cNn
mRn
(r)Y
m(θ,φ)wN (Z)

= M(r)E(Z), (15)

where γ = h̄ωc/2R∗ is the dimensionless strength of the
magnetic field. Even under applying the COM quantization,
we are left with a system of two coupled integrodifferential
equations for the functions Y and E. Having the field E(Z) we
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can determine the optical functions, reflectivity, transmissivity,
and absorption, by the relations

R =
∣∣∣∣E(0)

Ein
− 1

∣∣∣∣
2

, T =
∣∣∣∣E(L∗)

Ein

∣∣∣∣
2

, A = 1 − R − T ,

(16)

where Ein is the amplitude of the normally incident wave.
The solution of Eqs. (14)–(16), which enables one to get the
electric field and the optical functions, can be obtained by
several methods. The specific properties of Rydberg excitons
in Cu2 make the calculations more difficult than in other
semiconductors with Wannier-Mott excitons. In GaAs only
the lowest exciton states contribute, which means that only
few polariton waves should be taken into account, and an
approximation, giving the amplitudes of the polariton waves
and thus the electric field in the medium, as described in
Ref. [49], can be used. In quantum dots, where, in the strong
confinement limit the separation of the relative and COM
motion cannot be made, one can try the direct numerical
solution of the relevant Schrödinger equation, giving the
eigenfunctions and eigenvalues, which, in turn, are used to
solve the constitutive equation and the optical properties (see,
for example, [50,51] and references therein). Both methods
cannot be applied for the considered case of Rydberg excitons.
When taking into account, for example, n = 25 excitonic
states, we deal with at least the same number of polariton
waves (or even twice when considering the waves in both
directions) and a method to calculate their amplitudes is, to our
knowledge, not known. When regarding the sample dimension
of 30 μm, i.e., thousands of the excitonic Bohr radius, the direct
numerical calculation exceeds the possibility of computers.
This is the motivation to apply the COM approximation,
connected with certain iteration procedure. The first step of this
procedure is the solution of the system of equations (15), where
on the right-hand side we put instead of the full solution E(Z),
its (known) homogeneous part Ehom, satisfying the equation

d2E

dZ2
+ k2

bE(Z) = 0, (17)

and the appropriate boundary conditions. It has the form

Ehom(Z) = Ein
2k0f (L − Z)

(kb + k0)W
,

f (z) = e−ikbZ + kb − k0

kb + k0
eikbZ,

W = e−ikbL −
(

kb − k0

kb + k0

)2

eikbL. (18)

Inserting the above expressions into the right-hand side of
Eqs. (15), the following set of equations will be obtained,
from which the coefficients cNn
m can be determined from∑

Nn
m

(
WNn
m + R∗

4a∗2
γ 2r2 sin2 θ

)

× cNn
mRn
m(r)Y
m(θ,φ)wN (Z)

= M(r)Ehom(Z),

WNn
m = Eg − h̄ω + WN + En
m + m
μ‖
μ′

‖
γR∗ − iΓ. (19)

The expression for the dipole density, which should be used in
(15), has the following form: for P excitons, 
 = 1 [26],

M(1)(r) = er M10
r + r0

2r2r2
0

e−r/r0 = erM(r)

= iM10
r + r0

4ir2r2
0

√
8π

3
(Y1,−1 − Y1,1)e−r/r0

+ jM10
r + r0

4r2r2
0

√
8π

3
(Y1,−1 + Y1,1)e−r/r0

+ kM10
r + r0

2r2r2
0

√
4π

3
Y10e

−r/r0 , (20)

and for F excitons, 
 = 3, in normalized (with respect to r)
form,

M(3)(r)

= iM10
1

r0r2

[√
3π

7
(Y31−Y3−1) −

√
5π

7
(Y33 − Y3−3)

]
e−r/r0

+ j
M10

r2r0

{
−

[√
3π

7
(Y31 + Y3−1) −

√
5π

7
(Y33+Y3−3)

]}
e−r/r0

+ k
M10

r2r0

(
12

√
π

7
Y30e

−r/r0

)
. (21)

Having in mind the experiments by Aßmann et al. [31], we
consider the field B as perpendicular to the crystal surface (‖ z),
and the wave propagating in the z direction and characterized
by the electric field E. The wave is assumed linearly polarized,
E = (Ex,0,0), with the component Ex = Ehom(Z). Thus we
take the x components of the densities M defined in (20) and
(21),

M (1)
x (r) = M10

r + r0

4ir2r2
0

√
8π

3
(Y1−1 − Y11)e−r/r0 , (22)

M (3)
x (r) = M10

1

r0r2

[√
3π

7
(Y31 − Y3−1)

−
√

5π

7
(Y33 − Y3−3)

]
e−r/r0 , (23)

with the coherence radius r0 [7,26,49]

r−1
0 =

√
2μ‖
h̄2 Eg. (24)

The above expression gives the coherence radius in terms of
effective band parameters, but we find it convenient to treat the
coherence radii as free parameters which can be determined by
fitting experimental spectra. Mostly one takes it as a fraction of
the respective excitonic Bohr radius. Using the above formulas,
together with the expression (18) for homogeneous field Ehom,
we obtain, in the first step of iteration, a system of equations∑

n
m

[
Eg − h̄ω + WN + En
m + m

μ‖
μ′

‖
γR∗ − iΓ

+ R∗

4a∗2
γ 2r2 sin2 θ

]
cNn
mRn
m(r)Y
m(θ,φ)wN (Z)

= MxE(Z). (25)
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By appropriate integration and making use of the orthonormality of the eigenfunctions, the equations for the expansion coefficients
get the form

WNn
mcNn
m + V
(n)


mcNn
m + V

(n)


+2mcNn
+2m + V

(n)


−2mcNn
−2m = 〈wN |Ex〉〈Rn
1m1Y
m|Mx〉,

V
(n)


m = R∗

4
γ 2 (
2 + 
 + m2 − 1)

(2
 − 1)(2
 + 3)

(
n

η
m

)2

[5n2 + 1 − 3
(
 + 1)],

(26)

V
(n)


