
PHYSICAL REVIEW B 95, 075156 (2017)

Quantum fluctuations beyond the Gutzwiller approximation
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We present a simple scheme to evaluate linear response functions including quantum fluctuation corrections on
top of the Gutzwiller approximation. The method is derived for a generic multiband lattice Hamiltonian without
any assumption about the dynamics of the variational correlation parameters that define the Gutzwiller wave
function, and which thus behave as genuine dynamical degrees of freedom that add on those of the variational
uncorrelated Slater determinant. We apply the method to the standard half-filled single-band Hubbard model.
We are able to recover known results, but, as a by-product, we also obtain a few other results. In particular,
we show that quantum fluctuations can reproduce, almost quantitatively, the behavior of the uniform magnetic
susceptibility uncovered by dynamical mean-field theory, which, though enhanced by correlations, is found to be
smooth across the paramagnetic Mott transition. By contrast, the simple Gutzwiller approximation predicts that
susceptibility to diverge at the transition.
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I. INTRODUCTION

The Gutzwiller approximation [1,2] is likely the simplest
tool to deal with strong correlations in lattice models of
interacting electrons. It consists of a recipe for approximate
analytical expressions of expectation values in a class of wave
functions, named Gutzwiller wave functions, of the form

|�〉 =
∏

i

P(i)|�0〉, (1)

where |�0〉 is a variational Slater determinant, and P(i) a
linear operator that acts on the local Hilbert space at site i and
depends on a set of variational parameters.

Curiously, the Gutzwiller approximation often provides
physically more sound results than a direct evaluation of
expectation values in wave functions such as Eq. (1). For
instance, the numerical optimization on a finite-dimensional
lattice of a variational Gutzwiller wave function for a single-
band half-filled Hubbard model never stabilizes a genuine Mott
insulating phase [3,4], i.e., an insulator that does not break
any symmetry, which intuitively is to be expected beyond
a critical strength of the on-site repulsion. By contrast, the
Gutzwiller approximation is instead able to describe such a
genuine Mott transition [5]. The explanation of this strange
outcome relies on the following observations. The first is that
in order to describe a genuine Mott insulator, one needs to add
to the Gutzwiller wave function, given by Eq. (1), long-range
density-density Jastrow factors [4]. However, the effect of such
Jastrow factors disappears in lattices with coordination number
z → ∞; therefore, only in that limit, wave functions such as
Eq. (1) can faithfully describe Mott insulators. Moreover, right
in that limit of z → ∞, the Gutzwiller approximation provides
the exact expression of expectation values [6,7]. Therefore,
the Gutzwiller approximation is better regarded as a recipe to
evaluate approximate expectation values in Gutzwiller-Jastrow
wave functions, which becomes exact when the coordination
number tends to infinity, rather than in Gutzwiller-only wave
functions. In other words, the Gutzwiller approximation ap-
plied on a lattice with finite z is just the variational counterpart
of dynamical mean-field theory (DMFT) [8] applied on that
same lattice.

Recently, several attempts to include the Gutzwiller ap-
proximation inside density functional theory (DFT) electronic
structure codes have been performed with quite encouraging
outcomes [9–20]. In this perspective, it might be useful to
have at one’s disposal a simple and flexible method to calculate
linear response functions within the Gutzwiller approximation,
in view of an extension of the so-called linear response
time-dependent DFT (TDDFT) [21,22] to the case when DFT
is combined with the Gutzwiller approximation.

There are already several works dealing with linear re-
sponse in the Gutzwiller approximation, most of which are
limited to the single-band Hubbard model [23–28]. Extensions
to multiband models have been attempted [29,30], though
under an assumption about the dynamics of the variational
parameters that determine the linear operators P(i) in Eq. (1).
Here we shall instead present a very simple and general method
to evaluate linear response functions within the Gutzwiller
approximation without any preliminary assumption. The
method is essentially an extension of the time-dependent
Gutzwiller approximation of Ref. [31] to a generic multiband
Hamiltonian, where the dynamics of the linear operators P(i)
and of the Slater determinant |�0〉 [see Eq. (1)] are treated on
equal footing. Linearization of the equations of motion around
the stationary solution, which is the equilibrium state, thus
allows the calculation of linear response functions.

We note that the results of the Gutzwiller approximation
at equilibrium coincide with the saddle-point solution of
the slave-boson theory in the path-integral formulation [32],
which, in multiband models, corresponds to the so-called
rotationally invariant slave-boson (RISB) formalism [33]. Our
present results in the linear response regime can therefore be
considered equivalent to the quantum fluctuation corrections
above the RISB saddle-point solution. We preferred here
to derive such corrections to the action directly from the
time-dependent Gutzwiller approximation rather than from the
RISB theory, since the former is at least a well-controlled vari-
ational scheme in lattices with infinite coordination number.
However, both the notations as well as the language we shall
use are actually closely related to RISB theory.

The paper is organized as follows. In Sec. II, we briefly
present the time-dependent Gutzwiller approximation, with
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some additional technical details postponed to the Appendix.
In Sec. III, we linearize the equations of motion around
the stationary solution and derive an effective action for the
fluctuations in the harmonic approximation. In Sec. IV, we
apply the method to the single-band half-filled Hubbard model,
which allows a comparison with already existing results.
Section V is devoted to concluding remarks.

II. THE GUTZWILLER APPROXIMATION IN BRIEF

Besides the original works [1,2] where Gutzwiller intro-
duced a novel class of variational wave functions as well
as an approximate scheme to compute expectation values,
named Gutzwiller wave functions and approximation, and
the subsequent demonstration that such an approximation
becomes exact in the limit of infinite-coordination lattices
[6,7], there are by now many articles where the Gutzwiller
approximation is described in detail. Here we shall follow
Ref. [34] and use the same notations.

The time-dependent Gutzwiller wave function is defined
through [24,31,34]

|�(t)〉 =
∏

i

P(i,t)|�0(t)〉, (2)

which is analogous to Eq. (1), but now |�0(t)〉 is a time-
dependent variational Slater determinant and P(i,t) are linear
operators on the local Hilbert space that depend on time-
dependent variational parameters. For the sake of simplicity,
we shall not include in our analysis BCS wave functions or
operators P(i,t) that are charge nonconserving. The extension
to those cases is simple, though notations get more involved.

Suppose that the Hamiltonian is written in terms of
fermionic operators ciα and c

†
iα, α = 1, . . . ,2M , where M is

the number of orbitals and 2 is the spin degeneracy, which
correspond to annihilating or creating a fermion at site i in a
chosen basis of Wannier functions φi α(x,t), where α indicates
both spin and orbital indices. Let us imagine a U(2M) unitary
transformation,

W(i,t) = exp

⎡
⎣i

∑
αβ

Kαβ(i,t) c
†
iα ciβ

⎤
⎦, (3)

with Kαβ(i,t) = Kβα(i,t)∗ the matrix elements of a Hermitian
matrix K̂(i,t), which maps ci α into a new basis set di α of
single-particle operators,

di α = W(i,t)† ci α W(i,t) =
∑

β

Uαβ(i,t) ci β, (4)

where Uαβ(i,t) are the matrix elements of

Û (i,t) = eiK̂(i,t). (5)

Evidently, if we consider the gauge transformation

P(i,t) → P(i,t)W(i,t)†, (6)

|�0(t)〉 → W(t)|�0(t)〉 =
∏

i

W(i,t)|�0(t)〉, (7)

the Gutzwiller wave function |�(t)〉 in (2) stays invariant and
the transformed |�0(t)〉 remains a Slater determinant. Such

gauge invariance, analogous to that of the RISB theory [33],
repeatedly appears in the calculations that follow.

