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We illuminate the intriguing role played by spatial anisotropy in three-dimensional Luttinger semimetals
featuring quadratic band touching and long-range Coulomb interactions. We observe the anisotropy to be subject
to an exceptionally slow renormalization group (RG) evolution so that it can be considered approximately constant
when computing the impact of quantum fluctuations on the remaining couplings of the system. Using perturbative
RG, we then study the competition of all local short-range interactions that are generated from the long-range
interactions for fixed anisotropy. Two main effects come to light for sufficiently strong anisotropy. First, the
three-dimensional system features an Abrikosov non-Fermi-liquid ground state. Second, there appear qualitatively
new fixed points, which describe quantum phase transitions into phases with nemagnetic orders—higher-rank
tensor orders that break time-reversal symmetry, and thus have both nematic and magnetic character. In real
materials, these phases may be realized through sufficiently strong microscopic short-range interactions. On the
pyrochlore lattice, the anisotropy-induced fixed points determine the onset of all-in-all-out or spin ice ordering
of local magnetic moments of the electrons.
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I. INTRODUCTION

Understanding Fermi points at high-symmetry band cross-
ings in semimetallic materials constitutes a promising portal
towards designing exotic states of matter [1]. The intriguing
properties of systems with linear band touching described by
a low-energy effective Dirac Hamiltonian have been studied
extensively in graphene both theoretically and experimentally
[2–4]. The recent advance in realizing three-dimensional Weyl
semimetals and the subsequent experimental verification of
their peculiar properties marks another milestone on this road
[5,6]. A quadratic band touching (QBT) point is realized in
bilayer graphene and three-dimensional Luttinger semimetals,
the latter being described by the Luttinger Hamiltonian [7],
which includes GaAs, HgTe, α-Sn, or the recently actively
studied class of pyrochlore iridates [8–10].

Systems with QBT become particularly interesting when
strong spin-orbit coupling leads to a band inversion such that
both positive and negative energy states meet at the Fermi
point. Furthermore, whereas the short-range part of Coulomb
interactions is screened in three dimensions, its long-range part
substantially influences the many-body electron correlations. It
has been pointed out by Abrikosov [11,12] and reinvestigated
more recently [9] that the interplay between an inverted
QBT point and long-range Coulomb repulsion leads to a
non-Fermi-liquid (NFL) ground state of the system. Both
requirements for Abrikosov’s scenario are realized in the
pyrochlore iridates [13–21], which therefore constitutes an
ideal experimental platform to test its predictions. It is found
that for most members of the material class the ground state
is a magnet with spins ordered in all-in-all-out (AIAO) states
on the tetrahedra of the pyrochlore lattice. An exception is
given by Pr2Ir2O7, which remains a bad metal for the lowest
temperatures explored in experiment [10].

Although the density of states is proportional to the square
root of energy at a QBT point in three dimensions so that
the short-range part of the Coulomb repulsion is technically
irrelevant, short-range interactions can still influence the phase

structure of the model in two ways. First, if the corresponding
coupling constant exceeds a certain critical value, they can
lead to qualitatively different ordered states, represented in the
renormalization group (RG) by a runaway flow. Second, even if
initially absent, short-range interactions are generated during
the RG flow. The feedback of those short-range couplings
onto each other leads to the appearance of further fixed
points, which may collide with Abrikosov’s infrared fixed
point and annihilate it. In fact, within an ε-expansion around
four dimensions extrapolated to three dimensions, this does
indeed happen for the isotropic system, and the Abrikosov
fixed point is removed through precisely this mechanism [22].
The system is left with a runaway flow towards an ordered
nematic state [23,24].

In this work we extend the analysis of the influence of short-
range interactions on Abrikosov’s scenario by incorporating
the effect of spatial anisotropy of the band structure at the QBT
point. In fact, most real materials are not fully rotationally
symmetric, but rather feature only cubic rotation invariance
even in the low-energy description encoded in the Luttinger
Hamiltonian. Whereas Abrikosov points out that a stable
fixed point can only be isotropic [12], Savary, Moon, and
Balents [25] find a stable quantum critical point towards AIAO
order at (maximally) strong anisotropy within a controlled
1/N expansion. Here we investigate within the ε expansion
whether (i) anisotropy can lead to a stable NFL fixed point in
three dimension, and (ii) whether it can yield further unstable
directions, such as towards the AIAO state. A key finding is
that the RG flow of the anisotropy parameter is negligibly slow
so that the anisotropy can simply be considered constant for all
practical purposes; i.e., an approximately marginal coupling.
Within this approximation both (i) and (ii) will be found to be
answered in the affirmative.

This work is organized as follows. In Sec. II, we introduce
the field theoretic framework describing the anisotropic Lut-
tinger semimetal together with the RG flow of the anisotropy
parameter and Abrikosov’s NFL scenario. In Sec. III, we
study the RG fixed point structure and influence of short-
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range interactions in the anisotropic system. We close with a
discussion of our results in Sec. IV. Extensive appendices
are devoted to deriving the full set of RG equations (A),
constructing irreducible spin tensors (B), Fierz identities (C),
and computing the functions fi(δ) used throughout the text
(D).

II. FIELD THEORETIC FRAMEWORK

A. Lagrangian

The physics of three-dimensional Luttinger fermions with
long-range Coulomb repulsion is captured by the Lagrangian

L = ψ†(∂τ + H + ia)ψ + 1

2e2
(∇a)2, (1)

where ψ is a four-component Grassmann field, a is the
real electrostatic photon field, τ denotes imaginary time, e

is electric charge, and H is the Luttinger Hamiltonian [7].
The chemical potential is tuned to be at μ = 0. We assume
time-reversal invariance at the single-particle level, no external
magnetic field shall be applied. Under these conditions, each
of the two bands touching quadratically is doubly degenerate,
and Luttinger showed that the most general single-particle
Hamiltonian is given by

H = h̄2

2m∗

[(
α1 + 5

2
α2

)
p214 − 2α3( �p · �J )2

+ 2(α3 − α2)
3∑

i=1

p2
i J

2
i

]
, (2)

with Luttinger parameters α1,2,3, effective electron mass
m∗, and momentum operator �p = −i∇. The 4 × 4 matrices
�J = (Jx,Jy,Jz)t represent the spin-3/2 angular momentum

operators. We set h̄ = 2m∗ = 1 in the following. We have
written the Lagrangian (1) in a manner such that the dynamic
critical exponent z = 2 at the noninteracting Gaussian fixed
point. Further, 1L denotes the L × L unit matrix.

The Luttinger Hamiltonian can be written in the computa-
tionally more advantageous form [8,9,22,26]

H = α1p
214 − (α2 + α3)

5∑
a=1

da( �p)γa

+ (α2 − α3)
5∑

a=1

sada( �p)γa, (3)

with five 4 × 4 Hermitean matrices {γa}a=1,...,5 satisfying the
Clifford algebra,

{γa,γb} = 2δab14, (4)

the functions da being given by d1 =
√

3
2 (p2

x − p2
y),

d2 = 1
2 (2p2

z − p2
x − p2

y), d3 = √
3pzpx , d4 = √

3pypz, d5 =√
3pxpy , and we have s1,2 = −1 and s3,4,5 = +1. We define

the matrices {γa} below in a more general context. The
functions da constitute the real 	 = 2 spherical harmonics on
a sphere of radius p.

For the field theoretic treatment, we rescale the Hamiltonian
by Aψ = −(α2 + α3), normalize the field ψ such that Aψ =

1, and introduce the particle-hole asymmetry and anisotropy
parameters, x and δ, via

x = − α1

α2 + α3
, δ = −α2 − α3

α2 + α3
. (5)

In the following, we set x = 0, corresponding to particle-hole
symmetry, which will be shown to emerge dynamically during
the renormalization group flow. With the normalization in
Eq. (5), the parameter δ lies within the real interval [−1,1].
We eventually arrive at

H =
5∑

a=1

(1 + δsa)da( �p)γa. (6)

Squaring the Hamiltonian yields

H 2 =
⎛
⎝(1 − δ)2p4 + 12δ

∑
i<j

p2
i p

2
j

⎞
⎠14 (7)

due to
∑5

a=1 d2
a = p4 and

∑
a=3,4,5 d2

a = 3
∑

i<j p2
i p

2
j . The

roots of this expression determine the doubly degenerate
spectrum of the Hamiltonian. We observe the spectrum to be
rotation symmetric (a function of p2 = p2

x + p2
y + p2

z alone)
only for δ = 0.

The latter observation is a key element of this work. Under
a spatial rotation of coordinates xi �→ Rij xj with R ∈ SO(3),
RtR = 13, the operators �p and �J transform as vectors, i.e.,
in the same manner as �x. Obviously, the first line in Eq. (2)
is rotation invariant. The same is true for the first line in the
representation of Eq. (3) although less obviously so at this
point. It will become apparent once we define the γ -matrices
as components of the second-rank tensor Sij below: the term∑

a daγa is then seen to be proportional to Sijpipj , which is
clearly rotation invariant.

Rotation invariance of the Hamiltonian is broken for δ ∝
(α2 − α3) 
= 0. However, rotations with certain fixed angles
still leave the expression invariant, namely those which rotate
the individual coordinate axes onto each other. Roughly, those
transformations permute the coordinate labels x, y, and z.
If this symmetry is present, we say that the system has
cubic symmetry. The Luttinger Hamiltonian exhausts all cubic
invariant terms to order p2, so that three Luttinger parameters
suffice to parametrize a quadratic band touching point. The
full rotation and cubic rotation groups are SO(3) and Oh,
respectively.

B. RG flow of the anisotropy

Performing the usual Wilson’s integration of the fermionic
modes within the momentum shell [
/b,
] and with all
frequencies, we derive a flow equation for the anisotropy pa-
rameter δ from the renormalization of the fermion self-energy.
The computation is presented in detail in Appendix A. For
this, angular integrations are performed in three dimensions,
but the qualitative results remain invariant when performing
the angular integration in four dimensions, which constitutes
the upper critical dimension.

The RG flow equations presented in this work are valid for
arbitrary values of δ. Except for some special values, such as
δ = 0, the β function can only be determined numerically. To

075149-2



ANISOTROPY INDUCES NON-FERMI-LIQUID BEHAVIOR . . . PHYSICAL REVIEW B 95, 075149 (2017)

FIG. 1. RG flow of the anisotropy δ. We observe an attractive
fixed point at δ� = 0 (negative slope), and two repulsive ones at
±1. This, however, is hardly of practical relevance since the prefactor
multiplying e2 in Eq. (9) is exceptionally small so that δ can effectively
be treated as a constant parameter with δ̇ ≈ 0 during the running of
couplings. Put differently, the tiny value of the beta function also
implies very small gradients dδ̇/dδ and thus an anomalously slow
RG flow. As a consequence, δ(b) is approximately constant for those
momentum rescale factors b where renormalizations of the charge
and of the generated short-range interactions are important.

make them more accessible, however, we introduce functions
fi(δ) with the following properties: We have fi(0) = 1 for
δ = 0, and for general δ ∈ [−1,1], fi(δ) is nonzero, positive,
and of order unity. In this way, the qualitative and mostly
quantitative aspects of the RG flow can be understood by
setting

fi(δ) ≈ 1 (8)

in the β functions. The functions fi(δ) are computed in
Appendix D and shown in Fig. 8.

The RG flow for the anisotropy parameter δ to leading order
in e2 reads

δ̇ = dδ

d ln b
= − 2

15
(1 − δ2)[f1e(δ) − f1t(δ)]e2. (9)

Since fi(0) = 1, we immediately discern three fixed points
at δ� = 0,±1. The coefficient multiplying e2, however, is
exceptionally small. Close to the attractive fixed point δ� = 0,
for example, the linearized flow reads

δ̇ � − 8
105e2δ. (10)

This signals an extremely slow flow towards the fixed point.
In fact, the entire prefactor multiplying e2 in Eq. (9) remains
below 3% in magnitude for all values of δ, see Fig. 1. Conse-
quently, the parameter δ can approximately be considered to
be marginal—in contrast to a running coupling.

C. Abrikosov’s NFL fixed point

The loop corrections to the fermion self-energy determine
the RG flow of the couplings x and δ, the fermion anomalous
dimension η, and the dynamic critical exponent z. The photon
self-energy leads to a renormalization of the charge e2.
The diagrammatic one-loop contributions to the fermion and
photon self-energies are displayed in Fig. 2. The flow of δ

has been discussed in the previous section. It is easy to see

FIG. 2. One-loop self-energy contributions to the RG flow.
Diagrams (a) and (b) show the fermion and photon self-energy,
respectively. A straight line represents a fermion propagator, a wiggly
line a photon propagator. Contribution (a) generates the anomalous
fermion scaling, expressed by η and z, as well as the exceptionally
weak running of the anisotropy δ. Diagram (b) results in the charge
renormalization. Both diagrams taken together yield Abrikosov’s
NFL fixed point scenario.

(Appendix A) that the coupling x, which is marginal at the
Gaussian fixed point, only receives corrections according to

ẋ = −ηx. (11)

At an interacting fixed point with η > 0 the coupling is then
attracted towards x� = 0. This justifies setting x = 0 in Eq. (6).
In contrast to Eq. (10), η is not exceptionally small so that a
nonzero x diminishes quickly.

The existence of a nontrivial fixed point close to d = 4
dimensions with anomalous fermion scaling and charge renor-
malization for a three-dimensional quadratic band touching
system has first been pointed out by Abrikosov [12]. This
approach to an NFL is ingenious in its simplicity, as it basically
relies on the “chirality” of the band dispersion, i.e., the
presence of positive and negative eigenenergies (which implies
e2
� > 0 and η ∼ e2

� > 0), and the frequency independence of
the photon propagator (which implies z = 2 − η < 2.) This
has to be contrasted with an otherwise similar system of
ultracold atoms at resonance with μ = 0, where the lower band
is missing, and the dimer propagator is Galilean invariant,
implying anomalous boson scaling, but η = 0 and z = 2
[27–29]. Abrikosov further points out that a stable fixed point
of δ can only be at δ� = 0, and thus sets δ = 0. As we have
seen above, this statement is true, but it is still reasonable to
consider the modifications of the Abrikosov NFL fixed point
when taking into account a nonzero value of δ.