+2m = −R∗

4
γ 2

√
(
 + 2 − m)(
 + 1 − m)(
 + m + 1)(
 + m + 2)

(2
 + 1)(2
 + 3)2(2
 + 5)

∫ ∞

0
dρρ4 Rn
Rn
+2,

V
(n)


−2m = −R∗

4
γ 2

√
(
 − m)(
 − m − 1)(
 + m)(
 + m − 1)

(2
 − 3)(2
 − 1)2(2
 + 1)

∫ ∞

0
dρρ4 Rn
mRn
−2m,

where we used the notation

V
(nn1)


1mm1

= R∗

4a∗2
γ 2

〈
Rn1
1m1

∣∣r2|Rn
m〉〈Y
1m1

∣∣ sin2 θ |Y
m〉.
(27)

As in the case of previously discussed electro-optic properties
[32], we take into account only the states n = n1. This
assumption is justified by the fact that the diamagnetic shift,
related to these matrix elements, is much smaller than the
Zeeman splitting.

The effect of overlapping of different states is included in
the resonant denominators. The detailed form for the coeffi-
cients cNn
m,〈Rn1
1m1Y
1m1 |Mx〉,〈Ex |wN 〉 and the derivation
of the matrix elements V

(n)


m are given in Appendixes A

and B. Equations (26) are the basic equations in the present
paper, which will be used in the numerical calculations of the
optical functions.

2165 2166 2167 2168 2169 2170 2171

10
1.2

10
1.3

10
1.4

10
1.5

10
1.6

E [meV]

α

theory
experiment

FIG. 1. The absorption A of Cu2O crystal of thickness 30 μm
and for B = 0, calculated from Eq. (16). A comparison between the
theoretical results from Ref. [26] (blue curve), and experiments [56]
(orange curve).

IV. SECOND ITERATION STEP—MAGNETOOPTIC
FUNCTIONS

In the first iteration step we have computed the coefficients
cNn
m. Having them, we determine the amplitude Y (Z,r) from
Eq. (11) and the excitonic polarization from Eq. (8), obtaining

Pexc(Z) = 2
∫

M∗(r)Y (Z,r)d3r

= 2
∫

M∗(r)
∑
Nn
m

cNn
mRn
mY
mwN (Z)d3r

=
∑
N

PNwN (Z),

(28)
PN = 2

∑
n
m

cNn
m〈M∗|Rn
mY
m〉

= ε0εb�
(P )
LT 〈wN |Ehom(Z)〉

∑
n
m

χNn
m

= ε0εb�
(P )
LT INEhom(0)

∑
n
m

χNn
m,

where IN are defined in Eq. (D6), and χNn
m in Eqs. (F3) and
(F4). The so-obtained polarization will be used as a source in
the Maxwell equation (14). It is known that the solution of

2168.8 2169 2169.2 2169.4 2169.6 2169.8 2170

10
−2

10
−1

10
0

10
1

10
2

E [meV]

α

B=0
B=0.5 T

FIG. 2. Changes in absorption spectrum due to the applied
magnetic field for n = 4 exciton.
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a nonhomogeneous differential equation is composed of two
parts, which are the solution of a homogeneous equation and
of a nonhomogeneous one,

E(Z) = Ehom(Z) + Enhom(Z), (29)

where the homogeneous part satisfies Eq. (17). The nonho-
mogeneous part will be obtained by means of the appropriate
Green function, satisfying the equation

d2

dZ2
GE(Z,Z′) + k2

bG
E(Z,Z′) = −δ(Z − Z′), (30)

and having the form (see, e.g., [9])

GE(Z,Z′) = i

2kbW

(
e−ikbZ

< + kb − k0

kb + k0
eikbZ

<

)

×
(

kb − k0

kb + k0
eikbL−ikbZ

> + e−ikbL+ikbZ
>

)
,

(31)

where Z< = min(Z,Z′),Z> = max(Z,Z′). Using the above
Green’s function we obtain the nonhomogeneous part in the

FIG. 3. The bulk magnetoabsorption of Cu2O crystal calculated from the imaginary part of the bulk susceptibility (37) for B = 2 T. Insets
show the detailed spectra around the excitonic lines corresponding to n = 4, 5, 6, 7.
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form

Enhom(Z) = k2
0

ε0

∫ L

0
GE(Z,Z′)Pexc(Z′)dZ′. (32)

Equations (29), (31), and (32) give the total electric field of the
wave propagating in the crystal, from which the reflectivity R

and transmissivity T are obtained. They have the form

R =
∣∣∣∣E(0)

Ein
− 1

∣∣∣∣
2

= RFP

∣∣∣∣1 + i

(
kbL

2

)(
1 − r2

∞
)
(1 − r∞ei�)2

(
1 − r2

∞ei�
)

r∞(1 − ei�)

×
∑
N

(
I 2
N

L

) ∑
n
m

�
(P )
LT χNn
m

∣∣∣∣
2

, (33)

T =
∣∣∣∣E(L)

Ein

∣∣∣∣
2

= TFP

∣∣∣∣1 + i

(
E

2EL

)
(1 − r∞ei�)

(1 − r2∞ei�)

∑
N

(
I 2
N

L

)

×
∑
n
m

�
(P )
LT χNn
m

∣∣∣∣
2

, (34)

where � = 2kbL, r∞ is defined by

r∞ = k0 − kb

k0 + kb

, (35)

I 2
n /L are given in Eq. (D7), and RFP,TFP are the well-known

formulas for the Fabry-Perot normal incidence reflectivity and
transmissivity of a lossless dielectric slab of thickness L (see,
e.g., [52]),

RFP = F sin2(�/2)

1 + F sin2(�/2)
, TFP = 1

1 + F sin2(�/2)
,

F = 4r2
∞(

1 − r2∞
)2 . (36)

The derivation of formulas (33) and (34) is given in
Appendix E.