The most general P(i,t) can be written [34,35] as

P(i,t) =
∑
nm

λnm(i,t) |n; i〉〈m; i|

=
∑
nm̄

λnm̄(i,t) |n; i〉〈m̄; i|, (8)

where the ket |n; i〉 is a local Fock state of the operators ci α ,
while the bra is a Fock state of the same operators, 〈m; i|
in the first equation, or different ones, 〈m̄; i| in the second
equation, e.g., the basis of the operators diα in Eq. (4). The latter
option, which we denote as the mixed-basis representation
[36], is evidently better when the Slater determinant |�0(t)〉 is,
for convenience, written in terms of single-particle operators
different from those instead used to write the Hamiltonian,
which we shall hereafter assume are the ci α . We define the
uncorrelated local probability distribution P̂0(i,t), which is
positive definite, by its matrix elements,

P0 n̄m̄(i,t) = 〈�0(t)| |m̄; i〉〈n̄; i||�0(t)〉, (9)

as well as the Gutzwiller variational matrix,

�̂(i,t) ≡ λ̂(i,t)
√

P̂0(i,t), (10)

with matrix elements �nm̄(i,t), which changes under the gauge
transformation (6) as

�̂(i,t) → �̂(i,t) Ŵ (i,t)†, (11)

where Ŵ (i,t)† is the matrix representation of W(i,t)†, given
by Eq. (3), in the local Fock basis. Expectation values of local
and nonlocal operators in the Gutzwiller wave function (2) can
be calculated explicitly in infinite-coordination lattices if one
imposes the following two constraints at any time [7,34]:

Tr[�̂(i,t)† �̂(i,t)] = 1, (12)

Tr[�̂(i,t)† �̂(i,t) ĉ
†
i αĉi β] ≡ nαβ(i,t)

= 〈�0(t)|c†i αci β |�0(t)〉, (13)

where the fermionic operators within the spur must be regarded
as their matrix representation in the local Fock space. The first
constraint, given by Eq. (12), is a normalization condition that
does not reduce the variational freedom, unlike the second
constraint, given by Eq. (13), that plays the same role as the
projector onto the physical states in the RISB technique [33].

Another important ingredient is the wave-function renor-
malization matrix R̂(i,t) with elements Rαβ(i,t), defined by
solving the set of equations

〈�0(t)|c†iγ P(i,t)† ciα P(i,t)|�0(t)〉
=

∑
β

nγβ(i,t)Rαβ(i,t), (14)

where the left-hand side can be straightforwardly evaluated by
the Wick’s theorem. As shown in the Appendix, the solution
of the above equation reads

R̂(i,t) = Q̂(i,t) Ŝ(i,t), (15)
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where Q̂(i,t) has matrix elements

Qαβ(i,t) = Tr[�̂(i,t)† ĉiα �̂(i,t) ĉ
†
iβ], (16)

and the Hermitian matrix Ŝ(i,t) is defined through

4Ŝ(i,t)−2 = 1 − 	̂(i,t)2, (17)

where the matrix elements of 	̂(i,t) are

	αβ(i,t) = Tr{�̂(i,t)† �̂(i,t) [ĉiα, ĉ
†
iβ ]}. (18)

The meaning of R̂(i,t) is that the action of the annihilation
operator ciα on the Gutzwiller wave function is equivalent to
the action of the operator,

P(i,t)† ci P(i,t) → R̂(i,t) ci , (19)

on the Slater determinant |�0(t)〉, where ci is a spinor with
components ciα . One can readily show that under the gauge
transformation (6),

R̂(i,t) → R̂(i,t)W = R̂(i,t) Û (i,t)†, (20)

where Û (i,t) has been defined in Eq. (5), so that Eq. (19)
transforms into

W(i,t)P(i,t)† ci P(i,t)W(i,t)† → R̂(i,t)W di .

Since we have complete freedom in choosing W(i,t), a conve-
nient choice is the unitary transformation that diagonalizes the
local single-particle density matrix, in which case the operators
diα are associated to the natural orbitals and satisfy

Tr[�̂(i,t)† �̂(i,t) d̂
†
i αd̂i β] = δαβ nα(i,t), (21)

while the matrix elements of R̂(i,t)W acquire the simple
expression

Rαβ(i,t)W = Tr[�̂(i,t)†ĉiα�̂(i,t) d̂
†
iβ]√

nβ(i,t)[1 − nβ(i,t)]
. (22)

The matrix �̂(i,t) is in this case conveniently defined in the
mixed-basis representation, where n in �nm̄(i,t) refers to a
Fock state in the original basis, and m̄ to a Fock state in the
natural one. Such a mixed-basis representation is useful since,
throughout all calculations, one does not actually need to know
what the natural basis is in terms of the original one [36]. Such
a nice property is linked to the gauge invariance, given by
Eqs. (6) and (7), of the theory [33].

A. The model

We shall assume the generic Hamiltonian

H =
∑
i �=j

c†i t̂ij c†j +
∑

i

Hi , (23)

where Hi includes all on-site terms. If the constraints Eq. (12)
and Eq. (13) are satisfied at any time t , then, in infinite

coordination lattices, it holds that [7,34]

E(t) = 〈�(t)|H|�(t)〉 = 〈�0(t)|H∗(t)|�0(t)〉
+

∑
i

Tr[�̂(i,t)† Ĥi �̂(i,t)]

≡ E∗(t) +
∑

i

Tr[�̂(i,t)† Ĥi �̂(i,t)], (24)

where

H∗(t) =
∑
i �=j

c†i R̂(i,t)† t̂ij R̂(j,t)ci (25)

may be interpreted as the Hamiltonian of the quasiparticles.
Evidently, all expectation values can be straightforwardly
evaluated since the uncorrelated wave function |�0(t)〉 allows
use of Wick’s theorem.

B. The action

In the time domain, the variational principle corresponds to
searching for the saddle point of the action [31],

S =
∫

dt[i 〈�(t)|�̇(t)〉 − E(t)]

≡
∫

dt

{
i

∑
i

Tr

[
�̂(i,t)†

∂�̂(i,t)

∂t

]

+ i 〈�0(t)|�̇0(t)〉 − E(t)

}
, (26)

where the equivalence holds on provision that the constraints
(12) and (13) are fulfilled at any time. The saddle-point
equations are readily obtained:

i
∂�̂(i,t)

∂t
= Ĥi �̂(i,t) + ∂E∗(t)

∂�̂(i,t)†
, (27)

i|�̇0(t)〉 = H∗(t)|�0(t)〉, (28)

where

∂E∗(t)

∂�̂(i,t)†
= 〈�0(t)| ∂H∗(t)

∂�̂(i,t)†
|�0(t)〉

≡ T̂ (i,t) �̂(i,t). (29)

T̂ (i,t) is a tensor with components Tnm;n′m′ (i,t), which is still
a functional of the matrices �̂ and �̂† at site i as well as at
all sites connected to i by the hopping. One can show that this
tensor is Hermitian, T̂ (i,t) = T̂ (i,t)†, which implies that the
normalization (12) is conserved by the time evolution.

C. Fate of the constraint

Concerning the second constraint, given by Eq. (13), we
now prove that if it is satisfied at the initial time, it will
remain so at the saddle-point solutions of Eqs. (27) and (28).
Suppose we have indeed found the saddle point �̂(i,t) and
|�0(t)〉. By definition, any small variation with respect to that
solution must lead to a vanishing variation of the action. Let us
therefore consider the gauge transformation (6) and (11), with
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infinitesimal Kαβ(i,t) [see Eq. (3)]. Under this transformation,

�̂(i,t) Ŵ (i,t)† 
 �̂(i,t) [1 − i δŴ (i,t)], W(t)|�0(t)〉 

[

1 + i
∑

i

δW(i,t)

]
|�0(t)〉,

where the operator

δW(i,t) =
∑
αβ

Kαβ(i,t) c
†
i α ci β, (30)

with δŴ (i,t) its matrix representation in the local Fock space.
We already mentioned that the energy E(t) is gauge invariant so that the variation of the action, δS = SW − S, simply reads

δS =
∫

dt

{
i

∑
i

Tr

[
�̂(i,t)† �̂(i,t)

∂Ŵ (i,t)†

∂t
Ŵ (i,t)

]
+ i

∑
i

〈�0(t)|W(i,t)† Ẇ(i,t)|�0(t)〉
}



∑

i

∫
dt

{
Tr

[
�̂(i,t)† �̂(i,t)

∂ δŴ (i,t)

∂t

]
− 〈�0(t)| ˙δW(i,t)|�0(t)〉

}

=
∑

i

∑
αβ

∫
dt K̇αβ(i,t) {Tr[�̂(i,t)† �̂(i,t) ĉ

†
i α ĉ

†
i β] − 〈�0(t)|c†i α ci β |�0(t)〉}

= −
∑

i

∑
αβ

∫
dt Kαβ(i,t)

∂

∂t
{Tr[�̂(i,t)† �̂(i,t) ĉ

†
i α ĉ

†
i β] − 〈�0(t)|c†i α ci β |�0(t)〉}.