The fermion anomalous dimension is given by

η = 2
15 [(1 − δ)f1e(δ) + (1 + δ)f1t(δ)]e2. (12)

Close to δ� = 0, it reads

η � 4
15e2 − 4

105e2δ. (13)

The numerical coefficient 4/15 should be compared with
the one in Eq. (10). Equations (10) and (13) are consistent
with the results of Ref. [26], which have been obtained in a
perturbative expansion in δ. The comparison is facilitated by
setting y = 0 in the reference, and adjusting some couplings
and prefactors, which leads to identical loop contributions to
obtain the fermion self-energy. The dynamic critical exponent
is given by

z = 2 − η. (14)
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FIG. 3. Fixed point of the charge. The (effective) attractive
infrared fixed point of e2 close to four dimensions, divided here
by ε = 4 − d , survives for all fixed |δ| < 1. The solid red line shows
the result from Eq. (16) and the dashed blue line is 15

19 (1 − δ2), which
amounts to setting f�(δ) ≈ 1 and yields an excellent approximation.
For strong anisotropy the theory becomes weakly coupled.

The flow equation for the charge is then given by

ė2 = de2

d ln b
= (4 − d − η)e2 − fe2 (δ)

1 − δ2
e4. (15)

The function fe2 (δ) is bounded from below by fe2 (0.13) =
0.987. We find the Abrikosov fixed point of the charge for
small ε = 4 − d to be

e2
� = 15

19 (1 − δ2)f�(δ)ε. (16)

Again, f�(δ) is positive and of order unity for all δ, with
f�(0) = 1. We thus conclude that the Abrikosov fixed point
persists for all values of |δ| < 1. However, as |δ| → 1, the fixed
point becomes weakly coupled. This behavior is visualized in
Fig. 3.

The presence of the prefactor (1 − δ2) in the fixed
point charge e2

� renders the problem perturbative for strong
anisotropy, even when working with ε = 1. A similar observa-
tion has been made in Ref. [25] at the anisotropic fixed point
with δ� = −1. In contrast to the ε expansion applied here, the
fixed point in the reference is controlled by a 1/N expansion in
three dimensions. The findings of the two investigations differ
in that we do not find the anisotropic fixed point to be stable.
This will be discussed further in Sec. IV.

III. SHORT-RANGE INTERACTIONS

We restrict the discussion of short-range interactions to
those that can be expressed in terms of local four-fermion
terms. Every such term can be written as a contribution

L ∼ g(ψ†Mψ)(ψ†Nψ) (17)

to the Lagrangian, with coupling g and some matrices M, N ∈
X , where X is the set of complex Hermitean 4 × 4 matrices.
In particular, even the terms of the form (ψ†Mψ∗)(ψ tNψ) can
be brought into the form of Eq. (17) by a Fierz transformation
[26].

In order to cover all possible terms of the form (17), it is
sufficient to restrict to contributions gAB(ψ†�Aψ)(ψ†�Bψ),
where {�A}A=1,...,16 is an R-basis of X . Furthermore, rotation

or cubic symmetry impose severe constraints on the possible
values of gAB . One possible choice of basis consists in
�A → �A with

{�A} = {14, γa, γab}, (18)

where γab = iγaγb, a,b = 1, . . . ,5, and we require a < b.
(There are ten such matrices.) This choice is particularly
convenient due to the computational simplifications arising
from the Clifford algebra. However, the matrices γab do not
have definite transformation properties under rotations of the
cubic symmetry group. For our purposes it is convenient to
introduce a basis which is manifestly cubic invariant. We
denote it by

{�A} = {14, Ji , γa, Wμ} (19)

with i = 1, 2, and 3 and μ = 1, . . . ,7. Note that, indeed, both
{�A} and {�A} consist of 16 elements each.

In this section, we first construct irreducible spin tensors to
derive the basis {�A}, then study the fixed point structure of the
RG flow including these couplings, and eventually investigate
the instabilities associated with these fixed points (expressed
through a divergent susceptibility at the transition).

A. Irreducible spin tensors

To obtain the basis (19) we construct all possible 4 × 4
operators that transform as tensors under SO(3). For this let
R ∈ SO(3) be a rotation matrix, RtR = 13. We define a tensor
T of rank 	 as any object labeled by indices (i1, . . . ,i	) that
transforms as

Ti1...i	 �→ Ri1j1 · · ·Ri	j	
Tj1...j	

(20)

under a change of coordinates xi �→ Rij xj . In particular, we
will be interested in the case that T is a 4 × 4 matrix. Recall
that the rank of a tensor can be reduced by one or two units,
respectively, by contracting it with εijk or δij according to

T ′
ki3...i	

= εijkTiji3...i	 , (21)

T ′
i3...i	

= δijTiji3...i	 . (22)

If such a contraction yields zero we say that the tensor is
irreducible. From Eqs. (21) and (22) it is then clear that
irreducible tensors are precisely the symmetric and traceless
tensors [30]. Here, we say that a tensor is traceless if all its
partial traces yield zero, i.e., it vanishes whenever two indices
are contracted.

In order to construct the basis {�A} with definite trans-
formation properties under rotations we apply the following
recipe: the j = 3/2 spin matrices Ji transform as a vector
under SO(3), and the product Ji1 · · · Ji	 transforms as a tensor
of rank 	. The corresponding irreducible tensors of rank 	 can
be computed from these products through symmetrization and
the subtraction of suitable traces. One may wonder whether
this procedure yields irreducible tensors of arbitrary rank.
However, by means of the Cayley-Hamilton theorem it is easy
to show that there are no irreducible spin tensors with rank
	 > 2j , see Appendix B 3. Hence, in our case, we obtain
irreducible tensors of rank 	 = 0,1,2,3, which can be used to
build the basis {�A} introduced above.
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Due to the noncommutativity of the spin matrices, [Ji,Jj ] =
iεijkJk , products of the type Ji1 · · · Ji	 are not symmetric. We
define the symmetrized rank 	 = 2,3 tensors

S̄ij = JiJj + JjJi, (23)

B̄ijk = JiJjJk + permutations of ijk. (24)

Next, irreducible tensors S and B are constructed from the
quantities with overbar by subtracting the partial traces such
that δijSij = δijBijk = 0. With a suitable ansatz and by making
use of JiJkJi = 11

4 Jk , we arrive at

Sij = S̄ij − 5
2δij14, (25)

Bijk = B̄ijk − 41
10 (δij Jk + δikJj + δjkJi). (26)

These are the irreducible spin tensors of rank 	 = 2,3 for spin
j = 3/2.

In Appendix B, we show in detail that the irreducible tensors
Sij and Bijk can be expressed as

Sij = Sa

a
ij , (27)

Bijk = BμE
μ

ijk (28)

with a = 1, . . . ,5, μ = 1, . . . ,7, and orthogonal basis tensors

a

ij and E
μ

ijk . Since the spin tensors are matrix-valued, the
components Sa and Bμ are matrices as well. The desired basis
{�A} in Eq. (19) is now constructed from the 1 + 3 + 5 + 7 =
16 elements 14, Ji , Sa , and Bμ after a proper normalization to
satisfy

tr(�A�B) = 4δAB. (29)

We define

Ji = 2√
5
Ji, (30)

γa = 1√
3
Sa, (31)

Wμ = 2

3
√

3
Bμ. (32)

In particular, the five components γa of the second-rank tensor
are the γ matrices introduced in the context of the Luttinger
Hamiltonian in Eq. (3). We explicitly have

γ1 = 1√
3

(
J 2

x − J 2
y

) = σ1 ⊗ 1, (33)

γ2 = J 2
z − 5

4
14 = σ3 ⊗ σ3, (34)

γ3 = 1√
3
{Jx,Jz} = σ3 ⊗ σ1, (35)

γ4 = 1√
3
{Jy,Jz} = σ3 ⊗ σ2, (36)

γ5 = 1√
3
{Jx,Jy} = σ2 ⊗ 1. (37)

Note that since Jy is purely imaginary, the matrices γ1,2,3 are
real, whereas γ4,5 are imaginary. The seven components Wμ

of the third-rank tensor are given by

W1 = 2
√

5

3

(
J 3

x − 41

20
Jx

)
, (38)

W2 = 2
√

5

3

(
J 3

y − 41

20
Jy

)
, (39)

W3 = 2
√

5

3

(
J 3

z − 41

20
Jz

)
, (40)

W4 = 1√
3

{
Jx,

(
J 2

y − J 2
z

)}
, (41)

W5 = 1√
3

{
Jy,

(
J 2

z − J 2
x

)}
, (42)

W6 = 1√
3

{
Jz,

(
J 2

x − J 2
y

)}
, (43)

W7 = 2√
3

(JxJyJz + JzJyJx). (44)

The operators 1 and γa are even under time-reversal trans-
formations [26], whereas Ji and Wμ are odd. All operators
feature inversion invariance. A nonzero expectation value of
ρ = 〈ψ†1ψ〉, mi = 〈ψ†Jiψ〉, and φa = 〈ψ†γaψ〉 corresponds
to a nonzero density, magnetization, and nematic order,
respectively. The order parameter χμ = 〈ψ†Wμψ〉 constitutes
a tensorial magnetization that does not point in a particular
direction. We therefore suggest to refer to it as “nemagnetic
order.” These observations are summarized in Table I.

B. Local four-fermion couplings

The most general local four-fermion interaction term in the
rotation (δ = 0), inversion, and time-reversal invariant case is
given by

Lint = g1(ψ†ψ)2 + gJ (ψ†Jiψ)2

+ g2(ψ†γaψ)2 + gW (ψ†Wμψ)2. (45)

The individual terms transform as scalar, vector, second-
and third-rank tensors under SO(3), respectively. For the
latter two this becomes particularly transparent when writing
(ψ†γaψ)2 ∝ (ψ†Sijψ)2 and (ψ†Wμψ)2 ∝ (ψ†Bijkψ)2. There
are two Fierz identities:

0 = 5(ψ†ψ)2 + (ψ†Jiψ)2 + (ψ†γaψ)2 + (ψ†Wμψ)2,

0 = 1
3 (ψ†Jiψ)2 − 1

7 (ψ†Wμψ)2, (46)

which reveal that the expression (45) contains a certain degree
of redundancy that can be removed by eliminating two of the
terms. Due to Eq. (46), one of them needs to be either (ψ†Jiψ)2

or (ψ†Wμψ)2. Here we choose to eliminate both of them and
thus arrive at the Fierz complete interaction term

Lint = g1(ψ†ψ)2 + g2(ψ†γaψ)2. (47)

Together with the Lagrangian from Eq. (1), this constitutes the
field theoretic setup considered in Ref. [22].

To study the cubic symmetric case, we introduce

�E =
(

γ1

γ2

)
, �T =

⎛
⎝γ3

γ4

γ5

⎞
⎠, �W =

⎛
⎝W1

W2

W3

⎞
⎠, �W ′ =

⎛
⎝W4

W5

W6

⎞
⎠.

(48)
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TABLE I. Overview of local fermion bilinears that feature full or cubic rotation invariance. We display the tensor rank with respect to SO(3)
and the number of independents components (No.) of these tensors. The scalar, vector, and rank-2 tensor order parameters 〈ψ†�Aψ〉 constitute
density, and the usual magnetic and nematic orders. We refer to a nonzero expectation value of χμ = 〈ψ †Wμψ〉 as nemagnetic ordering. In
particular, χ7 is the continuum version of the AIAO order on the pyrochlore lattice. We further indicate the behavior of these orders with respect
to inversion (I) and time reversal (T ), where +/− indicates even/odd transformation properties, and how the tensors split up into subgroups
upon restricting rotations to the cubic group.

�A order rank No. I T cubic case

density
1 0 1 + + 1

ρ = 〈ψ †1ψ〉

Ji

magnetic
mi = 〈ψ †Jiψ〉 1 3 + − �J =

⎛
⎝J1

J2

J3

⎞
⎠

γa

nematic
φa = 〈ψ †γaψ〉 2 5 + +

�E =
(

γ1

γ2

)

�T =
⎛
⎝γ3

γ4

γ5

⎞
⎠

Wμ

nemagnetic
χμ = 〈ψ †Wμψ〉 3 7 + −

�W =
⎛
⎝W1

W2

W3

⎞
⎠

�W ′ =

⎛
⎜⎝W4

W5

W6

⎞
⎟⎠

W7 (AIAO)

The most general cubic, inversion, and time-reversal symmet-
ric local four-fermion term is given by

Lint =
8∑

i=1

giLi, (49)

with

L1 = (ψ†ψ)2, (50)

L2 = (ψ† �Eψ)2, (51)

L3 = (ψ† �T ψ)2, (52)

L4 = (ψ† �Jψ)2, (53)

L5 = (ψ† �Wψ)2, (54)

L6 = (ψ† �W ′ψ)2, (55)

L7 = (ψ†W7ψ)2, (56)

and

L8 = (ψ† �Jψ) · (ψ† �Wψ). (57)

Each of the terms Li transforms as a singlet under the action
of the cubic group. There are also five Fierz identities among
the Li (Appendix C), allowing us to eliminate five couplings.
We are thus left with three independent couplings, which we
choose to be g1,2,3. Hence

Lint = g1(ψ†ψ)2 + g2(ψ† �Eψ)2 + g3(ψ† �T ψ)2 (58)

constitutes a Fierz complete interaction term. For g2 = g3,
it reduces to the expression in Eq. (47). The short-range
interaction terms Li can also be evoked for the study of other
systems with four-component fermions, for instance having
linear dispersion, such as Weyl semimetals [31] or quantum
critical antiperovskites [32,33].