V. RESULTS

We have performed numerical calculations of magneto-
optical functions (absorption, reflectivity, and transmissivity)
for the Cu2O crystal having in mind the experiments by
Aßmann et al. [31]. Considering the specific properties of
Cu2O and the crystal dimension, which is large compared to the
exciton Bohr radius, we observe that the COM quantized ener-
gies WN (10) are small compared to the remaining components
of the excitonic energies WNn
m (19). Therefore, in the first
approximation, we can neglect them in the formulas defining
the coefficients cNn
m (Appendix A) and in expressions χNn
m

(F3) and (F4), and calculate the bulk magnetosusceptibility:

χ (ω) = εb�
(P )
LT [χN211 + χN21−1 + χN311 + χN31−1

+χNn3±3 + χ̃Nn1±1 + χ̃Nn3±1 . . .]. (37)

Using the formula α = (ω/c)Im
√

εb + χ we have calculated
the magnetoabsorption, taking into account the lowest
n = 2–10 excitonic states. The parameters we used are the
energies En
m, the gap energy Eg , the LT energy �

(P )
LT , and

the dissipation parameter Γ . We have used the electron
and hole effective masses: me = 1.01, mh‖ = 0.5587, μ‖ =

0.3597, μz = 0.672 (the masses in free electron mass) m0,
and from them calculated the reduced mass μ′

‖ = −1.25,
which gives μ‖/μ′

‖ ≈ −0.2876. By the relation

R∗ = μ‖
m0

13 600

ε2
b

, (38)

using the Cu2O dielectric constant εb = 7.5, we determined
the value R∗ = 86.970 meV. Since the longitudinal-transverse
splitting energy �LT splitting for P excitons is not known,
we have established a relation between the known �LT for S
excitons and the quantity �

(P )
LT for P excitons. First, using the

bulk dispersion

c2k2

ω2
= εb + 2

ε0

∫
d3rM∗Y, (39)

for k = 0,n = 2, we establish the relation between the
splitting and the dipole matrix element

εb�
(P )
LT = 2

ε0
|I1 + I2|2

[
1

W111
+ 1

W11−1

]∣∣∣∣
B=0

,

(40)

|M10|2 = 4ε0εba
∗3�

(P )
LT

π (r0/a∗)2η5
11

,

where I1,I2 are defined in Eqs. (B3) and (B4). Using an
analogous expression for for S excitons [53],

|M10|2 = πε0εba
∗3�

(S)
LT

η3
00

,

one can determine �
(P )
LT as a function of �

(S)
LT ,

�
(P )
LT = π2

4

(
r0

a∗

)2
η5

11

η3
00

�
(S)
LT . (41)

The energies WNn
m were obtained from relations (13) and (19)
(without WN ) with the effective Rydberg energy R∗. We have
used the values Eg = 2172 meV [52,54], R∗ = 86.970 meV,
�

(S)
LT = 10 μeV [52,55], and μ‖/μz = 0.5351. We have re-

stricted the upper limit of energy for our numerical illustrations

FIG. 4. Absorption spectrum in the energetic region of n = 4
excitonic state as a function of the applied magnetic field strength.
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FIG. 5. The same as in Fig. 4, in the energetic region of n = 4–25
excitonic states.

to 2172 meV, which determines the band gap; above this
energy one could take into account effects which follow from
interaction with the continuous spectrum. The choice of the
set of parameters is confirmed by the excellent agreement
of our theoretical absorption spectra with experimental data
for the case B = 0 [56]; see Fig. 1. Fitting the experimental
data we have determined the damping parameters Γn [the
eigenvalues of the damping operator Γ ; see Eq. (3)], which
were then used in further calculations. The results for the
absorption, which seem the most important, are reported in
Figs. 2–7. In Fig. 2 we observe how the applied magnetic
field changes the spectra. The positions of absorption maxima
are changed due to the diamagnetic shift, and the Zeeman
splitting occurs. The same effects, for a larger number of
excitonic states and stronger field, are displayed in Fig. 3.
For the principal quantum number n � 4 the effects due to
both P and F excitons, for example, the overlapping of states,

2164.5 2165 2165.5 2166 2166.5 2167 2167.5 2168

10
−3

10
−2

10
−1

10
0

10
1

10
2

E [meV]

α

FIG. 6. The bulk magnetoabsorption of Cu2O crystal, individual
excitonic resonances are identified.

2162 2164 2166 2168 2170 2172
10

−1

10
0

10
1

10
2

10
3

E [meV]

α

r
0
=0.2a*

r
0
=0.8a*

FIG. 7. The influence of the choice of the coherence radius r0 on
the magnetoabsorption spectra of Cu2O crystal.

are observed. This is shown in Fig. 4 for the n = 4 exciton
state, where the dependence of the absorption on the applied
field strength is shown. The Zeeman splitting is clearly visible
and the lines are shifted towards higher energy with increasing
field strength. Moreover, some absorption lines become visible
only for sufficiently strong magnetic field. Our calculation
scheme can be extended to higher principal quantum number;
the absorption spectrum for n = 4–25 excitonic states is shown
in Fig. 5. In Fig. 6 we show that our method allows us to identify
the excitonic states. In the RDMA approach we consider the
role of the coherence of the radiation field with excitons, which
enters via the smeared dipole density M(r) and its parameters
M0,r0. The influence of the coherence radius r0 is illustrated
in Fig. 7. One can observe that an increase of r0 causes an
increase of absorption, which is due to the related increase
of the longitudinal-transverse splitting and oscillator strength;

2164 2165 2166 2167 2168 2169 2170 2171 2172
0

0.1

0.2

0.3

0.4

0.5

E [meV]

R

With excitons
Without excitons

2169 2169.5 2170 2170.5 2171

0.5

0.6

FIG. 8. The magnetoreflection coefficient of Cu2O crystal of
thickness 30 μm, when the magnetic field 2 T is applied. The
dashed curve (labeled without excitons) corresponds to Fabry-Perot
reflection. Inset: reflection spectrum for n = 5, 6, 7 exciton.
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2164 2165 2166 2167 2168 2169 2170 2171 2172

0.5

0.6

0.7

0.8

0.9

1

E [meV]

T

 

 