Since �̂(i,t) and |�0(t)〉 are solutions of the saddle-point
equations, it follows that δS must strictly vanish for any choice
of the infinitesimally small matrix elements Kαβ(t), which
implies

∂

∂t
{Tr[�̂(i,t)† �̂(i,t) ĉ

†
i α ĉ

†
i β] − 〈�0(t)|c†i α ci β |�0(t)〉} = 0,

thus just the desired result. It actually means that the term in
parentheses is conserved in the evolution. Therefore, if it is
initially vanishing, it will remain so at any time, which thus
implies that the constraint given by Eq. (13) is fulfilled during
the whole time evolution.

D. Stationary problem

At equilibrium, one needs to find the minimum of the energy
with the two constraints (12) and (13), which can be enforced,
e.g., by Lagrange multipliers, leading to the set of equations

�(i) �̂(i) = [Ĥi + T̂ (i)]�̂(i) +
∑
αβ

μαβ(i) �̂(i)d̂†
iα d̂iβ , (31)

E∗|�0〉 =
[
H∗ −

∑
i

μαβ(i)d†
i α di β

]
|�0〉, (32)

where �(i) enforces Eq. (12), and the Hermitian matrix μ̂(i)
with components μαβ(i) enforces Eq. (13). In whatever fol-
lows, we shall assume to work in a mixed-basis representation
where the operators diα are associated to the natural orbitals,
so that we must also ensure that

Tr[�̂†(i) �̂(i)d̂†
iα d̂iβ] = 〈�0|d†

iαdiβ |�0〉 = δαβ nα(i).

The quasiparticle Hamiltonian in the natural basis, including
explicitly the Lagrange multipliers, is therefore

H∗ →
∑
i �=j

d†
i R̂(i)† t̂ij R̂(j )di −

∑
i

d†
i μ̂(i) di , (33)

with R̂ defined in Eq. (22). Working in the mixed-basis
representation with the natural orbitals considerably simplifies
all calculations.

Recalling that T̂ (i) is still a functional of �̂, Eq. (31) looks
like a stationary nonlinear Schrödinger equation [20,37]. One
can, for instance, solve it as in any Hartree-Fock calculation.
Namely, one can find the eigenstates and eigenvalues of
Eq. (31) assuming T̂ (i) fixed, and impose that when T̂ (i)
is calculated by substituting the actual expression of the
lowest-energy solution �̂0(i), the two values coincide. The
Lagrange multiplier μ̂ is fixed by imposing Eqs. (13) and (21).
In this way, one finally gets the self-consistent T̂ (i), which we
shall hereafter denote as

T̂ (0)(i) ≡ T̂ [�̂0,�̂
†
0]. (34)

Once the latter is known, as well as the value of μ̂, one can
also solve (31) for all eigenvectors �̂n(i) and corresponding
eigenvalues En(i), with E0(i) = �(i), namely,

En(i)�̂n(i) = [Ĥi + T̂ (0)(i)]�̂n(i) +
∑
αβ

μαβ (i) �̂n(i)d̂†
iα d̂iβ .

(35)

We shall denote H∗, R̂, Q̂, n̂, and Ŝ calculated with �̂0 as
H(0)

∗ , R̂(0), Q̂(0), n̂(0), and Ŝ(0), respectively, with the latter two
matrices diagonal in the natural basis,

n
(0)
αβ = δαβ n(0)

α , (36)

S
(0)
αβ = δαβ S(0)

α = δαβ

[
n(0)

α

(
1 − n(0)

α

)]−1/2
. (37)
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We conclude by noting that the saddle-point Hamiltonian
(33) with the inclusion of the Lagrange multipliers is no longer
invariant under the most general U(2M) gauge transformation,
but only under a subgroup G with generators T̂ a that commute
with μ̂. This is common in theories where the gauge invariance
implements constraints about physical states. In the natural
basis representation, μi,αβ = δαβ μiα is diagonal, so that the
matrix elements of T̂ a must satisfy

T a
i,αβ (μiα − μiβ) = 0, (38)

whose solution is straightforward. For any nondegenerate α,
i.e., such that μiα �= μiβ,∀β �= α, we associate the generators
T α

i,γβ = δαβ δγβ of U(1) Abelian groups. On the contrary, for
any set of αi , i = 1, . . . ,k, such that μiαi

= μiαj
�= μiβ,∀β �=

α1, . . . ,αk , we can associate generators of a U(k) Lie algebra.

III. FLUCTUATIONS ABOVE THE
SADDLE-POINT SOLUTION

Our goal is to determine the action of the fluctuations
beyond the saddle point within the harmonic approximation.
To that purpose, we assume that

�̂(i,t) = e−iE0t
∑

n

φn(i,t) �̂n(i)Ŵ (i,t)†, (39)

where φn(i,t) for n > 0 is regarded as a first-order fluctuation,
while to enforce normalization,

φ0(i,t) = 1 − 1

2

∑
n>0

|φn(i,t)|2. (40)

The physical meaning of Eq. (39) is that we expand the
fluctuations around the stationary solution in terms of the
ground and excited states of the local eigenvalue problem
described by Eq. (35), with each eigenstate weighed by
the probability amplitude φn(i,t). In addition, the Slater
determinant is defined through

|�0(t)〉 → e−iE∗tW(t) |�0(t)〉, (41)

where |�0(t)〉 is properly normalized and includes the zeroth-
order |�(0)

0 〉 solution of the saddle point, as well as a fluctuation
correction |δ�0(t)〉. The unitary operator W(i,t) is chosen as

W(i,t) = exp[−i t d†
i μ̂(i) di], (42)

where μ̂(i) is the equilibrium Lagrange multiplier and Ŵ (i,t)
is the matrix representation of W(i,t).

Through the above definitions, the action becomes

S =
∫

dt

{
i
∑

i

∑
n>0

φn(i,t)∗ φ̇n(i,t) + i 〈�0(t)|�̇0(t)〉

−
∑

i

∑
nm

φn(i,t)∗ Vnm(i) φm(i,t) + E0 + E∗ − E∗(t)

}
,

(43)

where E∗(t) = 〈�0(t)|H∗(t)|�0(t)〉, being now

H∗(t) =
∑
i �=j

d†
i R̂(i,t)† t̂ij R̂(j,t)di −

∑
i

d†
i μ̂(i) di (44)

and

Vnm(i) = Tr[�̂n(i)† Ĥi �̂m(i)]

+ Tr[�̂n(i)† �̂m(i) d̂
†
i μ̂(i) d̂i ]. (45)

We expand H∗(t) up to second order in the fluctuations.
The zeroth order is just H(0)

∗ . Since the stationary solution
is the saddle point of the action, the expectation value of
the first-order expansion H(1)(t) over the saddle-point Slater
determinant |�(0)

0 〉 cancels with the first-order expansion of
the local energy

∑
i

∑
nm φn(i,t)∗ Vnm(i) φm(i,t). Therefore,

H(1)(t) contributes to E∗(t) with a second-order term that, by
linear response theory, reads

δ1E∗(t) = 〈δ�0(t)|H(1)(t)|�(0)
0 〉 + c.c.