Apart from the eight fermionic vertices that appear
in Eq. (49) one may wonder whether the combinations
L9 = (ψ† �T ψ) · (ψ† �Jψ), L10 = (ψ† �T ψ) · (ψ† �Wψ), L11 =
(ψ† �T ψ) · (ψ† �W ′ψ), L12 = (ψ† �Jψ) · (ψ† �W ′ψ), and L13 =
(ψ† �Wψ) · (ψ† �W ′ψ) can also be generated during the RG
flow. This, however, is forbidden by cubic and time-reversal
symmetry (T ), as can be seen as follows: Since �T is even
under T , but �J , �W , and �W ′ are odd, the terms L9−11 explicitly
break T . Due to the original Lagrangian in Eq. (1) being time-
reversal symmetric, no such term can be generated during the
RG flow. The terms L12,13 are forbidden by cubic symmetry.
For this consider, a rotation around the z axis by π/2. The
coordinate vector �x = (x,y,z)t transforms as �x → (y,−x,z)t.
In the same way, �J and �W transform as (J1,J2,J3)t →
(J2,−J1,J3)t and (W1,W2,W3)t → (W2,−W1,W3)t, respec-
tively. Accordingly, the term L8 = (ψ† �Jψ) · (ψ† �Wψ) is both
time-reversal and cubic symmetric, and indeed emerges in
the present RG analysis. On the other hand, �W ′ transforms
under the same rotation as (W4,W5,W6) → (−W5,W4,−W6),
so that L12,13 → −L12,13. Again, since the original Lagrangian
is cubic symmetric, the term L12,13 cannot be generated during
the RG evolution.

In the isotropic case, the four fermionic vertices appearing
in Eq. (45) are chosen such that they have distinct transforma-
tion properties under SO(3). Accordingly, no mixing between
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these terms is possible due to symmetry. This changes in the
cubic Oh-invariant case, where we observe the term L8 in
Eq. (57) to couple ψ†Jiψ and ψ†Wiψ . In fact, for δ 
= 0 the
tensors Ji and Wi have exactly the same symmetries and are
thus physically equivalent. Furthermore, every orthogonal pair
of linear combinations of Ji and Wi may also be chosen for a
basis. Here we define

Ui = 1√
5

(2Ji − Wi), (59)

Vi = 1√
5

(Ji + 2Wi). (60)

In Ref. [33], these tensors are labeled �U = �γs and �V = �γd,
respectively. As further pointed out in the latter reference, the
Vi satisfy the three-dimensional Clifford algebra

{Vi,Vj } = 2δij14. (61)

They are also generators of an SU(2) algebra. Due to this
extra symmetry, the linear combination �V ∝ �J + 2 �W is
distinguished for δ 
= 0. The second linear combination, �U ∝
2 �J − �W , then follows as the orthogonal partner, but does
not possess any further symmetries. Note that in terms of the
original Ji , we have

Ui = 1
6

(
13Ji − 4J 3

i

)
, (62)

Vi = 1
3

(−7Ji + 4J 3
i

)
. (63)

The pseudospin variable �I introduced in Eq. (10) of Ref. [25]
coincides with (ψ† �V ψ) up to a prefactor. Further note that in
the parametrization of Ref. [34], where the magnetic channel
is written as ψ†(cos α̃Ji + sin α̃J 3

i )ψ , Vi corresponds to α̃ =
arctan(−4/7) + π = 2.62, which unfortunately falls outside
the range α̃ ∈ [0,π/2] considered in the reference.

The Luttinger semimetal considered in this work may be
understood as the low-energy effective field theory describing
itinerant electrons on a pyrochlore lattice such as in Pyrochlore
Iridates. The nemagnetic orders χ = 〈ψ†W7ψ〉 and vi =
〈ψ†Viψ〉 can then be associated to particular orders of the local
magnetic moments of electrons on the four corners of the tetra-
hedra forming the pyrochlore lattice. As shown in Ref. [35],
a nonzero expectation value of χ or one component of �v
corresponds to an all-in-all-out (AIAO) or spin ice (SI) order-
ing, respectively. (The reference uses the notation χ → ϕ and
vi → Mi .) The correspondence is facilitated by observing that

(ψ†W7ψ)2 = (ψ†γ12ψ)2, (64)

(ψ† �V ψ)2 = (ψ†γ34ψ)2 + (ψ†γ35ψ)2 + (ψ†γ45ψ)2 (65)

from Eqs. (B60) and (A120). For this reason, we will refer to
the tensor orders corresponding to W7 and Vi as AIAO and SI
ordering, although, of course, these notions only make sense
on the pyrochlore lattice.

C. Renormalization group flow

During the RG flow, short-range interactions are generated
from long-range interactions by the diagram to the left in Fig. 4.
More explicitly, we have a nonvanishing term proportional to

FIG. 4. Schematic loop contributions to the short-range interac-
tions. The assignment of lines is as in Fig. 2, i.e., a straight (wiggly)
line represents a fermion (photon) propagator. The box diagram to the
left is proportional to e4 and generates local short-range interactions
even if they are initially absent. Once present, they contribute to the
flow of the short-range couplings {gi} via the diagrams shown in
the middle and to the right, which are proportional to e2gi and gigj ,
respectively.

e4 in Eqs. (68) and (69) below for the flow of g2 and g3.
This generates g2 and g3, and they eventually also generate g1.
Once the {gi} are present, they couple via the remaining two
diagrams in the figure, and thereby lead to a sufficiently rich
fixed point structure of the flow.

The flow equations for the couplings g1,2,3 are given by

ġi = (z − d)gi + f1(δ) · �gi (66)

with z = 2 − η as in Eqs. (12) and (14) and

�g1 = − 4

5
F−

(
g1 + e2

2

)
g2 − 6

5
F+

(
g1 + e2

2

)
g3

− g2
2 − 6g2g3 − 3g2

3, (67)

�g2 = − 1

5
F−

(
g1 + e2

2

)2

+ 1

5
(5 + 3F+)

(
g1 + e2

2

)
g2

− 3g2
2 − 3(1 + F+)g2g3 − 3

5
(5 + F−)g2

3, (68)

�g3 = − 1

5
F+

(
g1 + e2

2

)2

+ 2

5
(5 − F+)

(
g1 + e2

2

)
g3

− 1

5
(5 + 2F+)g2

2 − 2(4 − F+)g2g3

− 2

5
(15 − F− − F+)g2

3 . (69)

The anisotropy parameter δ enters through the functions f1

and F±. We define the latter by

F− ≡ F−(δ) = (1 − δ)f2e(δ)

f1(δ)
, (70)

F+ ≡ F+(δ) = (1 + δ)f2t(δ)

f1(δ)
. (71)

We have F+ = F− = 1 for δ = 0 and

2F−(δ) + 3F+(δ) = 5 (72)

for all δ. In particular, this implies

F−(−1) = 5
2 , F+(+1) = 5

3 (73)

in the limits of strong anisotropy, since obviously F−(+1) =
F+(−1) = 0 from the very definition.
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The flow of the couplings gi is supplemented by the flow
equation for e2 given in Eq. (15), namely,

ė2 = (z + 2 − d)e2 − fe2 (δ)

1 − δ2
e4. (74)

Since the flow equation for e2 is not altered by the short-
range interactions, any possible fixed point in the space of
couplings (g1,g2,g3,e

2) necessarily has either e2 = 0 or e2 =
e2
� with e2

� from Eq. (16). Note that the β functions (67)–(69)
depend on g1 and e2 only through the combination g1 + e2

2 . In
Appendix A, we show that this behavior results from the fact
that the frequency integral of the squared fermion propagator
vanishes.

In the isotropic limit (δ = 0 and g2 = g3), we recover the
flow equations of Ref. [22] given by

ġ1 = (z − d)g1 − 2

(
g1 + e2

2

)
g2 − 10g2

2,

ġ2 = (z − d)g2 − 1

5

(
g1 + e2

2

)2

+ 8

5

(
g1 + e2

2

)
g2 − 63

5
g2

2,

ė2 = (z + 2 − d)e2 − e4. (75)

Here we use a different convention for defining the
renormalized couplings gi and e2 than in the reference, see the
comment below Eq. (A4) for a mapping. The flow equations
(75) only support the Abrikosov fixed point for d > dc = 3.26.
In dc dimensions it annihilates with a quantum critical point,
and consequently is absent for lower dimensions.

As the anisotropy δ is varied within the interval δ ∈ [−1,1],
various new fixed points in the space {Gi} = (g1,g2,g3,e

2)
appear as solutions of the RG flow equations. These fixed
points typically have several relevant directions and their
impact on the phase structure will be discussed below. In order
to uniquely identify, the Abrikosov fixed point in this zoo of
fixed points we define it as the one having only irrelevant
directions. (In the four-dimensional coupling space {Gi}, this
corresponds to four negative eigenvalues of the stability matrix
Mij = ∂βi/∂Gj |� at the fixed point.) The fixed point defined
in this manner indeed satisfies e2 = e2

� > 0 and thus leads to
NFL behavior.

We find that the Abrikosov fixed point survives in three
spatial dimensions if the anisotropy is increased beyond a
critical value according to |δ| � δc = 0.59. Interestingly, this
value holds for both signs of δ. We plot the result for the
critical dimension for survival of the Abrikosov fixed point
dc(δ) in Fig. 5. The function dc(δ) is found numerically to be
almost perfectly symmetric with respect to δ → −δ. The slight
asymmetry might be real or due to the numerical determination
of the functions fi(δ). The fact that the fixed point annihilation
takes place at a lower critical dimension dc can be understood
by recalling that the Abrikosov fixed point in the anisotropic
case is located at e2

� ≈ 15
19 (1 − δ2)ε. Accordingly, a larger δ is

analogous to a smaller ε, and thus anisotropy assists the NFL
fixed point.

D. Instabilities and anisotropy-induced fixed points

So far, we have linked the Abrikosov fixed point to NFL
behavior of the system. In order to understand the phase

FIG. 5. Critical dimension dc for survival of the Abrikosov fixed
point. The curve crosses three dimensions for |δ| = δc = 0.59 (dashed
line). To get a qualitative understanding of why anisotropy supports
NFL behavior, observe that the charge fixed point is located at
e2
� ≈ 15

19 (1 − δ2)ε. A large anisotropy thus acts like a small ε.

structure that is implied by the other fixed points in the space
of couplings we compute the order parameter susceptibilities
at the remaining fixed points.

For this note that a fixed point of the RG flow corresponds
to a (possibly fine-tuned) second order phase transition of
the system. At such a phase transition, fluctuations of the
order parameter become critical, which is indicated by a
divergent order parameter susceptibility. Given a certain fixed
point located at (g1,g2,g3,e

2)�, it is nontrivial to deduce its
ordering tendency, especially in our case where the couplings
(g1,g2,g3) are obtained from eight couplings after applying
five Fierz transformations. However, upon computing the
susceptibility for each individual order parameter, we can
deduce the instability associated with every fixed point.

To compute the susceptibility of an order parameter of
interest �, which shall be parametrized by a matrix M through
� = 〈ψ†Mψ〉, we add an additional source term,

L� ∼ �(ψ†Mψ), (76)

to the Lagrangian, and study whether it is enhanced or
suppressed during the RG flow. In particular, a sufficiently
strong divergence of � signals an instability. To see this, note
that the scaling dimension of �, in the case that z = 2 − η, is
given by [�] = z, see Appendix A 1. Let k be a momentum
scale such that the infrared fixed point is approached for
k → 0. (For instance, we may choose k ∼ rν with critical
exponent ν and mass of the order parameter r → 0 at the
transition.) The free energy density close to the fixed point
then has the scaling form

F = kd+zH

(
�

kz+η�

)
, (77)

where H (·) is some scaling function, and η� is obtained from
the RG flow of � via �̇ = (z + η�)�. The susceptibility of �

close to the fixed point is then given by

χ = ∂2F
∂�2

= kd−z−2ηφ H ′′(∞) as k → 0. (78)
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We observe that a divergent susceptibility requires a suffi-
ciently large η� given by

η� >
d − z

2
. (79)

In the absence of a small parameter, more than one or none of
the order parameter susceptibilities may satisfy this criterion.
In this case, we will identify the one with the largest exponent
as the most likely to be the leading instability [36].

In order to study insulating order parameter susceptibilities,
we use the source terms

L1 = �(ψ†1ψ), LEa
= �(ψ†Eaψ),

LTa
= �(ψ†Taψ), LJi

= �(ψ†Jiψ),

LWi
= �(ψ†Wiψ), LUi

= �(ψ†Uiψ),

LVi
= �(ψ†Viψ), LW ′

μ
= �(ψ†W ′

μψ),

LW7 = �(ψ†W7ψ). (80)

We also study the susceptibilities with respect to supercon-
ducting order parameters by means of

L(sc)
γ45

= �(ψ†γ45ψ
∗), L(sc)

γaγ45
= �(ψ†γaγ45ψ

∗). (81)

They represent s-wave and d-wave superconducting orders
[26]. In general, coupling one of the terms (80) and (81)
to the Lagrangian only generates exactly the same term to
linear order in �. This is dictated by the behavior under
cubic, inversion, and time-reversal symmetry transformations
of the individual terms, see also the discussion below Eq. (58).
However, an exception is given by the magnetic vertices
labeled with i = 1,2,3. They are, in fact, fully equivalent in
the case of δ 
= 0. Accordingly, introducing either LJi

or LWi

to the Lagrangian generates both LJi
and LWi

. In order to find
the most unstable direction, we therefore consider the general
term LMi

= �(ψ†Miψ) with

Mi = αJi + βWi, (82)

where α,β ∈ R are such that α2 + β2 = 1. We tune α and β

such that coupling LMi
only generates LMi

. This yields two
possible solutions for (α,β), the more strongly divergent one of
them being the leading instability. The corresponding analysis
is performed in Appendix A 6, where we show that the two
solutions for Mi are precisely given by Ui and Vi defined in
Eqs. (59) and (60). The fact that (ψ†Viψ) does not generate
(ψ†Uiψ), and vice versa, can be understood from the enhanced
symmetry of the matrices Vi as formulated in Eq. (61).