With excitons
Without excitons

2171.3 2171.4

0.58

0.61

0.64

0.67

FIG. 9. The transmissivity coefficient of Cu2O crystal of thick-
ness 30 μm, when the magnetic field 2 T is applied. The dashed curve
(labeled without excitons) corresponds to Fabry-Perot transmissivity.
Inset: transmission spectrum for n = 7 exciton.

see Eq. (41). The COM quantization approximation, used in
our calculations, allowed us to calculate the reflection and
transmission spectra, taking into account both the microscopic
electronic excitations (excitons) and their interaction with
the radiation field, resulting in creation of polariton modes.
Having analytical formula for the reflection coefficient R and
transmissivity T we are able to examine their dependence of the
crystal size (Figs. 8–11). The calculations have been performed
up to N = 350 and for excitonic states with principal number
n = 5–7. One can observe the Fabry-Perot modes, typical for
dielectric slab, with overlapping excitonic resonances. The
Fabry-Perot resonance is dominant and strongly affects the
reflection and transmission over the whole energy range and
establishes the background on which the excitonic resonances

2164 2165 2166 2167 2168 2169 2170 2171 2172
0

0.1

0.2

0.3

0.4

0.5

E [meV]

R

With excitons
Without excitons

2170 2170.3 2170.6
0.4

0.5

FIG. 10. The same as in Fig. 8, for crystal thickness 100 μm.
Inset: reflection spectrum for n = 7 exciton.

2164 2165 2166 2167 2168 2169 2170 2171 2172
0.5

0.6

0.7

0.8

0.9

1

E [meV]

T

With excitons
Without excitons

2171.25 2171.35
0.5

0.7

0.9

FIG. 11. The same as in Fig. 9, for crystal thickness 100 μm.
Inset: transmission spectrum for n = 7 exciton.

appear, although the variations of R and T due to them
have comparably smaller amplitudes. As can be seen from
Figs. 8–11 the Fabry-Perot pattern strongly depends on the
crystal size, which is consistent with Eqs. (33) and (34). In
Figs. 8 and 9 magnetoreflectivity and magnetotransmissivity
are presented for a sample of 30 μm and in such a case only
one Fabry-Perot maximum is visible. For a thicker crystal of
100 μm the Fabry-Perot effect is more pronounced and more
maxima appear (Figs. 10 and 11). The excitonic resonances
approach each other and amplitudes of their changes are more
distinct. All insets in Figs. 8–11 indicate that these two effects
are readily separable.

VI. CONCLUSIONS

The main results of our paper can be summarized as follows.
We have proposed a procedure based on the RDMA approach
that allows us to obtain analytical expressions for the magneto-
optical functions of semiconductor crystals including high
number Rydberg excitons. Our results have general character
because arbitrary exciton angular momentum number and ar-
bitrary applied field strength are included. We have chosen the
example of cuprous oxide, inspired by the recent experiment
by Aßmann et al. [31]. We have calculated the magneto-
optical functions (susceptibility, absorption, reflection, and
transmission), obtaining a fairly good agreement between the
calculated and the experimentally observed spectra. As each
method using the iterative procedure, the present approach is a
kind of approximation. Although we have solved the problem
of excitons in a semiconductor when an external magnetic
field is applied, we do not include the interaction between
states with different n into the Hamiltonian we have used. It
should be emphasized that the present approach is analytical
until the last step in which the numerical code is used. The
choice of dipole density model and therefore the oscillator
strengths, which is an intricate function of free parameters, has
an impact on the accuracy of our calculations and might be the
source of discrepancy between theoretical and experimental
results. Our results confirm the fundamental peculiarity of
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magneto-optical effects: shifting, splitting, and, as a result for
higher excitonic states, mixing of spectral lines. In particular,
we obtained the splitting of P and F excitons, with increasing
number of peaks corresponding to the increasing state number.
All these interesting features of excitons with high n number
which are examined and discussed on the basis of our theory
might possibly provide deep insight into the nature of Rydberg
excitons in solids and provoke their application to design
all-optical flexible switches and future implementation in
quantum information processing.

APPENDIX A: EXPANSION COEFFICIENTS cNn�m

Using the eigenfunctions (12) and transition dipole den-
sities (22) and (23) we calculate the expansion coefficients
cNn
m. For n = 2,3 we only have the coefficients related to the
P excitons:

WN1n1±1cN1n1±1 + V
(n)

11±1cN1n1±1 = 〈
wN1

∣∣Ex

〉〈
R211Y1±1

∣∣M (1)
x

〉
,

cN1n1±1 =
〈
wN1

∣∣Ex

〉〈
Rn11Y1±1

∣∣M (1)
x

〉
WN1n1±1 + V

(n)
11±1

. (A1)

For n � 4 we must consider contributions of both excitons P

and F . For n = 4 we have three equations,

WN141±1cN141±1 + V
(4)

11±1cN141±1 + V
(4)

13±1cN143±1

= 〈
wN1

∣∣Ex

〉〈
R411Y1±1

∣∣M (1)
x

〉
,

WN143±1cN143±1 + V
(4)

33±1cN143±1 + V
(4)

31±1cN141±1

= 〈
wN1

∣∣Ex

〉〈
R431Y3±1

∣∣M (3)
x

〉
,

WN143±3cN143±3 + V
(4)

33±3cN143±3 = 〈
wN1

∣∣Ex

〉〈
R433Y3±3

∣∣M (3)
x

〉
,

(A2)

with solutions

cN141±1

= 〈
wN1

∣∣Ex

〉a22
〈
R411Y1±1

∣∣M (1)
x

〉 − a12
〈
R431Y3±1

∣∣M (3)
x

〉
�

,

cN143±1

= 〈
wN1

∣∣Ex

〉a11
〈
R431Y3±1

∣∣M (3)
x

〉 − a12
〈
R411Y1±1

∣∣M (1)
x 〉

�
,

cN143±3 =
〈
wN1

∣∣Ex〉
〈
R433Y3±3|M (3)

x 〉
WN143±3 + V

(4)
33±3

,

� = a11a22 − a2
12,

a11 = WN141±1 + V
(4)

11±1, a12 = V
(4)