= −i

∫ t

dτ 〈[H(1)(t),H(1)(τ )]〉0, (46)

where, hereafter, 〈·〉0 will denote the average over |�(0)
0 〉, and

the operators in Eq. (46) have an additional time dependence
since they are evolved with the saddle-point Hamiltonian H(0)

∗ .
The explicit expression of H(1)(t) is

H(1)(t) =
∑
i �=j

[d†
j R̂(0)(j )† t̂j i R̂

(1)(i,t) di + H.c.], (47)

where R̂(0)(i) is the stationary value, while the explicit
expression of the first-order Taylor expansion R̂(1)(i,t) is given
in the Appendix; see Eq. (A17).

There are several second-order terms upon expanding
H∗(t), which we shall consider separately. The first is simply

H(2)
1 (t) =

∑
i �=j

d†
i R̂(1)(i,t)† t̂ij R̂(1)(j,t) dj , (48)

whose expectation value over |�(0)
0 〉 is an additional second-

order contribution,

δ2E∗(t) = 〈
H(2)

1 (t)
〉
0, (49)

which, together with δ1E∗(t) in Eq. (46), endow the action
with spatial correlations among the φn(i,t) at different sites.

The next second-order corrections to H∗(t) derive from the
second-order expansion of R̂(i,t),

R̂(2)(i,t) = R̂
(2)
1 (i,t) + R̂

(2)
2 (i,t), (50)

where we distinguish two different contributions; see
Eqs. (A19) and (A20) in the Appendix. The reason for this
distinction is that

δ3E∗(t) =
∑

i

∑
nm

φn(i,t)∗ Vnm(i) φm(i,t)

+
〈∑

i �=j

[
d†

j R̂(0)(j ) t̂j i R̂
(2)
1 (i,t) di + H.c.

]〉
0

=
∑
n>0

(En − E0)φn(i,t)∗ φn(i,t) (51)
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reproduces the bare excitation energy of the fluctuations. The
last contribution to the energy of the fluctuations is therefore

δ4E∗(t) =
〈 ∑

i �=j

[
d†

j R̂
(0)(j )t̂j i R̂

(2)
2 (i,t)di + H.c.

]〉
0

. (52)

If we define new variables

xn(i,t) = 1√
2

[φn(i,t) + φn(i,t)∗], (53)

pn(i,t) = − i√
2

[φn(i,t) − φn(i,t)∗], (54)

and the quadratic potential

U (t,{x,p}) = δ1E∗(t) + δ2E∗(t) + δ4E∗(t), (55)

which has a retarded component δ1E∗(t) [see Eq. (46)], then
the action of the fluctuations, upon defining ωn = En − E0,
reads

δS =
∫

dt

(∑
i

∑
n>0

{
pn(i,t) ẋn(i,t)

−ωn

2
[xn(i,t)2 + pn(i,t)2]

}
− U (t,{x,p})

)
, (56)

which is just the action of coupled harmonic oscillators.
δS in Eq. (56) can, for instance, be used to evaluate the

fluctuation corrections to linear response functions of local
operators. For any local observable Ô(i), let us define the
matrix element

On(i) ≡ Tr[�̂n(i)† Ô(i) �̂0(i)]. (57)

Suppose we add a perturbation that couples to the local density
matrix,

δH(t) =
∑

i

c†i V̂ (i,t) ci , (58)

where the matrix V̂ (i,t) with elements Vαβ(i,t) represents the
external field. Without loss of generality, we can assume that
the expectation value of δH(t) in Eq. (58) vanishes at the
stationary solution. Since by assumption the external field is
first order, the perturbation adds a second-order correction to
the action (56),

V (t) =
∑

i

∑
n

{φn(i,t)∗ Tr[�̂n(i)† ĉ†i V̂ (i,t) ĉi �̂0(i)]

+φn(i,t) Tr[�̂0(i)† ĉ†i V̂ (i,t) ĉi �̂n(i)]}
≡

∑
i

∑
n

[φn(i,t)∗ Vn(i,t) + φn(i,t) Vn(i,t)∗]

=
√

2
∑
i n

[ReVn(i,t) xn(i,t) + ImVn(i,t) pn(i,t)].

(59)

In the presence of V (t), the action transforms into that of forced
harmonic oscillators, whose solution allows calculation of the

expectation value of any local operator Ô(i) [see Eq. (57)],

O(i,t) = Tr[�̂(i,t)† Ô(i) �̂(i,t)]



√

2
∑

n

[ReOn(i) xn(i,t) + ImOn(i) pn(i,t)],

at linear order in the external field.

Residual gauge invariance and would-be Goldstone modes

As we mentioned, the action given by Eq. (43), with the
time-dependent quasiparticle Hamiltonian defined in Eq. (44),
is invariant under a subgroup G of the initial U(2M) gauge
symmetry. This implies the existence of massless modes with
singular propagators that diverge as 1/ω2 at low frequency,
which are the would-be Goldstone modes related to the fact
that the saddle point �̂0(i) is not invariant under G. Since the
gauge invariance breakdown is fake, a U(2M) gauge symmetry
cannot be spontaneously broken; such singular behavior is
unphysical and simply signals that gauge symmetry is to be
restored beyond the saddle-point approximation [38].

Let us consider, for instance, a U(1) subgroup of G related
to the nondegenerate state α in the natural basis. The associated
adjoint charge is

nα(i,t) 

∑
n>0

{φn(i,t)∗ Tr[�̂n(i)† �̂0(i) d̂
†
iα d̂iα] + c.c.},

and its conjugate variable is readily found to be

ϕα(i,t) 
 i

2n
(0)
α

∑
n>0

{φn(i,t)∗ Tr[�̂n(i)† �̂0(i) d̂
†
iα d̂iα]

− φn(i,t) Tr[�̂0(i)† �̂n(i) d̂
†
iα d̂iα]}.

The role of ϕα(i,t) is just to enforce the constraint (13), i.e.,

nα(i,t) = 〈�0(t)|c†iαciα|�0(t)〉 ≡ 〈c†iαciα〉t .
Indeed we can always perform a gauge transformation on the
fermions,

ciα → e−iϕα (i,t)ciα,

which makes ϕα(i,t) disappear from the energy, leaving just
the time derivative term in the action,

δS = −
∫

dt ϕ̇α(i,t)[nα(i,t) − 〈c†iαciα〉t ].

The condition of vanishing derivative with respect to ϕα(i,t)
is therefore just the condition that the constraint is conserved.

It follows that we can always drop from the action all terms
that contain the variables conjugate to the adjoint charges
associated with the gauge symmetry G, with the provision
that wherever nα(i,t) appears, we replace it with 〈c†iαciα〉t .

However, the above procedure does not involve all the
coefficients φn(i,t); some of their linear combinations are
untouched by gauge fixing and remain genuine independent
dynamical degrees of freedom [39]. This fact, rather than being
a limitation, endows the theory with a richer dynamics.
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IV. APPLICATION TO THE HALF-FILLED
HUBBARD MODEL

We now apply the above formalism to the simple case
of a single-band Hubbard model at half filling, where all
calculations can be worked out analytically and which also
allows for a direct comparison with previous works [23–28,39–
41]. We will show that we can indeed recover known results,
but also find a few others.

The Hamiltonian in this case is

H = − t√
z

∑
〈ij〉σ

(c†iσ cjσ + H.c.)

+ U

4

∑
i

[2(ni − 1)2 − 1], (60)

where 〈ij 〉 means nearest-neighbor bonds on a d-dimensional
hypercubic lattice, and z = 2d is the lattice coordination
number that must be sent to +∞ for the calculation to be
really variational.

The local basis comprises four states which we choose to
be, in order, empty configuration |0〉, doubly occupied |2〉,
singly occupied by a spin-up electron |↑〉, and occupied by a
spin-down electron |↓〉. The most general charge-conserving
�̂ has the following form, dropping for now the site index:

�̂ = 1√
2

(
�̂c 0

0 �̂s

)
, (61)

where the charge component, i.e., the matrix elements in the
subspace (|0〉,|2〉), is

�̂c =
(

φc0 + φc3 0

0 φc0 − φc3

)
= φc0 σ0 + φc3 σ3, (62)

with σ0 the 2 × 2 identity matrix, and σi , i = 1, . . . ,3 the Pauli
matrices, whereas the spin component, namely, the matrix
elements in the subspace (|↑〉,|↓〉), is instead

�̂s =
3∑

i=0

φsi σi = φs0 σ0 + φs · σ , (63)

which allows a full spin-SU(2) invariant analysis [26,42].
Normalization implies that

1 = |φc0|2 + |φc3|2 + |φs0|2 + φ∗
s · φs .