For our purposes, we only need to focus on fixed points with
a small number of relevant directions, defined as the number
of positive eigenvalues of the stability matrix at the fixed point.
We refer to a fixed point as quantum critical or bicritical if it
has one or two relevant directions. To see why quantum critical
points (QCPs) can be important consider an RG trajectory
connecting a QCP (Q) to the fully infrared attractive Abrikosov
fixed point (A) along the relevant direction of (Q). In coupling
space, this line can be parametrized by some effective coupling
constant g̃, with (A) and (Q) located at g̃ = 0 and g̃ = g̃c > 0,
respectively. For small g̃ < g̃c, the RG flow will be attracted
to (A), and the ground state is an NFL. However, if g̃ exceeds
the critical value g̃c, the RG flow is repelled from (Q) in the

FIG. 6. Schematic fixed point structure of the Luttinger
semimetal for 0 < ε � 1 as a function of the (assumed constant)
anisotropy parameter δ ∈ [−1,1]. We only show the fixed points
with a small number of relevant directions, namely QCPs of the
neutral system (top) and QCPs of the charged system (bottom).
The Abrikosov fixed point is fully attractive. For sufficiently strong
anisotropy, new pairs of fixed points appear that are related to second
order phase transitions into a W7 or Vi ordered state, respectively. On
the pyrochlore lattice, the latter two orders correspond to all-in-all-out
(AIAO) or spin ice (SI) configurations of local magnetic moments
of the electrons on the tetrahedra. We also indicate the emergent
fixed ratios of the couplings gi at the fixed points δ� = 0,±1 of the
anisotropy.

opposite direction. This runaway flow towards strong coupling
signals an instability of the system towards an ordered ground
state. The supercritical value of g̃ may be realized in actual
materials through strong on-site interactions. The relevance of
some bicritical points in our setup stems from the fact that
a bicritical point in the space (g1,g2,g3,e

2) corresponds to a
QCP in the plane spanned by (g1,g2,g3) for e2 = 0, because
charge is always a relevant direction. Hence by setting e2 = 0
we can in this way study QCPs of charge neutral systems.

The fixed points of the systems with one or two relevant
directions can be divided into two sets. The first set comprises
the Gaussian fixed point (G), an s-wave superconducting fixed
point of the neutral system (S), and the nematic (N) and
Abrikosov fixed points (A) which participate in the collision

FIG. 7. Extrapolation of the above picture to three dimensions
(ε = 1). We observe the nematic and Abrikosov fixed points to
annihilate for |δ| < δc = 0.59. Also the survival of the anisotropy-
induced fixed points is slightly influenced by a large value of ε, but
they can always be induced through a sufficiently strong anisotropy.
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scenario. These fixed points are always present for small ε > 0,
irrespective of the value of δ ∈ [−1,1]. Whether they survive
the extrapolation to ε = 1 depends to some extent on the value
of δ. The second set consists of qualitatively new fixed points
that show up for sufficiently strong anisotropy. They represent
critical points towards W7 order for δ → −1 and Vi order for
δ → 1. Their survival for ε = 1 also depends on the value of δ,
but can always be enforced by a sufficiently strong anisotropy.
This behavior is visualized in Figs. 6 and 7.

A common feature of all fixed points independent of
their associated diverging channel is the following: at the
fixed points of the anisotropy, δ� = 0,±1, the three cou-
plings (g1,g2,g3) are not independent. In fact, from the flow
Eqs. (67)–(69) one easily sees that even if all three couplings
are different at some stage of the RG, they are attracted
towards g2 − g3 → 0 (for δ = 0), g1 − g3 → 0 (for δ = −1),
and g1 − g2 → 0 (for δ = 1) in the infrared. For example, the
superconducting fixed point (S) for δ = 0 and d = 3 is located
at

(S)δ=0 : (g1,g2,g3,e
2)� = (−0.10,−0.09,−0.09,0) (83)

and the linearized flow of g− = (g2 − g3) at the fixed point
reads ġ− � −0.87g−. Accordingly, g− diminishes in the
infrared. In contrast, in the anisotropic limits, the fixed point
(S) is located at

(S)δ=−1 : (g1,g2,g3,e
2)� = (−0.09,−0.07,−0.09,0),

(84)
(S)δ=+1 : (g1,g2,g3,e

2)� = (−0.12,−0.12,−0.10,0),

respectively. If δ is only close to any of its three fixed points,
the corresponding gi’s are approximately equal.

After this remark, we begin by discussing the first set of
fixed points. Besides the Gaussian fixed point (G), the s-wave
superconducting fixed point (S) with e2 = 0 is present for
all δ and all 0 < ε � 1. Since (S) is bicritical, it is mostly
of importance for charge neutral systems. The corresponding
critical behavior, including oscillatory corrections to scaling
and exceptionally slow flow towards isotropy, has been
discussed in Ref. [26] by the present authors. The quantum
critical nematic and fully attractive Abrikosov fixed points with
e2 = e2

� > 0, (N) and (A), are present for small ε > 0, but they
annihilate each other above d � 3 for |δ| � 0.59 as discussed
in the previous section. It is always (N) that collides with
(A). Further, as δ 
= 0, (N) changes its divergence character:
whereas the leading instability is towards Ta for δ < 0, it is
towards Ea for δ > 0. Of course, for δ = 0 these two are related
by the full rotational symmetry.

The second set of fixed points only appears for sufficiently
strong anisotropy. To understand their nature, two important
things should be noted. For one, since the parameter space
spanned by (g1,g2,g3,e

2) is vast, the new fixed points do not
interfere with any of the ones of the first set. In particular, they
do not influence the fixed point collision scenario. Further,
since the charge fixed point value e2

� is small for large
anisotropy, it is natural to expect that a zero of the β functions
located at (g1,g2,g3,e

2)� implies another zero at approximately
(g1,g2,g3,0)� with e2 = 0. This is indeed true for the additional
fixed points found here. For most values of δ (but not all), there
exist always two anisotropy-induced fixed points, a QCP with
e2
� > 0 describing a quantum phase transition of the charged

system, and a qualitatively similar bicritical point with e2 = 0,
which is a QCP for the neutral system. Since both fixed points
are even mostly quantitatively similar we can simplify the
discussion of their nature by considering the neutral charge
fixed point with e2 = 0.

For δ � −0.30, a pair of fixed points with instability
towards W7 appears for small ε > 0. We name the fixed points
with e2 > 0 and e2 = 0 (W7e) and (W7), respectively. When
extrapolated to ε = 1, (W7e) survives for δ � −0.62, whereas
(W7) is more robust and survives for δ � −0.30. In order
to analyze the properties of (W7) for d = 3, we set e2 = 0
and δ = −1 in the flow equations. In particular, this implies
f1(−1) = 1.094, F+ = 0, and F− = 5

2 . The fixed point is then
located at

(W7)δ=−1 : (g1,g2,g3,e
2)� = (0.16,−0.21,0.16,0). (85)

We see that, indeed, this satisfies g1 = g3. The only divergent
susceptibility corresponds to W7 and is given by

ηW7 = 2f1(2g1 − g2)� = 1.15. (86)

Note that the value of f1 is not important for e = 0 since it
can be absorbed into the couplings by means of gi → f1gi .
The fixed point values (g1,g2,g3,e

2)� of (W7e) approach those
of (W7) for δ → −1, and coincide with the ones quoted in
Eq. (85) in the fully anisotropic limit.

For δ � 0.91, a pair of fixed points towards ordering in Vi

appears for small ε > 0. Again, it is comprised of a quantum
critical and a bicritical point, and we label them (Ve) and
(V) in analogy to the previous paragraph. When extrapolated
to ε = 1, (Ve) and (V) survive for δ � 0.94 and δ � 0.91,
respectively. To better understand (V) in d = 3, we set e2 = 0
and δ = 1 in the flow equations. This implies f1(1) = 0.813,
F+ = 5

3 , and F− = 0. We obtain the fixed point at

(V )δ=+1 : (g1,g2,g3,e
2)� = (0.37,0.37,−0.28,0). (87)

Also here, g1 = g2 is satisfied in accordance with our previous
statements. The leading instability is towards Vi with exponent

ηVi
= 2

3f1(3g1 − g3)� = 0.75. (88)

There is a subleading divergence in the Ta channel with
ηTa

= − 2
3f1(g1 + 5g3)� = 0.56. For δ → 1, the couplings

(g1,g2,g3,e
2)� of (Ve) approach those of (V), and coincide

with Eq. (87) for full anisotropy.
An interesting aspect of the limit |δ| → 1 is that the fixed

points (S) and (N) approach each other. This is facilitated by
e2
� → 0 for |δ| → 1. With the same substitutions as in the

previous paragraphs it is easy to see that

[(S) = (N )]δ=−1 : η(sc)
γ45

= ηTa
= −2f1(2g1 + g2)� = 0.54,

[(S) = (N )]δ=+1 : η(sc)
γ45

= ηEa
= −3f1(g1 + g3)� = 0.55,

(89)

for δ → ∓1, respectively. The coincidence of the two divergent
susceptibilities may hint at an enlarged symmetry group at the
fixed point. We leave that aspect for future investigations.

IV. DISCUSSION

In this work, we have investigated the RG fixed point struc-
ture of a three-dimensional Luttinger semimetal, where short-
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range interactions are generated from long-range Coulomb
forces. We found the anisotropy parameter δ to be an excep-
tionally slow direction in the RG flow, which motivated us to
neglect the flow of δ while considering the impact of quantum
fluctuations onto the remaining couplings of the theory. For
sufficiently strong anisotropy, Abrikosov’s NFL fixed point
survives in three dimensions, and new “nemagnetic” fixed
points appear in parameter space. These fixed points are
associated to quantum phase transitions that are driven by
a sufficiently strong microscopic short-range interaction. The
new fixed points trigger ordering in channels that have a very
clear interpretation for electrons in Pyrochlore Iridates, namely
AIAO and SI order.

In this section, we first critically review the validity of our
results and the underlying approximations. We then relate our
findings to earlier theoretical investigations of similar systems
in the literature, mostly in the context of Pyrochlore Iridates.
Finally, we deduce the critical field theories that are related to
the anisotropic quantum critical points (W7e) and (Ve).

The RG analysis presented here is based on an ε expansion
close to four dimensions, which is the critical dimension of the
Coulomb coupling e for a system with quadratic dispersion.
In particular, for small 0 < ε � 1, this gives a controlled
perturbative handle on Abrikosov’s NFL fixed point. On
the other hand, the critical dimension for the short-range
interactions would be two (see, for instance, Refs. [37–41]
for studies of two-dimensional QBT systems), so obviously
some compromise needs to be made to study the generation
of short-range interactions in three dimensions and especially
the fixed point collision scenario. Furthermore, our analysis of
instabilities is based on formulas that are perturbative in the
couplings {gi} and thus cannot faithfully capture the flow to
strong coupling or additional competition effects between the
couplings that set in once one coupling gets large.

A rather strong point, however, can be made about the
fixed point collision scenario which determines the fate of
Abrikosov’s NFL ground state. Within the ε expansion the
collision happens for ε � 0.74 in the isotropic system and
consequently the ground state in three dimensions is an ordered
state [22]. The very same conclusion is found in a different
approach to the system using Dyson–Schwinger equations
in three dimensions for large fermion number. In fact, the
corresponding analysis in Ref. [24] finds the ground state
to be a topological excitonic insulator with nematic order in
the physical limit. Further evidence for the collision scenario
is provided in Ref. [36] from different RG approaches. To
understand what happens for δ 
= 0 recall that Abrikosov’s
fixed point is always stable for sufficiently small ε. For
sufficiently strong anisotropy, the charge fixed point e2

� is
attracted towards weak coupling, as can be seen from the
prefactor ∼ 1

1−δ2 on the right-hand side of Eq. (15). This
prefactor results from additional line nodes in the dispersion of
the fully anisotropic system that make the polarization diagram
[Fig. 2(b)] diverge for |δ| → 1. Put differently, for small
0 < 1 − δ2 � 1, the anisotropy acts as an infrared regulator
that can be used to perturbatively control the equations in three
dimensions. The resulting fixed point charge e2

� ∝ (1 − δ2)ε is
small even when ε = 1. Hence a large anisotropy acts like
a small ε (or a large number of fermions) and thus aids the
survival of Abrikosov’s fixed point. This way it is a very natural

finding that the NFL ground state is realized for sufficiently
strong anisotropy.

Concerning the question of reliability of our findings
on nemagnetic quantum phase transitions in the anisotropic
system we point out that they are in concord with the works
of Savary, Moon, Balents (SMB, Ref. [25]) and Goswami,
Roy, Das Sarma (GRDS, Ref. [35]) on anisotropic three-
dimensional Luttinger semimetals. We emphasize, however,
that in contrast to the mentioned references our analysis
treats all ordering patterns in an unbiased fashion, and it
is an outcome of the competition of long- and short-range
interactions that anisotropy induces instabilities towards AIAO
or SI order. It is appealing that these orders are also dictated
to some extent by experimental findings in the pyrochlore
iridates.

The analysis of SMB employs RG to study the long-range
interacting system in three dimensions, perturbatively control-
ling the equations with a large number of fermions N . Further,
it is based on a Yukawa theory involving both fermions and
bosons, where fluctuations of the AIAO-like order parameter
χ = 〈ψ†W7ψ〉 are incorporated and the existence of the
corresponding quantum critical point is derived from the
self-consistency of the equations. The approach is thus distinct
from our ε expansion of the purely fermionic theory, but many
common observations on the intriguing role of anisotropy in
Luttinger semimetals can be made. A stable fixed point is found
by SMB for δ = −1 and x = 0 (corresponding to c1/c2 =
0 and c0/c1 = 0 in the reference). Further, an additional
logarithmic divergence, e.g., in the anomalous dimension
η ∼ 1/(N | ln c1/c2|2), results in an effectively weakly coupled
theory in terms of the charge. Remarkably, the possibility
of a stable fixed point with δ� = −1 implies that the fully
anisotropic limit may arise in Luttinger semimetals as an
emergent phenomenon, even though realistic microscopic
Luttinger parameters are likely to yield |δ| < 1. From our
results, the AIAO nature of the phase transition and the small
charge η ∼ e2

� ∼ (1 − δ2)ε are also visible. Although we find
the fixed point at δ = −1 to be unstable, the discrepancy may
be attributed to the fact that SMB also take into account the
boson-fermion-loop contribution to the fermion self energy,
i.e., a second diagram besides the one in Fig. 2(a), which may
change the sign of the β function for δ close to the fixed
point and thereby stabilize it. In our fermionic approach the
associated contribution would be a two-loop (sunset) diagram.
Still, the flow of the anisotropy derived by SMB is very slow
close to the fixed point. Since the philosophy of the present
work is to regard δ as a constant anyway, the question of its
slight relevance or irrelevance becomes less important.

In the study of GRDS in the context of Pr2Ir2O7, the
tendencies towards AIAO and SI order have been addressed in
terms of the order parameter susceptibilities at the Gaussian
fixed point. (The comparison to our results is facilitated by
writing δ = m2−m1

m1+m2
with m1,2 as introduced in the reference.)