13±1 = a21,

a22 = WN143±1 + V
(4)

33±1. (A3)

In a similar way, the higher-order coefficients can be deter-
mined:

cN1n3±3 =
〈
wN1

∣∣Ex

〉〈
Rn33Y3±3

∣∣M (3)
x

〉
WN1n3±3 + V

(n)
33±3

,

cN1n1±1

= 〈
wN1

∣∣Ex

〉a22
〈
Rn11Y1±1

∣∣M (1)
x

〉 − a12
〈
Rn31Y3±1

∣∣M (3)
x

〉
a11a22 − a2

12

,

cN1n3±1

= 〈
wN1

∣∣Ex

〉a11
〈
Rn31Y3±1

∣∣M (3)
x

〉 − a12
〈
Rn11Y1±1

∣∣M (1)
x

〉
a11a22 − a2

12

,

a11 = WN1n1±1 + V
(n)

11±1, a12 = V
(n)

13±1 = a21,

a22 = WN1n3±1 + V
(n)

33±1, � = a11a22 − a2
12,

cN1n1±1

= ±
〈
wN1

∣∣Ex

〉(
r0
a∗

)√
2
3πM10

1
a∗3/2

√
n2−1
n5(

WN1n1±1 + V
(n)

111

)(
WN1n3±1 + V

(n)
331

) − (
V

(n)
131

)2

×
{
iη

5/2
11

(
WN1n3±1 + V

(n)
331

)

+ 0.015 272V
(n)

131

(
r0

a∗

)2

η
9/2
31

√
(n2 − 9)(n2 − 4)

n4

}
,

cN1n3±1

= ∓
〈
wN1

∣∣Ex

〉(
r0
a∗

)√
2
3πM10

1
a∗3/2

√
n2−1
n5(

WN1n1±1 + V
(n)

111

)(
WN1n3±1 + V

(n)
331

) − (
V

(n)
131

)2

×
{[

WN1n1±1 + V
(n)

111

]
0.015 272

( r0

a∗
)2

η
9/2
31

×
√

(n2 − 9)(n2 − 4)

n4
+ V

(n)
131iη

5/2
11

}
. (A4)

APPENDIX B: DETERMINATION OF THE QUANTITIES
〈Rn11Y1±1|M (1)

x 〉,〈Rn31Y3±1|M (3)
x 〉,〈Rn33Y3±3|M (3)

x 〉
Below we calculate the quantities 〈Rn11Y1±1|M (1)

x 〉,
〈Rn31Y3±1|M (3)

x 〉,〈Rn33Y3±3|M (3)
x 〉, which enter in the above

derived formulas for the coefficients cNn
m. Using the defini-
tion (22) and (23) one obtains

〈
Rn11Y1±1

∣∣M (1)
x x

〉
= ∓

√
8π

3

M10

4ir2
0

∫ ∞

0
r2dr

r + r0

r2
e−r/r0Rn11(r). (B1)
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Inserting on the right-hand side the expression for the radial
function Rn11 [see Eq. (12)] we get〈

Rn11Y1±1

∣∣M (1)
x x

〉
= ∓

√
8π

3

M10

4ir2
0

∫ ∞

0
dr (r + r0)e−λr

(
2η11

na∗

)3/2 1

3!

×
√

(n + 1)!

2n(n − 2)!

(
2η11r

na∗

)
M

(
−n + 2,4,

2η11r

na∗

)
, (B2)

where λ = 1
r0

+ η11

na∗ = na∗+η11r0

na∗r0
. The right-hand side of

Eq. (B2) consists of two parts:

I1 =
√

8π

3

M10

4ir2
0

(
2η11

na∗

)3/2(2η11

na∗

)

× 1

3!

√
(n + 1)!

2n(n − 2)!

∫ ∞

0
dr r2 e−λrM

(
−n + 2,4,

2η11r

na∗

)

=
√

8π

3

M10

4ir2
0

(
2η11

na∗

)5/2 1

3!

√
(n + 1)!

2n(n − 2)!
�(3)λ−3

×F

(
−n + 2,3,4,

2η11r0

na∗ + η11r0

)
, (B3)

I2 =
√

8π

3

M10

4ir2
0

r0

(
2η11

na∗
5/2) 1

3!

√
(n + 1)!

2n(n − 2)!

×
∫ ∞

0
rdr e−λrM

(
−n + 2,4,

2η11

na∗ r

)

=
√

8π

3

M10

4ir2
0

r0λ
−2

(
2η11

na∗

)5/2 1

3!

√
(n + 1)!

2n(n − 2)!

×F

(
−n + 2,2,4,

2η11r0

na∗ + η11r0

)
, (B4)

F (α,β,γ,z) being the hypergeometric series. Performing the
summation we obtain

I1 + I2 ≈
√

8π

3

M10r0

8i

(
2η11

na∗

)5/2
√

(n + 1)!

2n(n − 2)!
,

where the assumption r0 < a∗ has been used. Finally

〈
Rn11Y1±1

∣∣M (1)
x

〉 = ∓
√

2π (n2 − 1)

3n5

M10

i

(
r0

a∗

)
η

5/2
11

a∗3/2
. (B5)

The following expression will be useful in calculation of
oscillator strengths:

|I1 + I2|2 = 2

3
π |M10|2

(
r0

a∗

)2
η5

11

a∗3

n2 − 1

n5
. (B6)

In the next step we calculate the quantity 〈Rn31Y3±1|M (3)
x x〉.

Using the definitions (21) and (12) one obtains〈
Rn31Y3±1

∣∣M (3)
x x

〉
= ∓

√
3π

7

M10

r0

∫ ∞

0
dr e−r/r0Rn31(r)

= ∓
√

3π

7

M10

r0

(
2η31

na∗

)9/2 ∫ ∞

0
dr r3 e−λr 1

7!

√
(n + 3)!

2n(n − 4)!

×M

(
−n + 4,8,

2η31

na∗ r

)

with

λ = 1

r0
+ η31

na∗ = na∗ + η31r0

na∗r0
.