One can readily verify that the matrix Q̂ with components,

Qσσ ′ = Tr(�̂† cσ �̂ c
†
σ ′), (64)

can be written as

Q̂ = Q0 σ0 + Q · σ , (65)

where

2Q0 = (φ∗
c0 φs0 + φ∗

s0 φc0) + (φ∗
c3 φs0 − φ∗

s0 φc3), (66)

2Qi = (φ∗
c0 φsi − φ∗

si φc0) + (φ∗
c3 φsi + φ∗

si φc3), (67)

with i = 1, . . . ,3. Seemingly,

	̂ ≡ (φ∗
c0 φc3 + φ∗

c3 φc0) σ0 − (φ∗
s0 φs + φs0 φ∗

s + i φ∗
s ∧ φs) · σ

≡ 	0 σ0 + � · σ . (68)

A. Stationary solution

As is common when discussing the Mott transition in
the single-band Hubbard model, we shall be interested in
the stationary solution within the paramagnetic sector, i.e.,
neglecting spontaneous breakdown of spin-SU(2) symmetry.
Such solution at half filling is characterized by a site-
independent

�̂0 = 1√
2

(
φ

(0)
c0 σ0 0

0 φ
(0)
s0 σ0

)
,

with

1 = ∣∣φ(0)
c0

∣∣2 + ∣∣φ(0)
s0

∣∣2
.

Under this assumption,

R̂(i) = (
φ

(0)
c0

∗ φ
(0)
s0 + φ

(0)
s0

∗ φ
(0)
c0

)
σ0 = R(0) σ0∀ i, (69)

so that the quasiparticle Hamiltonian is just a tight-binding
model with renormalized hopping, i.e.,

H(0)
∗ = − t√

z
R(0)2

∑
〈ij〉

(c†i cj + H.c.), (70)

and natural and original orbitals coincide. It follows that the
stationary Slater determinant is the noninteracting Fermi sea.
We define

−
∑

i

T0 ≡ − t√
z

∑
〈ij〉 σ

〈c†iσ cjσ + H.c.〉0,

where 〈·〉0 is the average over the Fermi sea. Therefore, −T0 is
the hopping energy per site and −2T0/z is the hopping energy
per bond of the Fermi sea.

The saddle-point equations for �̂0 can be readily found,

E φ
(0)
c0 = −2T0 R(0) φs0 + U

4
φc0,

E φ
(0)
s0 = −2T0 R(0) φc0 − U

4
φs0.

The lowest-energy eigenvalue is

E0 = − 1
2

√
U 2 + (8T0 R(0))2, (71)

and is characterized by

φ
(0)
c0 = sin

θ

2
, φ

(0)
s0 = cos

θ

2
,

with tan θ = 8T0 R(0)/U . Since through Eq. (69) R(0) = sin θ ,
the self-consistency condition implies

tan θ = 8T0 R(0)

U
= 8T0

U
sin θ, (72)

namely,

cos θ =
{
U/Uc, U � Uc = 8T0

1, U > Uc.
(73)

Uc is the well-known value of the Brinkman-Rice [5] metal-
insulator transition within the Gutzwiller approximation.
Indeed, for any U � Uc,R

(0) = sin θ = 0, so that the renor-
malized hopping in Eq. (70) vanishes; the quasiparticle motion
is completely suppressed beyond Uc.
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In conclusion, the lowest-energy eigenstate is

�̂0 = 1√
2

(
sin θ

2 σ0 0

0 cos θ
2 σ0

)
, (74)

where cos θ = min(1,U/Uc), and has eigenvalue

E0 = − U

4 cos θ
= −Max(U,Uc)

4
. (75)

We can now find all other eigenvalues and eigenvectors. The
highest-energy one is

�̂3 = 1√
2

(
cos θ

2 σ0 0

0 − sin θ
2 σ0

)
, (76)

with eigenvalue

E3 = −E0. (77)

This eigenstate actually corresponds to the high-energy Hub-
bard bands. Indeed, above Uc, its excitation energy E3 − E0 =
U/2 is just the cost of creating an empty or doubly occupied
site in the atomic limit described by the Hamiltonian (60) with
t = 0.

The lowest excited eigenstate is threefold degenerate (i =
1,2,3),

�̂1 i = 1√
2

(
0 0

0 σi

)
, (78)

with eigenvalue

E1 = −U

4
, (79)

and describes spin fluctuations. We note that above the
Brinkmann-Rice transition, U > Uc, this magnetic state be-
comes degenerate with the ground state, as both imply strict
single occupancy. In what follows, we shall nevertheless
always expand around �̂0 and, to avoid problems, we will
mostly consider the metal phase at U � Uc.

Finally, the last eigenstate is

�̂2 = 1√
2

(
σ3 0

0 0

)
, (80)

with eigenvalue

E2 = +U

4
, (81)

and instead describes charge fluctuations, i.e., deviations of
the local density from its average value of one. This mode
becomes evidently degenerate with �̂3 above the transition.

B. Action of the fluctuations

Following Sec. III, we write

�̂(i,t) = φ0(i,t) �̂0 +
3∑

i=1

φ1i(i,t) �̂1 i +
3∑

n=2

φn(i,t) �̂n,

(82)

with φ0(i,t) fixed by normalization. Through Eqs. (65)–(67),
we find that

R̂(1)(i,t) = sin
θ

2
[φ1(i,t) − φ1(i,t)∗] · σ

− cos
θ

2
[φ2(i,t) − φ2(i,t)∗]

+ cos θ [φ3(i,t) + φ3(i,t)∗]

≡ i
√

2 sin
θ

2
p1(i,t) · σ − i

√
2 cos

θ

2
p2(i,t)

+
√

2 cos θ x3(i,t), (83)

where we have introduced the conjugate variables associated
with φn and φ∗

n . Equation (47) explicitly reads

H(1)
∗ =

∑
i

{√
2

(
2 cos

θ

2

)−1

∇ · Js(i) · p1(i,t)

−
√

2

(
2 sin

θ

2

)−1

∇ · Jc(i) p2(i,t)

+ 2
√

2 cot θ h∗(i) x3(i,t)

}
, (84)

where ∇ is the lattice divergence, Js(i) and Jc(i) are the
spin and charge currents, respectively, defined through the
continuity equations

i
∂

∂t
(c†i σ0 ci ) = [c†i σ0 ci ,H(0)

∗ ] ≡ −i∇ · Jc(i), (85)

i
∂

∂t
(c†i σ ci ) = [c†i σ ci ,H(0)

∗ ] ≡ −i∇ · Js(i), (86)

and, finally, h∗(i) is the Hamiltonian density,

h∗(i) = − t

2
√

z
R(0)2

∑
j n.n. i

(c†i cj + H.c.). (87)

Therefore, δ1E∗(t) defined in Eq. (46) becomes, due to particle-
hole and spin-SU(2) symmetry,

δ1E∗(t)

=
∑
i,j

∫
dτ

{
1

1 + cos θ
χ∇ J∇ J (i − j,t − τ ) p1(i,t) · p1(j,τ )

+ 1

1 − cos θ
χ∇ J∇ J (i − j,t − τ ) p2(i,t) p2(j,τ )

+ 8 cot2 θ χh∗h∗(i − j,t − τ ) x3(i,t) x3(j,τ )

}
, (88)

where χ∇ J∇ J is the linear response function of ∇ J with the
Hamiltonian H(0)

∗ , which is actually the same for charge and
spin currents, and χh∗h∗ is the response function of h∗. We
observe that because of charge and spin continuity equations,
in Fourier space the following equivalence holds:

2T0 sin2 θ (γ0 − γq) + χ∇ J∇ J (q,ω) = ω2 χ (q,ω), (89)

where χ (q,ω) is the density-density response function, which
is the same both in the charge and spin channels, and,
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by definition,

γq = 2

z

d∑
i=1

cos qi ∈ [−1,+1]. (90)

Without going into further details, we find the following expressions for the remaining contributions δ2E∗(t) in Eq. (49) and
δ4E∗(t) in Eq. (52):

δ2E∗(t) = −4T0

z

∑
〈ij〉

{
sin2 θ

2
p1(i,t) · p1(j,t) + cos2 θ

2
p2(i,t) p2(j,t) + cos2 θ x3(i,t) x3(j,t)

}
, (91)

δ4E∗(t) = −2T0 sin2 θ
∑

i

{
cos2 θ

2
x1(i,t) · x1(i,t) + sin2 θ

2
x2(i,t)2

}
. (92)

We now have all of the ingredients required to evaluate linear
response functions of local operators within the harmonic
approximation for the fluctuations.