Assuming a Yukawa coupling of both orders to the fermions
it is seen that a smaller critical coupling is required for AIAO
(SI) when m2 < m1 (m2 > m1). This agrees with our finding of
AIAO and SI fixed points appearing for δ → −1 and δ → +1,
respectively. Whereas GRDS focus on the charge neutral
system, we find that QCPs towards AIAO and SI order are
present both for zero or nonzero charge. It is remarkable that
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the SI order, which is a very natural and plausible configuration
of spins on a pyrochlore lattice, emerges in our continuum field
theoretic approach. Recall how the SI instability is obtained in
the present work: We investigate all possible susceptibilities,
in particular those towards a nonzero expectation value of
〈ψ†(αJi + βWi)ψ〉, where α2 + β2 = 1. It turns out that the
strongest divergence is reached for this particular channel
when β = 2α, which precisely corresponds to SI order. In
particular, this value of (α,β) is independent of δ, which is not
obvious from the general expressions for the susceptibilities
in Eqs. (A124). In fact, the emergence of this particular
combination of (α,β) is very likely rooted in an enhanced
symmetry of the underlying field theory, as we elaborate in the
next paragraph. Note eventually that the analysis in Ref. [34]
does not rule out a stable fixed point for δ = +1, as it does not
explore this regime of anisotropy.

The fixed points (N), (S), (W7), (W7e), (V), and (Ve),
describe quantum phase transitions that can be driven by
sufficiently strong short-range interactions in real materials.
It is thus interesting to study their individual character by
also taking into account order parameter fluctuations. A
detailed study of (N) in terms of an ε expansion is performed
in Ref. [23]. A remarkable feature of this theory is the
existence of an interaction term that is cubic in the order
parameter, leading to characteristic corrections to critical
exponents beyond mean-field theory. The superconducting
quantum critical point (S) is investigated in Ref. [26], where
non-Fermi-liquid behavior, oscillatory corrections to scaling,
and an exceptionally small flow towards isotropy are observed.
The field theory describing the fixed point (W7e) for δ → −1
is given by

L =ψ†(∂τ + d1γ1 + d2γ2 + ia)ψ + 1

2e2
(∇a)2

+ gχ χ (ψ†γ12ψ) + 1

2
(∇χ )2 + 1

2 rχ2, (90)

where χ is a real scalar. The related quantum critical physics
is discussed in Ref. [25]. As pointed out in the same
reference, the pseudospin �I = ∫

d3x ψ†[γ34,γ35,γ45]tψ is a
conserved quantity of this theory, representing an internal
SU(2) symmetry. In the opposite limit of strong anisotropy
δ → +1, the field theory for (Ve) reads

L = ψ†(∂τ + d3γ3 + d4γ4 + d5γ5 + ia)ψ + 1

2e2
(∇a)2

+ gv �v · (ψ†[γ34,γ35,γ45]tψ) + 1

2
(∇vi)

2 + 1

2
rv2

i (91)

with real vi . A conserved quantity is given by
∫

d3x ψ†γ12ψ ,
which is related to an internal U(1) symmetry. The symmetry
enhancement in the Lagrangian (91) may explain why the
particular combination (α,β) for SI order emerges in the limit
δ → +1: the linear combination �V ∝ �J + 2 �W is dictated by
the fact that this is precisely �V ∝ [γ34,γ35,γ45]t (up to signs),
see Eqs. (A120). Similarly, W7 = γ12 may be selected by
the same mechanism for δ → −1. We are thus left with an
apparent intimate relation between the algebra of the Luttinger
Hamiltonian and typical spin configurations on the pyrochlore
lattice that deserves closer investigation in future work.
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APPENDIX A: RENORMALIZATION
GROUP EQUATIONS

1. Scaling dimensions

We determine the scaling dimensions of the couplings
involved in our analysis. The presentation is kept concise and
we suggest to consult Appendix B 1 of Ref. [26] for a more
comprehensive account.

The effective Lagrangian L̄ entering the effective action
� = ∫

dτ̄ddrL̄ at a given RG time b0 can be written as

L̄ = ψ̄†

(
S̄∂τ̄ − x̄∇2 + Aψ

∑
a

daγa + δ̄
∑

a

sadaγa + iā

)
ψ̄

+ 1

2ē2
(∇ā)2 + ḡ(ψ̄†Mψ̄)2. (A1)

Here, M is a dimensionless 4 × 4 matrix such that the last
term symbolizes a generic short-range coupling. Our goal is
to bring the Lagrangian into the form of the main text by
means of rescalings that do not affect the physics. For this
map, ψ̄ → ψ̂ = A

1/2
ψ ψ̄ and ā → a = A−1

ψ ā. We then have

L̄ = ψ̂†

(
S∂τ̄ − x∇2 +

∑
a

daγa + δ
∑

a

sadaγa + ia

)
ψ̂

+ A2
ψ

2ē2
(∇a)2 + ḡ

A2
ψ

(ψ̂†Mψ̂)2 (A2)

with S = S̄/Aψ , x = x̄/Aψ , and δ = δ̄/Aψ . Next rescale
imaginary time according to τ̄ = Sτ . The effective action re-
mains form-invariant, � = ∫

dτddrL, with ψ̂ → ψ = S1/2ψ̂

and

L = ψ†

(
∂τ − x∇2 +

∑
a

daγa + δ
∑

a

sadaγa + ia

)
ψ

+ A2
ψS

2ē2
(∇a)2 + ḡ

A2
ψS

(ψ†Mψ)2. (A3)

This motivates to introduce the rescaled couplings e2 and g by
means of

e2 = ē2

A2
ψS

S3

d−4

(2π )3
, g = ḡ

A2
ψS

S3

d−2

(2π )3
, (A4)

where S3 = 4π is the surface area of the unit sphere. By
redefining e2 → 1

2e2 and gi → 1
4gi , our results map to the

considerations in Ref. [22].
The canonical scaling dimensions of the (generalized)

running couplings λ̄ entering Eq. (A1) are given by

[�] = 0, (A5)

[x̄] = [δ̄] = 0, (A6)
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[τ̄ ] = −2, [ddr] = −d, (A7)

[ψ̄] = d/2, [ā] = 2, (A8)

[ē2] = 4 − d, (A9)

[ḡ] = 2 − d. (A10)

At a nontrivial fermionic fixed point we find that loop
contributions lead to the flow equations Ȧψ = ηAψ and
Ṡ = (z − 2)S. This may formally be written as [Aψ ] = η

and [S] = z − 2. Equivalently, we can rescale all couplings
according to Eq. (A3), so that Aψ = S = 1 holds for all b, and
the scaling dimensions of the rescaled couplings are obtained
from

[λ] = [
λ̄A

d1
ψ Sd2

] = [λ̄] + d1[Aψ ] + d2[S]. (A11)

In this way, we arrive at

[x] = [δ] = −η, (A12)

[τ ] = −z, (A13)

[ψ] = d + η + z − 2

2
, (A14)

[a] = 2 − η, (A15)

[e2] = 6 − d − z − 2η, (A16)

[g] = 4 − d − z − 2η. (A17)

Under the assumption that z = 2 − η, which is valid for the
present work, these formulas simplify further.

Let us also consider the scaling of � considered in the
susceptibility analysis. For this, we couple a term

L̄� = �̄(ψ̄†Mψ̄) = �̄

Aψ

(ψ̂†Mψ̂) (A18)

to the Lagrangian. The canonical dimension of �̄ is given by
[�̄] = 2. The effective action (or free energy) related to this
term is given by �� = ∫

ddrdτ̄ L̄� = ∫
ddrdτL� with

L� = �(ψ†Mψ), � = �̄

Aψ

. (A19)

Hence the scaling dimension of � is given by [�] = 2 − η,
which equals z in our case. We define the free energy density
F by means of � + �� = ∫

ddrdτF so that [F] = d + z. The
scaling form of F is thus given by

F = kd+zH

(
�

kz+η�

)
, (A20)

as discussed further in Eq. (77).

2. Propagators

We write Q = (q0,q) to collect frequencies and momenta.
Further define∫

Q

(. . . ) =
∫ ∞

−∞

dq0

2π

∫

/b�q�


ddq

(2π )d
(. . . ), (A21)

where the momentum integration on the right-hand side is
restricted to a momentum shell.

The fermion propagator is given by

G
Q
ψ = 1

detQF

(
−iq014 +

∑
a

(1 + δsa)daγa

)
(A22)

with da ≡ da(q) and

detQF = q2
0 +

5∑
b=1

(1 + δsb)2d2
b (A23)

= q2
0 + (1 − δ)2q4 + 12δ

∑
i<j

q2
i q

2
j . (A24)

This denominator follows from the expression for H 2 given in
Eq. (7).

The photon propagator is given by

GQ
a = Ga(q) = ē2

q2
. (A25)

It is frequency-independent to leading order.

3. Fermion self-energy

The fermion self-energy is given by

�ψ (P ) =
∫

Q

GQ+(1−v)P
a G

−Q+vP
ψ . (A26)

Herein, v is an arbitrary real parameter. Due to translation
invariance the result should not depend on v. However, the
momentum shell breaks translation invariance and thus we
obtain a slight v dependence of the result when momentum
integrals are evaluated for d < 4. Still, varying v in the physical
range v ∈ [0,1] does not change any qualitative aspects of the
RG flow. In particular, it cannot lead to a sign change in η or
δ̇. For the results presented in the main text, we choose v = 0
and evaluate the angular integral for d = 3. Since the analysis
for v 
= 0 is rather long-winded we limit the derivation to the
case of v = 0. We will, however, comment at the end of the
section on the v-dependence of the results.

The loop in Eq. (A26) does not generate a contribution to
the frequency dependence ∼ip0 of fermions. Indeed, we have

1

i

∂�ψ (P )

∂p0

∣∣∣∣
P=0

= ē2v14

∫
Q

q2
0 − ∑

b(1 + δsb)2d2
b

q2
(
q2

0 + ∑
b(1 + δsb)2d2

b

)2 .

(A27)

This expression vanishes upon frequency integration. Hence
we have

z = 2 − η, (A28)

with the anomalous dimension η to be determined below.
We henceforth set p0 = 0 in the loop and have

�ψ (p) =
∫

Q

GQ+p
a

∑
a(1 + δsa)da(q)γa

detQF
, (A29)

because the term linear in iq0 vanishes. For the photon
propagator, we write

GQ+p
a = ē2

q2 + 2(q · p) + p2
. (A30)
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Due to v = 0, this is the only term contributing a p dependence
to Eq. (A29). The term quadratic in the components pi can be
determined according to

1

2

∂2�(tp)

∂t2

∣∣∣∣
t=0

= − ē2

2

∫
q

p2q2 − 4(q · p)2

q6X1/2

∑
a

(1 + δsa)da(q)γa

= 2(d − 1)ē2

d

∑
a,c

(1 + δsa)dc(p)γa

∫
q

da(q)dc(q)

q6X1/2
,

(A31)

with X = ∑
b(1 + δsb)2d2

b . We used

(q · p)2 = 1

d
[(d − 1)dc(q)dc(p) − q2p2]. (A32)

In a rotation invariant setting, or for δ = 0, we could have now
used a formula∫

q
da(q)dc(q)χ (q2) = 2δac

(d − 1)(d + 2)

∫
q
q4χ (q2) (A33)

for any function χ (q2) having finite support. However, X is
not a function of q2. Consequently, the strongest statement that
can be made at this point is that the integral on the right-hand
side of Eq. (A31) is proportional to δac. We arrive at

�ψ (p) − �ψ (0) = 2(d − 1)ē2

d

∑
a

(1 + δsa)da(p)γa

×
∫

q

d2
a

q6X1/2
+ O(p3) (A34)

We neglect the constant contribution �ψ (0) in the following.
In particular, using the definitions of f1e,t from Eqs. (D5) and
(D8), and setting d = 3, we arrive at

�ψ (p) = 4ē2

15

[
(1 − δ)f1e(δ)

∑
a=1,2

da(p)γa

+ (1 + δ)f1t(δ)
∑

a=3,4,5

da(p)γa

⎤
⎦∫

q

1

q4
+ O(p3).

(A35)

We now determine η and δ̇ from Eq. (A35). From Eq. (A4)
we see that d

d ln b
ē2
∫

q
1
q4 = e2. Further, we can read off the

one-loop contributions �η and �δ that appear in the final
expressions for η and δ̇ by writing

�̇ψ (p) = Ȧ1,2

∑
a=1,2

da(p)γa + Ȧ3,4,5

∑
a=3,4,5

da(p)γa. (A36)

We find

Ȧ1,2 = 4
15e2(1 − δ)f1e(δ), (A37)

Ȧ3,4,5 = 4
15e2(1 + δ)f1t(δ). (A38)

Accordingly, we have

η = �η = 1
2 (Ȧ1,2 + Ȧ3,4,5)

= 2
15 [(1 − δ)f1e(δ) + (1 + δ)f1t(δ)]e2, (A39)

�δ = 1
2 (−Ȧ1,2 + Ȧ3,4,5)

= 2
15 [−(1 − δ)f1e(δ) + (1 + δ)f1t(δ)]e2. (A40)

Note that the flow equation for δ is given by

δ̇ = −ηδ + �δ

= − 2
15 (1 − δ2)[f1e(δ) − f1t(δ)]e2. (A41)

When expanding Eq. (A26) for finite v, the result depends
on v when evaluating the angular integral in three dimensions,
whereas the result is independent of v when evaluating it in
four dimensions. The slight v dependence is not problematic
for our analysis which does not aspire to be quantitatively
precise, but it is important to understand whether qualitative
modifications of the RG flow can occur. In particular, we are
interested in whether (i) the flow of δ is still exceptionally
slow for v 
= 0, and (ii) whether the fixed point structure of δ̇

remains invariant. For this purpose it is sufficient to consider
η and δ̇ to linear order in δ. By means of a calculation along
the lines of Eqs. (B54)–(B77) in Ref. [26], one can show that
in three dimensions

η = F (v)
(

4
15e2 − 4

105e2δ
) + O(δ2), (A42)

δ̇ = −F (v) 8
105e2δ + O(δ2) (A43)

with F (v) = 1 − (1/2)v − (1/8)v2. The function F (v) is
positive and of order unity in the range v ∈ [0,1]. Accordingly,
the flow is not qualitatively changed. In particular, since the
function δ̇(δ) has negative slope at δ� = 0 for all v, and given
the topology of the function seen in Fig. 1, it is also clear that
the fixed point structure is not modified; the stable fixed point
is at δ� = 0, whereas δ� = ±1 are repulsive. Note further that
when evaluating the momentum integrals in four dimensions
(including using nine da functions), one finds

η|4D = 1
6e2 − 2

45e2δ + O(δ2), (A44)

δ̇|4D = − 1
30e2δ + O(δ2) (A45)

for all v. These results confirm that the flow of δ is indeed
exceptionally slow.