Performing the integration we arrive at the formulas

〈
Rn31Y3±1

∣∣M (3)
x

〉 = ∓
√

3π

7

M10

r0

(
2η31

na∗

)9/2
√

(n + 3)!

2n(n − 4)!

× 3!

7!
λ−4 F

(
−n + 4,4,8,

2η31

na∗λ

)

≈ ∓ 0.015 272

√
2

3
πM10

(
r0

a∗

)3
η

9/2
31

a∗3/2

×
√

(n2 − 9)(n2 − 4)(n2 − 1)

n9
,

where again the assumption r0 < a∗ has been used. The
formula

∣∣〈Rn31Y3±1

∣∣M (3)
x

〉∣∣2 ≈ 2.332 × 10−4 2

3
π

|M10|2
a∗3

(η31)9

(
r0

a∗

)6

× (n2 − 9)(n2 − 4)(n2 − 1)

n9
,

will be used in calculations of the oscillator strengths related
to the F exciton. The remaining formulas, connected to the
Y3,±3 harmonics, have the form〈

Rn33Y3±3

∣∣M (3)
x

〉
= ∓

√
5π

7

M10

r0

(
2η33

na∗

)9/2
√

(n + 3)!

2n(n − 4)!

3!

7!
λ−4

×F

(
−n + 4,4,8,

2η33

na∗λ

)
∣∣〈Rn33Y3±3

∣∣M (3)
x

〉∣∣2

≈ 3.887 × 10−4 2

3
π

|M10|2
a∗3

(η33)9

(
r0

a∗

)6

× (n2 − 9)(n2 − 4)(n2 − 1)

n9
.

APPENDIX C: DERIVATION OF THE MATRIX
ELEMENTS V (nn1)

��1mm1

In order to calculate the matrix elements V
(nn1)


1mm1

, as defined
in Eq. (27), we start with the integral containing the angular
dependence,

I

1mm1 = 〈
Y
1m1

∣∣ sin2 θ |Y
m〉 =
∫

d� Y ∗

1m1

(1 − cos2 θ )Y
m

= δ

1δmm1 −
∫

d� Y
1m1 cos2 θ Y
m. (C1)
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Making use of the definition of the spherical harmonic
functions,

Y
m(θ,φ) =
√

(2
 + 1)(
 − m)!

4π (
 + m)!
P m


 (cos θ )eimφ, (C2)

in terms of the associated Legendre polynomials P m

 , the

second of the integrals on the right-hand side of Eq. (C1)
can be put into the form

I =
∫

d� Y ∗

1m1

cos2 θ Y
m

= δmm1 2π

√
(2
 + 1)(
 − m)!

4π (
 + m)!

(2
1 + 1)(
1 − m1)!

4π (
1 + m1)!

×
∫ +1

−1
dx P m


 (x)x2P
m1

1

(x). (C3)

Making use of the recurrence relation for Legendre polynomi-
als [57] we arrive at the integral∫ +1

−1
dx P m


 (x)x2P
m1

1

(x)

=
∫ +1

−1
dx

{
1

2
+1

[
(
−m+1)P m


+1(x)+(
 + m)P m

−1(x)

]

× 1

2
1 + 1

[
(
1−m+1)P m


1+1(x)+(
1+m)P m

1−1(x)

]}
.

(C4)

Performing the multiplication and integration, using the
orthogonality relation for Legendre polynomials one obtains∫ +1

−1
dx P m


 (x)x2P
m1

1

(x)

= 2(2
2 + 2
 − 1 − 2m2)(
 + m)!

(2
 − 1)(2
 + 1)(2
 + 3)(
 − m)!
δ

1

+2(
 − m + 1)(
 + m + 2)(
 + m + 1)!

(2
 + 1)(2
 + 3)(2
 + 5)(
 + 1 − m)!
δ
+1,
1−1

+ 2(
 − m − 1)(
 + m)(
 + m − 1)!

(2
 − 3)(2
 − 1)(2
 + 1)(
 − 1 − m)!
δ
1+1,
−1.

(C5)

Inserting the above result into Eq. (C3) gives for the angular
integration

I = δmm1 2π

√
(2
 + 1)(
 − m)!

4π (
 + m)!

(2
1 + 1)(
1 − m1)!

4π (
1 + m1)!

×
[

2(2
2 + 2
 − 1 − 2m2)(
 + m)!

(2
 − 1)(2
 + 1)(2
 + 3)(
 − m)!
δ

1

+ 2(
 − m + 1)(
 + m + 2)(
 + m + 1)!

(2
 + 1)(2
 + 3)(2
 + 5)(
 + 1 − m)!
δ
+1,
1−1

+ 2(
 − m − 1)(
 + m)(
 + m − 1)!

(2
 − 3)(2
 − 1)(2
 + 1)(
 − 1 − m)!
δ
1+1,
−1

]
.

(C6)

Using the above results we obtain the diagonal matrix
element V

nn1


1mm1

when n = n1,

V n

1
1m1m1

= R∗

4
γ 2δ

1mm1

(
1 − 2
2

1 + 2
1 − 1 − 2m2
1

(2
1 − 1)(2
1 + 3)

)

×
∫ ∞

0
dρρ4 Rn
Rn1
1

= δ

1mm1

R∗

4
γ 2 2(
2 + 
 + m2 − 1)

(2
 − 1)(2
 + 3)

∫ ∞

0
dρ ρ4 [Rn
(ρ)]2

= δ

1mm1

R∗

4
γ 2 (
2 + 
 + m2 − 1)

(2
 − 1)(2
 + 3)

(
n

η
m

)2

×[5n2 + 1 − 3
(
 + 1)], (C7)

where we used the formula (for example [58] where η
m = 1)

〈ρ2〉 = 1
2 [5n2 + 1 − 3
(
 + 1)]. (C8)

In a similar way the off-diagonal elements can be computed
with the results displayed in Eq. (26). The integrals containing
the radial eigenfunctions Rn
m, by using the relation between
the hypergeometric function and the Laguerre polynomials,
can be expressed by the integrals

In
sm =
∫ ∞

0
dρρ4 Rn
mRnsm

=
(

n

2η
m

)2
√

(n − 
 − 1)!