C. Hubbard-band dispersion mode

As we mentioned, the Hubbard bands may be associated
with the excited state �̂3, hence with the operators x3 and p3.
Their equations of motion in Fourier space are

− iω x3(q,ω) = ω3 p3(q,ω), (93)

− iω p3(q,ω) = −[ω3 − 4T0 γq + 8 cot2 θ χh∗h∗ (q,ω)]

× x3(q,ω). (94)

Within the metal phase, U < Uc, ω3 = E3 − E0 = 4T0, so
that, upon defining cos θ = U/Uc ≡ u, and noting that for
small |q|, χhh(q,ω) = O(q4), the eigenmode energy is the
solution of the equation

ω2
3q = 4T0

[
4T0(1 − u2) + 4T0 u2 (γ0 − γq)

+ 8
u2

1 − u2
χh∗h∗ (q,ω3q)

]


 16T 2
0 [(1 − u2) + u2 (γ0 − γq)], (95)

and thus describes an optical mode that softens at the metal-
insulator transition, ω30 = 4T0

√
1 − u2 → 0, when u → 1.

We observe that the continuum of quasiparticle-quasihole
excitations extends up to an energy of the order of T0(1 − u2),
so that upon approaching the transition, ω3q must detach from
the continuum and become a genuine coherent excitation. This
coherent mode actually corresponds to the spin-wave excita-
tions of the Ising field within the Z2 slave-spin representation
of the Hubbard model [27,43,44]. This is not surprising since,
as shown in Ref. [27], the Gutzwiller wave function is just
the mean-field variational state of the Z2 slave-spin theory. At
the mean-field level, the Mott transition in this representation
translates into the order-disorder transition of a quantum Ising
model. Therefore, the mode x3 seems to be the real fingerprint
of the Mott transition.

D. Dynamical charge susceptibility

We assume to perturb the system in the metal phase, u � 1,
by an external potential that couples to the charge deviation

from half filling, namely,

δH(t) =
∑

i

v(i,t) (ni − 1)


 −
√

2 sin
θ

2

∑
i

v(i,t) x2(i,t). (96)

Since ω2 = E2 − E0 = 2T0(1 + u) and by means of Eq. (89),
we find in the presence of the field the following equations of
motion for the conjugate variables x2 and p2:

−iω x2(q,ω) = ω2

1 − u
χ (q,ω) p2(q,ω),

−iω p2(q,ω) =
√

2 sin
θ

2
v(q,ω)

− 2T0 (1 + u) u (2 − u) x(q,ω),

from which it follows that the dynamical charge susceptibility
is

χc(q,ω) = (1 − u) χ (q,ω)

(1 − u) − 2T0 (1 + u) u (2 − u) χ (q,ω)

≡ χ (q,ω)

1 + �c χ (q,ω)
, (97)

where the analogy with conventional random-phase approxi-
mation (RPA) is evident, though with a renormalized coupling
constant,

�c = −U

2

1 + u

1 − u

(
1 − u

2

)
< 0. (98)

We note that

χ (q → 0,ω = 0) = −N∗,

where

N∗ = N0

1 − u2
(99)

is the quasiparticle density of states (DOS) at the chemical
potential, as opposed to the bare DOS N0, and diverges
approaching the Mott transition. Therefore, through Eq. (97),
the charge compressibility is readily obtained,

κ = N∗
1 − �c N∗

≡ N∗
1 + FS

0

,
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and defines the Landau FS
0 parameter,

FS
0 = −N∗ �c. (100)

Since approaching the transition, u → 1, F S
0 ∼ (1 − u)−2

diverges faster than N∗ ∼ (1 − u)−1, we find that the charge
compressibility correctly vanishes at the metal-insulator transi-
tion (MIT). The expression of FS

0 coincides with that originally
obtained by Vollhardt [23].

In the opposite limit of small |q| with respect to frequency,

χ (q,ω) 
 2T0 (1 − u2)(γ0 − γq)

ω2
,

which, inserted into Eq. (97), allows calculation of the poles
of the dynamical charge susceptibility, which are

ω2
cq = 4T 2

0 (1 + u)2 u (2 − u) (γ0 − γq). (101)

This acoustic mode is above the quasiparticle-quasihole
continuum and actually corresponds to the Landau’s zero
sound. Once again, this result is compatible with Vollhardt’s
description of the correlated metal within the Gutzwiller ap-
proximation in the framework of Landau–Fermi-liquid theory
[23]. Indeed, the zero sound velocity has the expected Landau’s
expression, once one realizes that in a lattice with infinite
coordination, FS

1 = 0 and it is unrelated to the enhancement
of the effective mass.

We conclude, highlighting that the velocity of the zero
sound stays constant approaching the Mott transition. In par-
ticular, for ω2 � T0 (1 − u2) (γ0 − γq), the dynamical charge
susceptibility can be written as

χc(q → 0,ω) = 2T0 (1 − u2) (γ0 − γq)

ω2 − ω2
cq

, (102)

and hence the pole at the zero sound has vanishing weight
as the transition u → 1 is approached, in agreement with the
expectation that spectral weight is transferred at high energy.

We conclude by observing that the propagator �2(q,ω) of
p2(q,ω),

�2(q,ω) = − 1

ω2

(1 − u)�c

1 + �c χ (q,ω)
,

is singular at ω = 0, although this singularity does not appear
in the physical response function, which is proportional to the
propagator of the conjugate variable x2(q,ω). Indeed, p2(q,ω)
is one of the would-be Goldstone modes that we mentioned
in Sec. III. The action of the single-band Hubbard model is
U(2) = U(1) × SU(2) gauge invariant, and p2(q,ω) is just the
would-be Goldstone mode associated with the Abelian U(1),
whereas we shall see that p1(q,ω) are instead those associated
with SU(2). In fact, the RPA form of the charge susceptibility
could be very easily obtained by the gauge-fixing prescription
of Sec. III. If we drop all terms that contain p2(i,t) and replace

−
√

2 sin
θ

2
x2(i,t) → 〈ni − 1〉t ,

we get an effective Hamiltonian of the quasiparticles, neglect-
ing for convenience all other variables but x2(i,t),

H∗(t) = H(0)
∗ +

∑
i

v∗(i,t) (ni − 1),

where

v∗(i,t) = v(i,t) − �c 〈ni − 1〉t , (103)

which readily leads to Eq. (97).

E. Dynamical spin susceptibility

In order to study the spin response, we imagine to add an
external field that couples to the spin density, e.g., to its z

component, namely,

δH(t) = −
∑

i

B3(i,t) (ni↑ − ni↓)

= −
√

2 cos
θ

2

∑
i

B3(i,t) x1,3(i,t). (104)

In the metal phase, ω1 = E1 − E0 = 2T0(1 − u), and repeat-
ing all calculations done for the charge susceptibility, we
finally obtain the dynamical spin susceptibility,

χs(q,ω) = χ (q,ω)

1 + �s χ (q,ω)
, (105)

where

�s = U

2

1 − u

1 + u

(
1 + u

2

)
> 0. (106)

The above expression reproduces the small u Stoner’s enhance-
ment of the magnetic susceptibility. In addition, it satisfies the
relationship �s(U ) = �c(−U ) valid at particle-hole symmetry
[23]. Since �s ∼ (1 − u) vanishes linearly approaching the
transition, the Landau’s parameter,

FA
0 = −N∗ �s < 0, (107)

is constant for u → 1, which implies that the uniform static
spin susceptibility diverges at the MIT. This result agrees with
previous ones [23,26] also obtained within the Gutzwiller
approximation, but contrasts DMFT, which instead finds a
finite uniform spin susceptibility at the transition.