4. Photon self-energy

The photon self-energy is given by

�a(P ) = −
∫

Q

tr
(
G

Q+(1−v)P
ψ G

Q−vP
ψ

)
. (A46)

We have, again, introduced a real parameter v that allows to
distribute the external momentum onto the two fermion lines.

The photon self-energy cannot acquire a frequency depen-
dence that is relevant close to d = 4 dimensions since the
photon is described by a real field. Indeed, Eq. (A46) has
the symmetry �a(p0,p) = �(−p0,p), which forbids a term
�a ∼ ip0, and the leading term is �a ∼ c2p2

0. We can thus
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neglect the external frequency in the computation, i.e., p0 = 0
in the following.

Setting the external frequency to zero, we obtain

�a(p) = −4
∫

Q

1

detQ+(1−v)p
F detQ−vp

F

[
−q2

0 +
∑

a

(1 + δsa)2

× da(q + (1 − v)p)da(q − vp)

]
. (A47)

For a derivative expansion of this expression, we write

detQ+p
F = detQF + D1 + D2 + D3 + O(p3) (A48)

with

D1 = 4Ad

∑
a

(1 + δsa)2da(q)
(
qi


a
ijpj

)
, (A49)

D2 = 2
∑

a

(1 + δsa)2da(q)da(p), (A50)

D3 = 4A2
d

∑
a

(1 + δsa)2(qi

a
ijpj

)(
qk


a
klpl

)
. (A51)

Note that the coefficients Di have definite scaling properties
under p �→ tp. We used

da(p) = Adqi

a
ij qj (A52)

with Ad =
√

d
2(d−1) . We have

detQ+(1−v)p
F = detQF + (1 − v)D1 + (1 − v)2(D2 + D3),

(A53)

detQ−vp
F = detQF − vD1 + v2(D2 + D3). (A54)

In the same way, we expand∑
a

(1 + δsa)2da(q + (1 − v)p)da(q − vp)

= X + (1 − 2v)
1

2
D1 + [(1 − v)2 + v2]

1

2
D2

− v(1 − v)D3 + O(p3) (A55)

with X = ∑
a(1 + δsa)2d2

a . Note that detQF = q2
0 + X. We then

find for the quadratic part

1

2

∂2�a(tp)

∂t2

∣∣∣∣
t=0

= −1

8

∫
q

(
D2

1

X5/2
− 4D3

X3/2

)
(A56)

independently of v. In the following, we evaluate this integral
for d = 3.

Due to the absence of rotation invariance, only a limited
number of simplifications is possible when computing inte-

grals of the type (A56). If χcub(q) is a function cubic in the com-
ponents qi , then

∫
q qiqjχcub(q) = δij

∫
q q2

i χcub(q). Further, we
have

∫
q qi1 · · · qinχcub(q) = 0 for n odd. In addition, for every

fixed i, we have∫
q
qn

i χcub(q) = 1

3

∫
q

(
qn

x + qn
y + qn

z

)
χcub(q). (A57)

We apply these relations to compute∫
q

D3

X3/2
= 4A2

3

∑
a

(1 + δsa)2
a
ij


a
klpjpl

∫
q

qiqk

X3/2

=
∑

a

(1 + δsa)2(
a
a)j lpjpl

∫
q

q2

X3/2

= 2

3
p2

∑
a

(1 + δsa)2 f2(δ)

(1 − δ2)

∫
q

1

q4

= 2

3
p2[2(1 − δ)2 + 3(1 + δ)2]

f2(δ)

(1 − δ2)

∫
q

1

q4
.

(A58)

Note that 4A2
3 = 3.

In deriving Eq. (A58), we used

pj (
a
b)j lpl = 2

d
p2δab + 1

2
Jabc


c
jlpjpl (A59)

with Jabc = tr(
a
b
c) and
∑

a Jaac = ∑
a saJaac = 0. For

the latter relations, see Ref. [26], Appendix C 2. To prove
Eq. (A59), first note that only the symmetric part of the matrix

a
b enters the product on the left-hand side of the equation.
More explicitly, we have


a
ji


b
ilpjpl = 1

2

(

a

ji

b
il + 
a

li

b
ij

)︸ ︷︷ ︸
Mjl

pjpl. (A60)

The matrix Mjl is symmetric in j l. Hence it can be decom-
posed according to

Mjl = 1

d
tr(M)δjl + 1

2
tr(M
c)
c

jl (A61)

with

tr(M) = 2
a
ji


b
ij = 4δab, (A62)

tr(M
c) = 2
a
ji


b
il


c
lj = 2Jabc, (A63)

which coincides with Eq. (A59). This formula is valid for
arbitrary dimension d.

To evaluate the remaining integral in Eq. (A56) we verify
via direct computation that

D2
1 = 16A2

3

∑
a,b

(1 + δsa)2(1 + δsb)2dadb

(
qi


a
ijpj

)(
qk


b
klpl

)

= 16A2
3

4

3

[
(1 − 2δ + δ2)

∑
i

piqi · q2
i + (1 + 4δ + δ2)

∑
i 
=j

piqi · q2
j

]2

= 16

[
(1 − 2δ + δ2)

∑
i

piqi · q2
i + (1 + 4δ + δ2)

∑
i

piqi · (q2 − q2
i

)]2

075149-15



IGOR BOETTCHER AND IGOR F. HERBUT PHYSICAL REVIEW B 95, 075149 (2017)

= 16

[∑
i

piqi

(−6δq2
i + (1 + 4δ + δ2)q2

)]2

= 16

[
36δ2

∑
i,j

pipjq
3
i q

3
j − 12δ(1 + 4δ + δ2)q2

∑
i,j

pipjq
3
i qj + (1 + 4δ + δ2)2q4

∑
i,j

pipjqiqj

]
. (A64)

Upon multiplication with the cubic function χcub(q) = X−5/2 and integration over q, all of these terms are proportional to δij .
Hence we arrive at∫

q

D2
1

X5/2
= 16

3
p2

[
36δ2

∫
q

q6
x + q6

y + q6
z

X5/2
− 12δ(1 + 4δ + δ2)

∫
q

q2
(
q4

x + q4
y + q4

z

)
X5/2

+ (1 + 4δ + δ2)2
∫

q

q6

X5/2

]
. (A65)

We apply

q2
(
d2

1 + d2
2

) = q6
x + q6

y + q6
z − 3q2

xq
2
yq

2
z , (A66)

q4 = q4
x + q4

y + q4
z + 2

∑
i<j

q2
i q

2
j , (A67)

d2
3 + d2

4 + d2
5 = 3

∑
i<j

q2
i q

2
j , (A68)

d3d4d5 = 3
√

3q2
xq

2
yq

2
z , (A69)

to write∫
q

D2
1

X5/2
= 16

3
p2

[
36δ2

∫
q

q2
(
d2

1 + d2
2

)
X5/2

− 12δ(1 + 4δ + δ2)
∫

q

q6

X5/2
+ 12δ(1 + 4δ + δ2)

2

3

∫
q

q2
(
d2

3 + d2
4 + d2

5

)
X5/2

+ 36√
3
δ2
∫

q

d3d4d5

X5/2
+ (1 + 4δ + δ2)2

∫
q

q6

X5/2

]
. (A70)

At last, we use
∑

a d2
a = q4 to bring this into the more symmetric form:∫

q

D2
1

X5/2
= 16

3
p2

[
(1 − δ)4

∫
q

q2
(
d2

1 + d2
2

)
X5/2

+ [(1 + δ)4 − 4δ2]
∫

q

q2
(
d2

3 + d2
4 + d2

5

)
X5/2

+ 36√
3
δ2
∫

q

d3d4d5

X5/2

]

= 16

3
p2

[
2

5

(1 − δ)2

(1 − δ2)
f3e(δ) + 3

5

(1 + δ)2

(1 − δ2)
f3t(δ) − 12

5

δ2

(1 − δ)(1 + δ)3
f3t(δ) + 36

35

δ2

(1 + δ)3
f345(δ)

] ∫
q

1

q4
. (A71)

We conclude that the p2 contribution to the photon self-
energy is given by

1

2

∂2�a(tp)

∂t2

∣∣∣∣
t=0

= p2 fe2 (δ)

(1 − δ2)

∫
q

1

q4
(A72)

with

fe2 (δ) = 1

3
(2(1 − δ)2 + 3(1 + δ)2)f2(δ)

− 2

3

(
2

5
(1 − δ)2f3e(δ) + 3

5
(1 + δ)2f3t(δ)

− 12

5

δ2

(1 + δ)2
f3t(δ) + 36

35

δ2(1 − δ)

(1 + δ)2
f345(δ)

)
. (A73)

The function fe2 (δ) is finite for all δ (although at first glance
one would expect a singularity for δ → −1) and satisfies
fe2 (0) = 1. Accordingly, the one-loop correction to the charge
is given by

�e2 = − fe2 (δ)

(1 − δ2)
e4, (A74)

which leads to the flow equation

ė2 = (4 − d − η)e2 − fe2 (δ)

(1 − δ2)
e4. (A75)

Inserting η from Eq. (A39) yields the fixed points e2 = 0 and

e2
� = 15

19 (1 − δ2)f�(δ)ε (A76)

with ε = 4 − d and

f�(δ) = 19

2(1 − δ2)[(1 − δ)f1e + (1 + δ)f1t] + 15fe2
. (A77)

Note that f�(0) = 1. We plot fe2 (δ) and f�(δ) in Fig. 8.

5. Short-range interactions

We derive the renormalization of short-range interactions
with the help of a set of master formulas that apply to arbitrary
four-fermion theories. By specializing to the propagators and
vertices which are of interest here, we obtain the running of
couplings g1,2,3 in Eq. (58).
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To introduce our notation, we start with a few general
remarks on the Wilsonian RG scheme. The partition function
of the theory is found from

Z =
∫

Dφ e− ∫
x
Lkin(φ)−∫

x
Lint(φ), (A78)

where φ = (ψ,a) is a schematic field variable, x = (τ,x), Lkin

is the kinetic part of the Lagrangian quadratic in the fields,
and Lint is the interaction part involving more powers of fields.
Introducing a momentum shell and dividing the field into fast
and slow movers according to φ = φ< + φ>, the quadratic part
factorizes, and we have

Z = Z>

∫
Dφ< e− ∫

x
Lkin(φ<)〈e− ∫

x
Lint(φ<+φ>)〉> (A79)

with average over fast modes

〈O〉> = 1

Z>

∫
Dφ> Oe− ∫

x
Lkin(φ>) (A80)

and Z> = 〈1〉>. The term 〈e− ∫
x
Lint(φ<+φ>)〉> generates contri-

butions with different powers of φ< and φ>. We eventually
write

Z = Z>

∫
Dφ<e− ∫

x
Leff (φ<), (A81)

where Leff(φ) is the effective Lagrangian after the fast modes
have been integrated out.

In our case, the interaction part of the Lagrangian is given
by

Lint(ψ,a) = ψ†iaψ +
∑

i

gi(ψ
†Miψ)2, (A82)

where the matrices Mi comprise the short-range interactions.
Upon insertion into Eq. (A79), the one-loop contributions
to the four-fermion interactions (i.e., those terms involving
precisely four slow modes ψ<) are generated by means of

〈e− ∫
x
Lint〉>

= 1

2

∑
i,j

gigj

∫
xy

〈
(ψ†Miψ)2

x(ψ†Mjψ)2
y

〉
>

− 1

6
3
∑

i

gi

∫
xyz

〈
(ψ†iaψ)x(ψ†iaψ)y(ψ†Miψ)2

z

〉
>

+ 1

24

∫
xyzw

〈(ψ†iaψ)x(ψ†iaψ)y(ψ†iaψ)z(ψ
†iaψ)w〉>.