2n(n + 
)!

√
(n − s − 1)!

2n(n + s)!

×
∫ ∞

0
x
+s+4L2
+1

n−
−1(x)L2s+1
n−s−1(x)e−xdx.

For example, taking n = 4,
 = 1,s = 3,m = 1, one has

I4131 =
∫ ∞

0
dρρ4 R411R431

=
(

1

η10

)2

8!

√
1

5!8!
(90 − 90 + 20)

= 20

(
1

η10

)2
√

8!

5!
≈ 367

(
1

η10

)2

.

APPENDIX D: CALCULATION OF
THE COEFFICIENTS 〈wN |E〉

The homogeneous solution of the field equation (18) can
be put into the form

Ehom(Z) = AeikbZ + Be−ikbZ, (D1)

where

A = 2k0

(k0 + kb)W
e−ikbLEin,

B = 2k0(kb − k0)

(k0 + kb)2W
eikbLEin. (D2)

With these expressions one obtains for 〈wN |E〉
〈wN |E〉 = AI + BI ∗, (D3)
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with the notation

I = 〈wN | eikbZ〉 =
√

2

L

∫ L

0
sin

Nπ

L
Z eikbZdZ. (D4)

With the use of the relations

sin x = eix − e−ix

2i
, e±iNπ = cos Nπ, (D5)

the integral I becomes

I = IN =
√

2L(1 − cos Nπ exp[ikbL])
Nπ

(Nπ )2 − (kbL)2
.

(D6)

The quantity I 2
N/L which appears in the expressions for the

optical functions, has the form

I 2
N

L
= 2N2π2

[(kbL)2 − N2π2]2
(1 − cos Nπ exp[ikbL])2. (D7)

The expression kbL can be transformed to kbL = h̄ω
h̄c

√
εbL =

E
EL

. For Cu2O, εb = 7.5, so EL = 72.3
L

meV; L is expressed
in μm and for the probe of length L = 30 μm one gets EL =
2.41 meV. Since IN = I ∗

N one obtains

〈wN |Ehom(Z)〉 = IN (A + B) = INEhom(0), (D8)

where

Ehom(0) = Ein
1 + r∞

1 − r2∞ exp(i�)
(1 − r∞ei�). (D9)

APPENDIX E: OPTICAL FUNCTIONS

Below we derive the formulas (33) and (34). They will
be obtained from Eq. (16) by using the total electric field
E(Z) = Ehom(Z) + Enhom(Z). In particular, for the reflection
coefficient one obtains

R = |r|2, (E1)

with

r = r0 + rexc, r0 = r∞(1 − ei�)

1 − r2∞ei�
,

rexc = k2
0

ε0Ein

∫ L

0
GE(0,Z)Pexc(Z)dZ. (E2)

Since

GE(0,Z) = i(1 − r∞)

2kb

(
1 − r2∞ ei�

) (eikbZ − r∞ ei�−ikbZ), (E3)

we obtain

rexc = k2
0

ε0Ein

∫ L

0
GE(0,Z)Peks(Z)dZ

= k2
0

2ε0Ein

i(1 − r∞)

kb

(
1 − r2∞ ei�

)
×

∑
N

[〈wN |eikbZ〉 − r∞ ei�〈wN |e−ikbZ〉]PN

= k2
0

2ε0Ein

i(1 − r∞)

kb

(
1 − r2∞ ei�

) (1 − r∞ ei�)
∑
N

INPN,

from which, with respect to Eq. (28), we get

rexc = k2
0Ehom(0)

2Ein

i(1 − r∞)

kb

(
1 − r2∞ ei�

) (1 − r∞ ei�)

×εb

∑
N

I 2
N

∑
n
m

�
(P )
LT χNn
m. (E4)

Inserting in the above equation the expression (D9), we obtain

rexc = i

2

(kbL)
(
1 − r2

∞
)

(
1 − r2∞ ei�

)2 (1 − r∞ ei�)2

×
∑
N

(
I 2
N

L

)∑
n
m

�
(P )
LT χNn
m. (E5)

Now the total complex reflection coefficient r has the following
form:

r = r0 + rexc

= r0

[
1 + i

(
E

2EL

)(
1 − r2

∞
)
(1 − r∞ei�)2

(
1 − r2

∞ei�
)

r∞(1 − ei�)

×
∑
N

(
I 2
N

L

) ∑
n
m

�
(P )
LT χNn
m

]
, (E6)

which, using Eq. (E1) immediately gives the result (33).
Analogically, we determine the transmissivity

T =
∣∣∣∣E(L)

Ein

∣∣∣∣
2

, (E7)

resulting from the equation

T = |t |2, (E8)

where

t = t0 + texc, t0 = 1 − r2
∞

1 − r2∞ei�
ei�/2,

texc = k2
0

ε0Ein

∫ L

0
GE(L,Z)Pexc(Z)dZ. (E9)

Since

GE(L,Z) = iei�/2(1 − r∞)

2kb

(
1 − r2∞ei�

) (e−ikbZ − r∞eikbZ),

we have

texc = k2
0

Ein

∫ L

0
GE(L,Z)Pexc(Z)dZ

= (kbL)

2

iei�/2(1 − r∞)(
1 − r2∞ei�

)2 (1 + r∞)(1 − r∞ ei�)

×
∑
N

(
I 2
N

L

)∑
n
m

�
(P )
LT χNn
m,

and

t = t0 + texc = t0

[
1 + i

(
E

2EL

)
(1 − r∞ei�)(
1 − r2∞ei�

)
×

∑
N

(
I 2
N

L

) ∑
n
m

�
(P )
LT χNn
m

]
. (E10)
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Inserting the above result into Eq. (E8), we obtain the
transmissivity (34).