Such a negative outcome critically depends on the fact that
the effective interaction �s , given by Eq. (106), vanishes at
the transition. We are going to show that beyond the harmonic
approximation, this cancellation no longer occurs.

We note that p1a(i,t), a = 1, . . . ,3, are now the Goldstone
modes associated with SU(2) gauge invariance, and their
propagators,

�1a(q,ω) = − 1

ω2

(1 + u) �s

1 + �s χ (q,ω)
,

diverge at ω = 0. We can, as in Sec. IV D, drop p1(i,t) from
the action and replace

√
2 cos

θ

2
x1(i,t) → 〈c†i σ ci 〉t ,

whose effect could be absorbed into an effective magnetic
field,

B∗a(i,t) = δa3 B3(i,t) − �s 〈c†i σa ci 〉t , (108)

that straightforwardly leads to Eq. (105).
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F. Beyond RPA in the x3 mode

We observe that all of the above results in the metal phase
correspond to expanding the action at second order in the
fluctuations, but treating the linear coupling between the latter
and the fermions just within RPA, i.e., not accounting for
exchange processes. While this procedure is somehow forced
by gauge invariance when it concerns charge and spin modes
(see the ending parts of Secs. IV D and IV E), it is not really
compulsory for the x3(i,t) mode that describes the Hubbard
bands. We can therefore take a first step forward when dealing
with x3(i,t) in the direction of the so-called RPA+Exchange.
According to Eq. (84), promoting x3 and p3 to quantum
conjugate variables, after defining t∗ = t sin2 θ and

X(i) = 1 +
√

2 cot θx3(i),

the Hamiltonian reads

H∗ = − t∗√
z

∑
〈ij〉

(c†i cj + H.c.)X(i) X(j )

+
∑

i

{[v∗(i,t) c†i σ0 ci + B∗(i,t) · c†i σ ci ]

+ ω3

2
[x3(i)2 + p3(i)2] + T0 sin 2θ

√
2x3(i)}, (109)

where the effective fields are those in Eqs. (103) and (108).
The last term in Eq. (109), linear in x3, derives from Eq. (45)
and cancels the linear term of the hopping when the latter is
averaged over the Fermi sea, which is just the saddle-point
condition for x3.

Near the Mott transition from the metal side, u � 1, since t∗
is small with respect to ω3, we can integrate out x3 and neglect
the frequency dependence of its propagator D3(q,ω), which,
through Eqs. (93) and (94), implies that

D3(q,ω) = E3 − E0

ω2 − ω2
3q


 −E3 − E0

ω2
3q


 −E3 − E0

ω2
30

,

where we have furthermore neglected the momentum depen-
dence.

In this approximation, the mode x3 simply induces
a nonretarded electron-electron interaction, which, within
RPA+Exchange, leads to a change of the charge and spin
susceptibilities,

χc(s)(q,ω) → χ (q,ω)

1 + �c(s)(q) χ (q,ω)
, (110)

where

�c(s) → �c(s)(q) = �c(s) − t2 u2

4T0
γq, (111)

which also implies that the Landau parameters change into

F
S(A)
0 → −N∗ �c(s)(0). (112)

The charge FS
0 > 0 keeps its singularity (1 − u)−2, so that the

charge compressibility still vanishes. On the contrary,

FA
0 −→

u→1

t2

4T0
N∗, (113)

so that the uniform spin susceptibility,

χ = −χs(q → 0,0) −→
u→1

4T0

t2
= Uc

2t2
, (114)

is now finite. Remarkably, this expression agrees with that
obtained by DMFT [8], although the numerical value of Uc in
DMFT is smaller than in the Gutzwiller approximation.

The quantum Hamiltonian (109) also allows calculation
of the optical conductivity. In the presence of a small trans-
verse vector potential Ai→j (t) = −Aj→i(t), the Hamiltonian
acquires an additional term,

δH∗(t) = − i
t∗√
z

∑
〈ij〉

Ai→j (t)(c†i cj − H.c.)X(i) X(j )

+ t∗
2
√

z

∑
〈ij〉

Ai→j (t)2(c†i cj + H.c.)X(i) X(j ).

The calculation of the optical conductivity is straightforward
and follows exactly that obtained within slave bosons in
Ref. [40]. Besides the Drude peak that is obtained taking
X(i) = 1, and vanishes like sin2 θ = 1 − u2 at the transition,
the optical conductivity gets high-frequency contributions
from the absorption spectrum of the mode x3 [40].

V. CONCLUSIONS

In this paper, we have presented a quite simple method
to calculate linear response functions within the Gutzwiller
approximation, including in a consistent way quantum fluc-
tuations in the harmonic approximation. The calculation is
straightforward and just requires a little more effort than the
equilibrium one. In fact, besides the variational matrix �̂0

that minimizes the energy at equilibrium, and which can be
regarded as the lowest-energy eigenstate of a local Hamiltonian
[20,37] [see Eq. (31)], one also needs all excited eigenstates
and eigenvalues. In a model that involves M correlated orbitals
in each unit cell, this local Hamiltonian is defined in a Hilbert
space of dimension

(4M

2M

)
, and can be conveniently recast into

the problem of an impurity with M orbitals hybridized to a
single bath site with the same number of orbitals, with the
coupled system being at half filling [20].

As a check, we have applied the method to the single-
band Hubbard model at half filling and recovered all known
results about charge compressibility and spin susceptibility
within the Gutzwiller approximation [23–27,39–41]. As a by-
product, we also showed how to cure one flaw of the Gutzwiller
approximation, i.e., the divergence of the uniform magnetic
susceptibility approaching the Mott transition from the metal
side.
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APPENDIX: THE WAVE-FUNCTION
RENORMALIZATION MATRIX R̂(i)

At equilibrium and in the natural basis, constraint Eq. (13)
reads

Tr[�̂0(i)† �̂0(i) d̂
†
iα d̂iβ] = Tr[P̂ (0)

0 (i) d̂
†
iα d̂iβ]

= δαβ n(0)
α (i),

where P̂0(i) is the local probability distribution of the Slater
determinant. Hereafter, we shall drop for simplicity the site
index i.

We can always write P̂
(0)
0 as the Boltzmann distribution of

a noninteracting Hamiltonian,

H =
∑

α

εα nα,

where f (εα) = n(0)
α is the Fermi distribution function. If �̂ is

varied, also the probability distribution must vary in such a
way as to preserve the constraint. This change will generally
correspond to

H → H + δH.

Since H must still be a one-body Hamiltonian, it follows that

dα(τ ) = eτHdαe−τH = (e−Ĥ τ d )α =
∑

β

Uβα(τ ) dβ,

where Ĥ is the matrix representation of H in the single-
particle basis, so that dα(τ ) remains a combination of creation
operators. Since Û (τ1)Û (τ2) = Û (τ1 + τ2), it trivially holds
that Û (τ ) Û (−τ ) = 1 and

Û (β/2)Û (β/2) = Û (β). (A1)

The local probability distribution,

P̂0 = e−βĤ

Tr(e−βĤ )
,

so that

Tr(P̂0 d̂β(β) d̂†
α) = Tr(P̂0 d̂†

α d̂β) ≡ nαβ

=
∑

γ

Uγβ(β) Tr(P̂0 dγ d†
α)

=
∑

γ

Uγβ(β) (δαγ − nαγ )

= Uαβ(β) −
∑

γ

nαγ Uγβ(β) ,

namely,

Û (β) = (1 − n̂)−1n̂ = −1 + (1 − n̂)−1, (A2)

which relates Û (β) to n̂. It also follows that

Û (−β) = (1 − n̂)n̂−1 = n̂−1(1 − n̂) = n̂−1 − 1. (A3)

The renormalization coefficients R are obtained by solving
for any α and γ ,

Tr

(√
P̂0�̂

† ĉ†α �̂
1√
P̂0

d̂γ

)
=

∑
β

Tr(�̂† �̂ d̂
†
β d̂γ )R∗

αβ, (A4)

where

1√
P̂0

d̂γ

√
P̂0 = e βĤ/2d̂γ e−βĤ/2

= d̂γ (β/2) =
∑

β

Uβγ (β/2) d̂δ .