(A83)

Herein, the first, second, and third lines constitute the contri-
butions proportional to gigj , e2gi , and e4, respectively. The
contractions can be evaluated by noting that the fast modes in
Eq. (A80) are described by a quadratic action, hence the

propagators read

〈ψ>(x)ψ†
>(y)〉> = Gψ (x,y), (A84)

〈a>(x)a>(y)〉> = Ga(x,y), (A85)

or, after Fourier transformation,

〈ψ>(Q)ψ†
>(Q′)〉> = G

Q
ψ · δ(Q − Q′), (A86)

〈a>(Q)a>(Q′)〉> = GQ
a · δ(Q + Q′) (A87)

with G
Q
ψ and GQ

a from Eqs. (A22) and (A25), respectively.
Let M and N be any of the matrices {Mi}. The relevant contractions are then given by∫

xy

〈
(ψ†Mψ)2

x(ψ†Nψ)2
y

〉
>

= − 4
∫

Q

(ψ†Mψ)(ψ†Nψ)tr
(
G

Q
ψ NG

Q
ψ M

) + 4
∫

Q

(ψ†Mψ)
(
ψ†NG

Q
ψ MG

Q
ψ Nψ

)
+ 4

∫
Q

(
ψ†MG

Q
ψ NG

Q
ψ Mψ

)
(ψ†Nψ) + 4

∫
Q

(
ψ†MG

Q
ψ Nψ

)(
ψ†NG

Q
ψ Mψ

)
+ 2

∫
Q

(
ψ†MG

Q
ψ Nψ

)(
ψ†MG

−Q
ψ Nψ

) + 2
∫

Q

(
ψ†NG

Q
ψ Mψ

)(
ψ†NG

−Q
ψ Mψ

)
, (A88)∫

xyz

〈
(iψ†aψ)x(iψ†aψ)y(ψ†Mψ)2

z

〉
>

= − 2
∫

Q

GQ
a

[
2
(
ψ†GQ

ψ MG
Q
ψ ψ

)
(ψ†Mψ) + (

ψ†G−Q
ψ Mψ

)(
ψ†GQ

ψ Mψ
)

+ 2
(
ψ†GQ

ψ Mψ
)(

ψ†MG
Q
ψ ψ

) + (
ψ†MG

−Q
ψ ψ

)(
ψ†MG

Q
ψ ψ

)]
. (A89)

We relabelled ψ<(x) → ψ and omitted the integral
∫
x

on the right-hand side. Using Eq. (C2) we can decompose the result into
contributions ∼(ψ†�Aψ)(ψ†�Bψ). We have∫

xy

〈
(ψ†Mψ)2

x(ψ†Nψ)2
y

〉
>

= −1

16

[
−4

∫
Q

tr
(
G

Q
ψ NG

Q
ψ M

)
tr(M�AN�B) + 4

∫
Q

tr
(
M�ANG

Q
ψ MG

Q
ψ N�B

)
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+ 4
∫

Q

tr
(
MG

Q
ψ NG

Q
ψ M�AN�B

) + 4
∫

Q

tr
(
MG

Q
ψ N�ANG

Q
ψ M�B

)
+ 2

∫
Q

tr
(
MG

Q
ψ N�AMG

−Q
ψ N�B

) + 2
∫

Q

tr
(
NG

Q
ψ M�ANG

−Q
ψ M�B

)]
(ψ†�Aψ)(ψ†�Bψ),

(A90)∫
xyz

〈
(iψ†aψ)x(iψ†aψ)y(ψ†Mψ)2

z

〉
>

= 1

8

∫
Q

GQ
a

[
2 tr

(
G

Q
ψ MG

Q
ψ �AM�B

) + tr
(
G

−Q
ψ M�AG

Q
ψ M�B

)
+ 2 tr

(
G

Q
ψ M�AMG

Q
ψ �B

) + tr
(
MG

−Q
ψ �AMG

Q
ψ �B

)]
(ψ†�Aψ)(ψ†�Bψ). (A91)

The contribution of order e4 is found to be∫
xyzw

〈(ψ†iaψ)x(ψ†iaψ)y(ψ†iaψ)z(ψ
†iaψ)w〉> = 12

∫
Q

(
GQ

a

)2[(
ψ†GQ

ψ ψ
)2 + (

ψ†GQ
ψ ψ

)(
ψ†G−Q

ψ ψ
)]

. (A92)

In deriving these results, we made no further assumptions on the structure of the fermion propagator G
Q
ψ or the vertices M,N .

Hence the expressions are valid for general four-fermion theories with differing kinetic terms or number of fermion components.
Note, however, that the displayed results are only meaningful after the appropriate Fierz identities of the theory have been applied
to eliminate the contained redundancies.

We denote the running of the couplings gi=1,...,8 before applying Fierz by

ġ
(0)
i = (z − d)gi + f1(δ) · �g

(0)
i , (A93)

and the actual flow equations for g1,2,3 after Fierz by

ġi = (z − d)gi + f1(δ) · �gi. (A94)

From the Fierz identities (C17)–(C21) derived below, we obtain

�g1 = �g
(0)
1 − 3

2

(
�g

(0)
4 + �g

(0)
5 + �g

(0)
6

) − 1
2�g

(0)
7 ,

�g2 = �g
(0)
2 − 3

10�g
(0)
4 − 6

5�g
(0)
5 + 1

2�g
(0)
7 − 6

5�g
(0)
8 ,

�g3 = �g
(0)
3 − 3

10�g
(0)
4 + 3

10�g
(0)
5 − 1

2�g
(0)
6 − 1

2�g
(0)
7 + 4

5�g
(0)
8 . (A95)

Performing the frequency and cubic momentum integrals in the same fashion as for the self-energies, we are left with

�g1 = 1
5 (−5 + 2F− + 3F+)g2

1 − 2
5 (−5 + 4F− + 3F+)g1g2 − 3

5 (−5 + 2F− + 5F+)g1g3 − g2
2 − 6g2g3 − 3g2

3

+ 1
10 (5 − 2F− − 3F+)e2g1 − 2

5F−e2g2 − 3
5F+e2g3, (A96)

�g2 = − 1
5F−g2

1 + 1
5 (5 + 3F+)g1g2 − 1

5 (5 + 4F− + 6F+)g2
2 − 3(1 + F+)g2g3 − 3

5 (5 + F−)g2
3

− 1
5F−e2g1 + 1

10 (5 + 3F+)e2g2 − 1
20F−e4, (A97)

�g3 = − 1
5F+g2

1 + 1
5 (5 + 2F− + F+)g1g3 − 1

5 (5 + 2F+)g2
2 − 2

5 (10 + 4F− + F+)g2g3 − 2
5 (5 + 3F− + 5F+)g2

3

− 1
5F+e2g1 + 1

10 (5 + 2F− + F+)e2g3 − 1
20F+e4, (A98)

with F±(δ) as defined in Eqs. (70) and (71). The β functions simplify further upon using 2F−(δ) + 3F+(δ) = 5 for all values of
δ. This yields the flow equations (67)–(69) discussed in the main text.

The contributions �gi in Eqs. (A96)–(A98) have the particular feature that g1 and e2 only appear in the combination

g1 + e2

2
. (A99)

This can be traced back to the momentum shell regularization scheme, the photon propagator being independent of frequency,
GQ

a = ē2

q2 , and the square of the fermion propagator vanishing upon frequency integration, namely,∫
q0

(
G

Q
ψ

)2 = 0. (A100)

Indeed, this is satisfied for G
Q
ψ from Eq. (A22), but does, for instance, also hold for a Dirac particle.
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To prove this statement, we first consider the terms that are linear in g1 + e2

2 . Set N = 1 in Eq. (A88) and let gi 
= g1. We then
have

gig1

∫
xy

〈
(ψ†Mψ)2

x(ψ†ψ)2
y

〉
>

= gig1

[
−4

∫
Q

(ψ†Mψ)(ψ†ψ)tr
(
G

Q
ψ G

Q
ψ M

) + 4
∫

Q

(ψ†Mψ)
(
ψ†GQ

ψ MG
Q
ψ ψ

)
+ 4

∫
Q

(
ψ†MG

Q
ψ G

Q
ψ Mψ

)
(ψ†ψ) + 4

∫
Q

(
ψ†MG

Q
ψ ψ

)(
ψ†GQ

ψ Mψ
)

+ 2
∫

Q

(
ψ†MG

Q
ψ ψ

)(
ψ†MG

−Q
ψ ψ

) + 2
∫

Q

(
ψ†GQ

ψ Mψ
)(

ψ†G−Q
ψ Mψ

)]
. (A101)

Now use Eq. (A100) to simplify this according to

gig1

∫
xy

〈
(ψ†Mψ)2

x(ψ†ψ)2
y

〉
>

= 2gig1

[
2
∫

Q

(ψ†Mψ)
(
ψ†GQ

ψ MG
Q
ψ ψ

) + 2
∫

Q

(
ψ†MG

Q
ψ ψ

)(
ψ†GQ

ψ Mψ
)

+
∫

Q

(
ψ†MG

Q
ψ ψ

)(
ψ†MG

−Q
ψ ψ

) +
∫

Q

(
ψ†GQ

ψ Mψ
)(

ψ†G−Q
ψ Mψ

)]
. (A102)

This is structurally identical to the right-hand side of Eq. (A89). Upon re-exponentiating, Eq. (A102) for gi 
= g1 gets multiplied
by −1, and Eq. (A89) gets multiplied by 1

2 . Accordingly, we can only have contributions ∼ gi(g1 + e2

2 ). To show the appearance
of this combination also to quadratic order, set gi = gj = g1 (M = N = 1) in Eq. (A88). We then find

g2
1

∫
xy

〈
(ψ†ψ)2

x(ψ†ψ)2
y

〉
>

= 2g2
1

[
2
∫

Q

(ψ†ψ)
(
ψ†GQ

ψ G
Q
ψ ψ

) + 2
∫

Q

(
ψ†GQ

ψ ψ
)(

ψ†GQ
ψ ψ

)
+
∫

Q

(
ψ†GQ

ψ ψ
)(

ψ†G−Q
ψ ψ

) +
∫

Q

(
ψ†GQ

ψ ψ
)(

ψ†G−Q
ψ ψ

)]

= 4g2
1

[∫
Q

(
ψ†GQ

ψ ψ
)(

ψ†GQ
ψ ψ

) +
∫

Q

(
ψ†GQ

ψ ψ
)(

ψ†G−Q
ψ ψ

)]
. (A103)

This is obviously structurally identical to the right-hand side
of Eq. (A92). When re-exponentiated, Eq. (A88) for gi = gj

gets multiplied by − 1
2 and Eq. (A92) gets multiplied by − 1

24 .
Hence we can only have terms

∼
(

2g2
1 + 1

2
e4

)
= 2

(
g1 + e2

2

)2

+ . . . . (A104)

We conclude that Coulomb interactions can be included by
replacing g1 → g1 + e2

2 in the β functions for the short-range
interactions, and, of course, by including the renormalization
of the fermion self-energy.

6. Susceptibilities

In this section, we compute the order parameter susceptibil-
ities for both insulating and superconducting terms. For this,
we couple terms L� = �(ψ†Mψ) or L

(sc)
� = �(ψ†Mψ∗) to

the Lagrangian and determine the resulting flow equations for
�. We give general master formulas in a similar fashion to
the discussion of the flow of short-range couplings. We further
analyze in detail the particular role of magnetic order in the
cubic case.

We first consider the influence of an insulating term
L� = �(ψ†Mψ) with test vertex M . Writing the inter-
action part of the Lagrangian as in Eq. (A82), we find
the relevant contributions to the path integral to be given

by〈
e− ∫

x
(L�+Lint)

〉
>

= 1

2
2�

∑
i

gi

∫
xy

〈
(ψ†Mψ)x(ψ†Miψ)2

y

〉
>

− 1

6
3�

∫
xyz

〈(ψ†iaψ)x(ψ†iaψ)y(ψ†Mψ)z〉>. (A105)

The individual contractions that contribute to �̇ can then be
computed with the help of the master formulas∫

xy

〈
(ψ†Mψ)x(ψ†Nψ)2

y

〉 = −2(ψ†Nψ)
∫

Q

tr
(
MG

Q
ψ NG

Q
ψ

)
+ 2

∫
Q

ψ†(NG
Q
ψ MG

Q
ψ N

)
ψ

(A106)

and ∫
xyz

〈(ψ†iaψ)x(ψ†iaψ)y(ψ†Mψ)z〉

= −2
∫

Q

GQ
a ψ†(GQ

ψ MG
Q
ψ

)
ψ. (A107)

Again, using Eq. (C2), we can express M and N in terms
of {�A}. Upon coupling a superconducting vertex L

(sc)
� =

�(ψ†Mψ∗), we obtain corrections from the same terms as
in Eq. (A105), given we replace (ψ†Mψ) → (ψ†Mψ∗). The
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master formulas for the corresponding contractions read∫
xy

〈(ψ†Mψ∗)x(ψ†Nψ)2
y〉 = 2

∫
Q

ψ†NG
−Q
ψ M

[
G

Q
ψ

]t
Ntψ∗

(A108)

and ∫
xyz

〈(ψ†iaψ)x(ψ†iaψ)y(ψ†Mψ∗)z〉

= −2
∫

Q

GQ
a ψ†G−Q

ψ M
[
G

Q
ψ

]t
ψ∗. (A109)

We used that M t = −M for superconducting vertices M . With
the same manipulations as in the previous section it is possible
to show that both the insulating and superconducting suscep-
tibilities depend on g1 and e2 only through the combination
g1 + e2

2 .
By adding a term L� with particular symmetry properties to

the Lagrangian, we generate all possible terms that are allowed
within the symmetry constraints. In particular, choosing the
test vertex to be M = �A, we typically only generate a
contribution proportional to L� through Eq. (A105). For
instance, for M = W7, we schematically write

�(ψ†W7ψ)
loops=⇒ ηW7�(ψ†W7ψ), (A110)

with the prefactor giving the exponent of the susceptibility. The
corresponding results are summarized in Eqs. (A124)–(A128)
below.

A peculiar situation arises, however, when coupling terms
with M = Ji or M = Wi . For δ = 0, they are distinguished
through their transformation properties under SO(3) via the
tensor rank. On the other hand, for δ 
= 0, their symmetry
pattern is completely identical and both represent magnetic
ordering. In fact, the contributions that are generated through
Eq. (A105) read

�(ψ†Jiψ)
loops=⇒ �[ηJi

(ψ†Jiψ) + a(ψ†Wiψ)],

�(ψ†Wiψ)
loops=⇒ �[a(ψ†Jiψ) + ηWi

(ψ†Wiψ)]. (A111)

Hence enhancing Ji will always generate a contribution to
Wi , and vice versa. The leading instability is then generically
a linear combination of both. To find the leading instability,
we consider the test vertex LMi

= �(ψ†Miψ) with

Mi = αJi + βWi. (A112)

We choose α2 + β2 = 1 to ensure tr(MiMj ) = 4δij , general-
izing Eq. (29). Further restrictions on α and β appear upon

requiring that LMi

loops=⇒ ηMi
LMi

holds true. Using the above
equations, we easily see that

LMi

loops=⇒ �

(
ηJi

+ βa

α

)
LMi

+ h�(ψ†Wiψ) (A113)

with

h = β(ηWi
− ηJi

) + a

α
(α2 − β2). (A114)

A stable divergence of a particular channel Mi then requires
the self-consistency condition h = 0 to be satisfied.