APPENDIX F: DERIVATION OF THE QUANTITIES χNn�m

Using the dispersion relation

c2k2

ω2
= εb + 2

ε0

∫
d3rM∗Y,

2

ε0

∫
d3rM∗Y = 2

ε0

∫
d3rM (1)∗

x

∑
n
m

cNn
mRn
mY
m

+ 2

ε0

∫
d3rM (3)∗

x

∑
n
m

cNn
mRn
mY
m (F1)

we define the quantities χNn
m and χ̃Nn
m:

2

ε0

∫
d3rM (1)∗

x cN1n1±1Rn11Y1±1 = εb�
(P )
LT χ̃N1n1±1

〈
Ex

∣∣wN1

〉
,

2

ε0

∫
d3rM (3)∗

x cN1n3±1Rn31Y3±1 = εb�
(P )
LT χ̃N1n3±1

〈
Ex

∣∣wN1

〉
,

2

ε0

∫
d3rM (3)∗

x cN1n3±3Rn33Y3±3 = εb�
(P )
LT χ̃N1n3±3

〈
Ex

∣∣wN1

〉
.

(F2)

The notation χ̃ denotes that the formula contains contributions
from both excitons P and F . Using the formulas (22) and

(23), and the expressions 〈Rn11Y1±1|M (1)
x 〉,〈Rn31Y3±1|M (3)

x 〉,
〈Rn33Y3±3|M (3)

x 〉 derived in Appendix B, we obtain obtaining
the following formulas: for n = 2,3

χNn1±1 = fn11

Wn1±1 + V
(n)

11±1

, fn11 = 16

3

n2 − 1

n5
. (F3)

For n � 4 we observe the overlapping of the P and F excitons,
which is reflected in the formulas

χNn3±3 = fn33

WNn3±3 + V
(n)

33±3

,

fn33 = 2.073 × 10−3 η9
33

η5
11

(
r0

a∗

)4 (n2−9)(n2−4)(n2−1)

n9
,

χ̃Nn1±1 = fn11
{(

WNn3±1 + V
(n)

331

) − ipnV
(n)

131

}
(
WNn1±1 + V

(n)
111

)(
WNn3±1 + V

(n)
331

) − (
V

(n)
131

)2 ,

(F4)

χ̃N1n3±1 = fn11pn

{[
WN1n1±1 + V

(n)
111

]
pn + i V

(n)
131

}
(
WN1n1±1 + V

(n)
111

)(
WN1n3±1 + V

(n)
331

) − (
V

(n)
131

)2

pn = 0.015 272

(
r0

a∗

)2
η

9/2
31

η
5/2
11

√
(n2 − 9)(n2 − 4)

n4
.

(F5)

[1] Ya. J. Frenkel, Phys. Rev. 37, 17 (1931); 37, 1276 (1931).
[2] G. H. Wannier, Phys. Rev. 52, 191 (1937).
[3] N. F. Mott, Trans. Faraday Soc. 34, 500 (1938).
[4] E. F. Gross and N. A. Karriiev, Dokl. Akad. Nauk SSSR 84, 471

(1952).
[5] R. S. Knox, Theory of Excitons (Academic, New York,

1963).
[6] V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spa-

tial Dispersion and Excitons (Springer-Verlag, Berlin, 1984).
[7] A. Stahl and I. Balslev, Electrodynamics of the Semiconductor

Band Edge (Springer-Verlag, Berlin, 1987).
[8] G. La Rocca, in Electronic Excitations in Organic Based Nanos-

tructures, Thin Films and Nanostructures Vol. 31, edited by
V. M. Agranovich and G. F. Bassani (Elsevier, Amsterdam,
2003), pp. 97–128.

[9] G. Czajkowski, F. Bassani, and L. Silvestri, Riv. Nuovo Cimento
26, 1 (2003).

[10] V. M. Agranovich, Excitations in Organic Solids (Oxford
University Press, Oxford, 2009).

[11] C. Weisbuch and B. Vinter, Quantum Semiconductor Structures:
Fundamentals and Applications (Academic, New York, 1991).

[12] L. Banyai and S. W. Koch, Semiconductor Quantum Dots (World
Scientific, Singapore, 1993).

[13] E. L. Ivchenko and G. E. Pikus, Superlattices and Other
Heterostructures. Symmetry and Optical Phenomena (Springer-
Verlag, Berlin, 1995).

[14] L. Woggon, Optical Properties of Semiconductor Quantum Dots
(Springer-Verlag, Berlin, 1997).

[15] L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots (Springer-
Verlag, Berlin, 1998).

[16] D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum
Dot Heterostructures (Wiley, New York, 1998).

[17] T. Chakraborty, Quantum Dots (Elsevier, Amsterdam, 1999).
[18] V. M. Ustinov, A. E. Zhukov, A. Yu. Egorov, and N. A. Maleev,

Quantum Dot Lasers (Oxford University Press, Oxford, 2003).
[19] E. L. Wolf, Nanophysics and Nanotechnology, An Introduction

to Modern Concepts in Nanoscience (Wiley, Weinheim, 2004).
[20] O. Manasreh, Semiconductor Heterojunctions and Nanostruc-

tures (McGraw-Hill, New York, 2005).
[21] P. Harrison, Quantum Wells, Wires and Dots (Wiley, New York,

2005).
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Fröhlich, M. Bayer, M. A. Semina, and M. M. Glazov, Phys.
Rev. Lett. 115, 027402 (2015).

[25] J. Heckötter, Stark-effect measurements on Rydberg excitons in
Cu2O, Ph.D. thesis, Technical University Dortmund, 2015.
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A. Million, Phys. Rev. B 37, 4310(R) (1988).

[38] A. D’Andrea and R. Del Sole, Phys. Rev. B 41, 1413 (1990).
[39] A. Tredicucci, Y. Chen, F. Bassani, J. Massies, C. Deparis, and

G. Neu, Phys. Rev. B 47, 10348 (1993).
[40] L. C. Andreani, in Confined Electrons and Photons, New Physics

and Applications, edited by E. Burstein and C. Weisbuch
(Plenum, New York, 1995), pp. 57–112.

[41] N. Tomassini, A. D’Andrea, R. Del Sole, H. Tuffigo-Ulmer, and
R. T. Cox, Phys. Rev. B 51, 5005 (1995).

[42] P. Lefebvre, V. Calvo, N. Magnea, J. Allègre, T. Taliercio, and
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