Therefore, once we define

Q∗
αβ ≡ Tr(�̂† ĉ†α �̂ d̂β),

then Eq. (A4) is equivalent to∑
β

Q∗
αβUβγ (β/2) =

∑
β

R∗
αβnβγ ,

or, in matrix form, and observing that n̂ = Û (β) − n̂Û (β),

Q̂∗ Û (β/2) = R̂∗n̂ = R̂∗[Û (β) − n̂Û (β)]

= R̂∗Û (β) − Q̂∗Û (3β/2),

so that, multiplying both sides on the right by Û (−β), we
finally get

R̂∗ = Q̂∗ [Û (β/2) + Û (−β/2)]

= Q̂∗ (
√

Û (β) +
√

Û (−β))

= Q̂∗
(√

n̂

1 − n̂
+

√
1 − n̂

n̂

)

= Q̂∗(
√

n̂(1 − n̂))−1.

We denote as

Ŝ∗ = (
√

n̂(1 − n̂))−1 = ŜT ,

since Ŝ = Ŝ†, so that

R̂∗ = Q̂∗ Ŝ∗ −→ R̂† = Ŝ† Q̂† = Ŝ Q̂†,

namely, the desired result,

R̂ = Q̂ Ŝ. (A5)

One can rewrite

4 Ŝ−2 = 4n̂T (1 − n̂T ) = 1 − (1 − 2n̂T )2 ≡ 1 − 	̂2,

where the matrix elements of 	̂ are

	αβ = δαβ − 2Tr(�̂† �̂ d̂
†
β d̂α) = Tr(�̂† �̂ [d̂α, d̂

†
β ]). (A6)

At equilibrium,

	
(0)
αβ = δαβ

(
1 − 2n(0)

α

)
, (A7)

S
(0)
αβ = δαβ/

√
n

(0)
α

(
1 − n

(0)
α

) ≡ δαβ S(0)
α , (A8)

are diagonal, which allows an explicit evaluation of the matrix
derivatives. It follows that the equilibrium renormalization
matrix has elements

R
(0)
αβ = Tr(�̂†

0 ĉα �̂0 d̂
†
β)S(0)

β ≡ Q
(0)
αβ S

(0)
β . (A9)
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Derivatives of R̂

We write

�̂ =
∑

n

φn �̂n, �̂† =
∑

n

φ∗
n�̂

†
n,

where �̂n is a basis set,

Tr(�̂†
n �̂m) = δnm,

with �̂0 the equilibrium solution. By inspection, we realize
that

∂Rαβ

∂�̂† = �̂αβ[�̂,�̂†]�̂,

where the tensor �̂αβ[�̂,�̂†] is still a functional of �̂ and �̂†.
Therefore,

∂Rαβ

∂φ∗
n

= Tr(�̂†
n�̂αβ[�̂,�̂†]�̂).

The equilibrium value is obtained by setting φn = δn0.
In particular, exploiting the fact that Ŝ is diagonal at

equilibrium, the first-order derivatives evaluated at equilibrium
explicitly read

∂Rαβ

∂φ∗
n

= ∂Qαβ

∂φ∗
n

S
(0)
β +

∑
γ

Q(0)
αγ S(0)

γ Fγβ

∂	γβ

∂φ∗
n

, (A10)

∂Rαβ

∂φn

= ∂Qαβ

∂φn

S
(0)
β +

∑
γ

Q(0)
αγ S(0)

γ Fγβ

∂	γβ

∂φn

, (A11)

while the second derivative, still calculated at equilibrium, is

∂2Rαβ

∂φ∗
n∂φm

= Tr
(
�̂†

n�̂αβ[�̂0,�̂
†
0]�̂m

)

+ Tr

(
�̂†

n

∂�̂αβ[�̂,�̂†]

∂φm |0
�̂0

)

≡
(

∂2Rαβ

∂φ∗
n∂φm

)
1

+
(

∂2Rαβ

∂φ∗
n∂φm

)
2

, (A12)

where(
∂2Rαβ

∂φ∗
n∂φm

)
1

=
∑

γ

[
∂2Qαβ

∂φ∗
n∂φm

S
(0)
β + Q(0)

αγ Fγβ

∂2	γβ

∂φ∗
n∂φm

]
,

(A13)(
∂2Rαβ

∂φ∗
n∂φm

)
2

=
∑

γ

[
∂Qαγ

∂φ∗
n

Fγβ

∂	γβ

∂φm

+ ∂Qαγ

∂φm

Fγβ

∂	γβ

∂φ∗
n

+Q(0)
αγ

(
∂2Sγβ

∂φ∗
n∂φm

)
2

]
. (A14)

The terms that appear in the above equations are

∂Qαβ

∂φ∗
n

= Tr(�̂†
n ĉα �̂0 d̂

†
β),

∂Qαβ

∂φn

= Tr(�̂†
0 ĉα �̂n d̂

†
β),

∂	αβ

∂φ∗
n

= Tr(�̂†
n �̂0 [d̂α, d̂

†
β ]),

∂	αβ

∂φn

= Tr(�̂†
0 �̂n [d̂α, d̂

†
β ]),

Fαβ = 1

2

(
S(0)

α S
(0)
β

)2

S
(0)
α + S

(0)
β

(
1 − n(0)

α − n
(0)
β

)
,

∂2Qαβ

∂φ∗
n∂φm

= Tr(�̂†
n ĉα �̂m d̂

†
β),

∂2	αβ(i)

∂φ∗
n∂φm

= Tr(�̂†
n �̂m [d̂α, d̂

†
β ]),

and, lastly,

(
∂2Sαβ

∂φ∗
n∂φm

)
2

=
(
S(0)

α S
(0)
β

)2

S
(0)
α + S

(0)
β

∑
γ

[
∂	αγ

∂φ∗
n

∂	γβ

∂φm

+ ∂	αγ

∂φm

∂	γβ

∂φ∗
n

]

×
[

1

4
+ Fαγ Fγβ

S(0)
α S(0)

γ + S(0)
γ S

(0)
β + S

(0)
β S(0)

α(
S

(0)
α S

(0)
γ S

(0)
β

)2

]
.

In addition,

∂2Rαβ

∂φ∗
n∂φ∗

m

=
(

∂2Rαβ

∂φ∗
n∂φ∗

m

)
2

, (A15)

∂2Rαβ

∂φn∂φm

=
(

∂2Rαβ

∂φn∂φm

)
2

, (A16)

where the right-hand sides are obtained straightforwardly
through Eq. (A14). The above derivatives calculated at the
equilibrium solution allow calculation of the Taylor expansion
of R̂. In particular, through Eqs. (A10) and (A11), the first-
order expansion is

R̂(1) =
∑

n

[
φ∗

n

∂Rαβ

∂φ∗
n

+ φn

∂Rαβ

∂φn

]
, (A17)

while the second-order expansion, mentioned in Eq. (50), is

R̂(2) = R̂
(2)
1 + R̂

(2)
1 , (A18)

where, explicitly,

R̂
(2)
1 =

∑
nm

φ∗
n φm

(
∂2R̂

∂φ∗
n∂φm

)
1

, (A19)

and

R̂
(2)
2 = 1

2

∑
nm

[
2 φ∗

n φm

(
∂2R̂

∂φ∗
n∂φm

)
2

+ φ∗
n φ∗

m

(
∂2R̂

∂φ∗
n∂φ∗

m

)
2

+φn φm

(
∂2R̂

∂φn∂φm

)
2

]
. (A20)
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