In the isotropic case (δ = 0 and g2 = g3), we have a = 0
and ηJi

= ηWμ
for all i and μ, see Eqs. (A123) below. Hence,

there is no mixing between LJi
and LWi

, and the condition
h = 0 is satisfied. For the anisotropic case, let a 
= 0. In
order to solve h = 0 for α and β, we introduce y = ηWi

−ηJi

a

so that we are left with the condition yαβ + α2 − β2 = 0.
We show below that in fact y = 3/2 for all δ 
= 0, which
limits the solutions to β = 2α or β = −α/2. After a proper
normalization, we are left with two bilinears L

M
(±)
i

, which we
label according to Mi → Ui, Vi . They read

Ui = 1√
5

(2Ji − Wi), (A115)

Vi = 1√
5

(Ji + 2Wi), (A116)

and satisfy tr(ViVj ) = tr(UiUj ) = 4δij and tr(ViUj ) = 0. The
associated susceptibility exponents are found from Eq. (A113)
to be ηMi

= ηJi
+ 2β

3α
(ηWi

− ηJi
), where we exploited again

y = 3/2. We then find

ηUi
= 1

3 (4ηJi
− ηWi

), (A117)

ηVi
= 1

3 (4ηWi
− ηJi

). (A118)

As pointed out in Ref. [33] with Vi = γd,i , the components of
�V satisfy the three-dimensional Clifford algebra

{Vi,Vj } = 2δij14. (A119)

Due to this extra symmetry, it is natural that coupling a term
LVi

to the Lagrangian only generates terms again proportional
to LVi

. Note further that

V1 = γ35,

V2 = −γ45,

V3 = −γ34 (A120)

and

U1 = 1

2
γ14 +

√
3

2
γ24,

U2 = 1

2
γ13 −

√
3

2
γ23,

U3 = −γ15. (A121)

We now summarize the order parameter susceptibility
exponents obtained from Eq. (A105) for the system considered
here. In the isotropic case (δ = 0, g2 = g3), we obtain

η1 = 0,

ηγa
= 4

5

(
g1 + 1

2e2
) − 28

5 g2,

ηγab
= 2

5

(
g1 + 1

2e2
) + 2

5g2,

η(sc)
γ45

= −(
g1 + 1

2e2
) − 5g2,

η(sc)
γaγ45

= − 1
5

(
g1 + 1

2e2

)
+ 3

5g2. (A122)

In particular, we have

ηJi
= ηWi

= ηγab
. (A123)
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For the cubic symmetric system with general δ, we find

η1 = 0,

ηEa
= 1

10
f1(5 + 3F+)

[
g1 + e2

2
− 4g2 − 3g3

]
,

ηTa
= 1

10
f1(5 + 2F− + F+)

[
g1 + e2

2
− 2g2 − 5g3

]
,

ηJi
= 2

25
f1

[
5

(
g1 + e2

2

)
+ 2F+g2 + (5 − 2F+)g3

]
,

ηWi
= 1

50
f1

[
5(1 + 3F+)

(
g1 + e2

2

)
+ 32F+g2

+ (5 − 17F+)g3

]
,

ηW ′
μ

= 1

10
f1(5 − F+)

[
g1 + e2

2
+ g3

]
,

ηW7 = 2

5
f1F−

[
g1 + e2

2
− 2g2 + 3g3

]
(A124)

for the insulating channels, and

η(sc)
γ45

= −f1

[
g1 + e2

2
+ 2g2 + 3g3

]
,

η(sc)
γaγ45

= 1

10
f1(5 − 3F+)

[
−
(

g1 + e2

2

)
+ 3g3

]
(a = 1,2),

η(sc)
γaγ45

= 1

5
f1F+

[
−
(

g1 + e2

2

)
+ 2g2 + g3

]
(a = 3,4,5)

(A125)

for the superconducting ones. The isotropic limits (A122) are
recovered for δ → 0.

The mixing term a introduced in Eq. (A111) is given by

a = − 2

25
f1

[
(F− − F+)

(
g1 + e2

2

)
− 4F+g2

+ (F− + 3F+)g3

]
. (A126)

Obviously, a = 0 for δ = 0. (F± = 1 and g2 = g3 in the
isotropic limit.) For δ 
= 0, the term is nonzero and we verify
by inserting the above expressions that

y = ηWi
− ηJi

a

∣∣∣∣
δ 
=0

= 3

2
. (A127)

We used that 2F− + 3F+ = 5 for all δ. Remarkably, y =
3/2 holds true for all possible values of the couplings
(g1, g2, g3, and e2). From Eqs. (A117) and (A118), we deduce

ηUi
= 1

10
f1(5 − F+)

(
g1 + e2

2
+ g3

)
, (A128)

ηVi
= 2

5
f1F+

(
g1 + e2

2
+ 2g2 − g3

)
. (A129)

APPENDIX B: TENSOR DECOMPOSITION

1. Symmetric tensor bases

We construct tensor bases for symmetric and symmetric
traceless tensors. The dimension of the vector space of d-
dimensional symmetric tensors of rank 	, and thus the number
of basis elements, is (d + 	 − 1

	 ). Hence we have

	 = 1 :

(
d

1

)
= d, (B1)

	 = 2 :

(
d + 1

2

)
= d(d + 1)

2
, (B2)

	 = 3 :

(
d + 2

3

)
= d(d + 1)(d + 2)

6
. (B3)

In particular, in three dimensions there are three vectors, six
symmetric second-rank tensors, and ten symmetric third-rank
tensors.

Rank 2. We start with the case of rank 	 = 2. A tensor basis
for symmetric second-rank tensors is given by

Ē
(l,m)
ij = e

(l)
i e

(m)
j + e

(l)
j e

(m)
i , l � m. (B4)

The indices i,j,l,m run from 1, . . . ,d. Herein e(k) is the unit
vector pointing in k direction. Of course, e

(l)
i = δil . In three

dimensions we have six possible index combinations for (l,m),
given by (1,1), (2,2), (3,3), (1,2), (1,3), and (2,3). We can split
the basis elements into one diagonal element and several sym-
metric traceless components. In d = 3 dimensions, we define


0
ij =

√
2

d

(
e

(1)
i e

(1)
j + e

(2)
i e

(2)
j + e

(3)
i e

(3)
j

) =
√

2

d
δij , (B5)


1
ij = e

(1)
i e

(1)
j − e

(2)
i e

(2)
j , (B6)


2
ij = 1√

3

(−e
(1)
i e

(1)
j − e

(2)
i e

(2)
j + 2e

(3)
i e

(3)
j

)
, (B7)


3
ij = e

(1)
i e

(3)
j + e

(1)
j e

(3)
i , (B8)


4
ij = e

(2)
i e

(3)
j + e

(2)
j e

(3)
i , (B9)


5
ij = e

(1)
i e

(2)
j + e

(1)
j e

(2)
i . (B10)

The matrices 
a coincide with the real Gell-Mann matrices
and satisfy the orthogonality condition

tr(
a
b) = 2δab (B11)

with a,b = 0,1, . . . ,5. We further have tr(
0
0) = 2 and the
orthogonality of 
0 and 
a implies tracelessness according to

tr(
a) ∝ tr(
0
a) = 0. (B12)

Along the lines presented here, the Gell-Mann matrices are
easily generalized to arbitrary dimension d, see, for instance,
Ref. [23].

The matrices 
a satisfy the completeness condition


0
ij


0
kl + 
a

ij

a
kl = δikδjl + δilδjk. (B13)

To see why this is indeed the completeness relation, assume
that we have a complete set of symmetric traceless matrices
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{Ea} with tr(EaEb) = 2δab. Then every symmetric d × d

matrix M can be written as

Mij = 1

d
tr(M)δij + 1

2
tr(MEa)Ea

ij . (B14)

For a general d × d matrix N , the right-hand side of this
equation can still be computed, but it only gives the symmetric
part of N , namely,

1

2
(Nij + Nji) = 1

d
tr(N )δij + 1

2
tr(NEa)Ea

ij (B15)

or

1

2
(δikδjl + δilδjk)Nkl =

(
1

d
δklδij + 1

2
Ea

klE
a
ij

)
Nkl. (B16)

In this equation, Nkl is completely arbitrary, and thus

1

2
(δikδjl + δilδjk) = 1

d
δlkδij + 1

2
Ea

lkE
a
ij . (B17)

Writing E0
kl =

√
2
d
δkl , we arrive at

E0
ijE

0
kl + Ea

ijE
a
kl = δikδjl + δilδjk, (B18)

which agrees with Eq. (B13) for Ea = 
a .
We conclude that every symmetric second-rank tensor S̄ij

can be written as

S̄ij = 1

d
S0δij + Sa


a
ij (B19)

with, using Eq. (B14) for M = S̄,

S0 = tr(S̄) = S̄ii , (B20)

Sa = 1
2 tr(S̄
a) = 1

2 S̄ij

a
ij . (B21)

In the second line, we used that 
a
ij is symmetric in ij .

Rank 3. Next we turn to symmetric third-rank tensors. A
basis is given by

Ē
(l,m,n)
ijk = e

(l)
i e

(m)
j e

(n)
k + permutations of ijk (B22)

with l � m � n. In d = 3, there are ten such combinations
given by (1,1,1), (2,2,2), (3,3,3), (1,1,2), (1,1,3), (1,2,2),
(1,2,3), (1,3,3), (2,2,3), and (2,3,3). As in the second-rank
case, we construct proper linear combinations of the Ē

(l,m,n)
ijk ,

which constitute a suitably normalized basis for the trace(s)
and traceless components of symmetric third-rank tensors.
Note that for such a tensor, called B̄ijk , there are d traces
δij B̄ijk labeled by the index k. For d = 3, we define

F 1
ijk =

√
2

5

(
δij e

(1)
k + δike

(1)
j + δjke

(1)
i

)
,

F 2
ijk =

√
2

5

(
δij e

(2)
k + δike

(2)
j + δjke

(2)
i

)
, (B23)

F 3
ijk =

√
2

5

(
δij e

(3)
k + δike

(3)
j + δjke

(3)
i

)
,

and

E1
ijk =

√
15

(
e

(1)
i e

(1)
j e

(1)
k − 1

5

(
δij e

(1)
k + δike

(1)
j + δjke

(1)
k

))
,

E2
ijk =

√
15

(
e

(2)
i e

(2)
j e

(2)
k − 1

5

(
δij e

(2)
k + δike

(2)
j + δjke

(2)
k

))
,

E3
ijk =

√
15

(
e

(3)
i e

(3)
j e

(3)
k − 1

5

(
δij e

(3)
k + δike

(3)
j + δjke

(3)
k

))
,

E4
ijk = 1

2

(
Ē

(1,2,2)
ijk − Ē

(1,3,3)
ijk

)
,

E5
ijk = 1

2

(
Ē

(2,3,3)
ijk − Ē

(2,1,1)
ijk

)
,

E6
ijk = 1

2

(
Ē

(3,1,1)
ijk − Ē

(3,2,2)
ijk

)
,

E7
ijk = Ē

(1,2,3)
ijk . (B24)

We label the former and latter by indices m = 1, 2, and 3 and
μ = 1, . . . ,7, respectively. We have

Fm
iik =

√
10e

(m)
k . (B25)

The tensors (B23) and (B24) are orthogonal according to

Fm
ijkF

n
ijk = 6δmn, (B26)

E
μ

ijkE
ν
ijk = 6δμν, (B27)

Fm
ijkE

μ

ijk = 0. (B28)

Note that 6 = 3!.
Analogous to the second-rank case, we derive the complete-

ness relation for symmetric third-rank tensors. Let Nijk be a
tensor with three indices, which need not be symmetric. The
expression

1
6

(
NijkF

m′
ijk

)
Fm′

lmn + 1
6

(
NijkE

μ

ijk

)
E

μ

lmn (B29)

captures the symmetric part of Nijk . Thus, generally, we have

1
6

(
NijkF

m′
ijk

)
Fm′

lmn + 1
6

(
NijkE

μ

ijk

)
E

μ

lmn

= 1
6 (Nlmn + permutations of lmn). (B30)

Since Nijk is arbitrary we conclude that completeness in the
space of symmetric third-rank tensors is equivalent to

Fm′
ijkF

m′
lmn + E

μ

ijkE
μ

lmn = δilδjmδkn + permutations of ijk.

(B31)

By a direct computation, one verifies that this relation is
satisfied for the tensors defined in Eqs. (B23) and (B24).

Thus we have shown that every symmetric third-rank tensor
B̄ijk can be decomposed as

B̄ijk = bmFm
ijk + BμE

μ

ijk (B32)

with

bm = 1
6 B̄ijkF

m
ijk, (B33)

Bμ = 1
6 B̄ijkE

μ

ijk. (B34)
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2. Application to irreducible spin tensors

We apply the results of the previous section to the spin
j = 3/2 matrices Ji . Although the results of this work, by
construction, are representation independent, we choose at
some points a particular representation for displaying explicit
expressions for the algebraic objects. We define

J+ =

⎛
⎜⎜⎝

0
√

3 0 0
0 0 2 0
0 0 0

√
3

0 0 0 0

⎞
⎟⎟⎠, J− =

⎛
⎜⎜⎝

0 0 0 0√
3 0 0 0

0 2 0 0
0 0

√
3 0

⎞
⎟⎟⎠,

Jz =

⎛
⎜⎜⎜⎝

3
2 0 0 0

0 1
2 0 0

0 0 − 1
2 0

0 0 0 − 3
2

⎞
⎟⎟⎟⎠. (B35)

With J+ = Jx + iJy and J− = Jx − iJy , this implies that

Jx = 1

2
(J+ + J−) =

⎛
⎜⎜⎜⎜⎜⎝

0
√

3
2 0 0

√
3

2 0 1 0

0 1 0
√

3
2

0 0
√

3
2 0

⎞
⎟⎟⎟⎟⎟⎠, (B36)

Jy = 1

2i
(J+ − J−) =

⎛
⎜⎜⎜⎜⎜⎝

0 −i
√

3
2 0 0

i
√

3
2 0 −i 0

0 i 0 −i
√

3
2

0 0 i
√

3
2 0

⎞
⎟⎟⎟⎟⎟⎠.

(B37)

This representation corresponds to the common parametriza-
tion with quantization axis h = ez.

Consider now the second-rank operator valued tensor

S̄ij = JiJj + JjJi . (B38)

Using the definition in Eqs. (B5), we find S0 = 15
2 14. This

implies that the symmetric traceless tensor

Sij = S̄ij − 1

d
S0δij = Sa


a
ij (B39)

coincides with

Sij = JiJj + JjJi − 5
214 (B40)

defined in Eq. (25). The coefficients Sa of the matrix-valued
tensor Sij are matrix-valued. For our purposes, we choose the
normalization

γa = 1√
3
Sa. (B41)

These matrices are the γ matrices introduced in Eq. (3), which
satisfy the Clifford algebra. (The latter property can easily be
shown by direct computation.) We have tr(γaγb) = 4δab and
(γa)† = γa . We have

Sij =
√

3γa

a
ij (B42)

with Sa = Sij

a
ij such that the γa are given by the expressions

in Eqs. (33)–(37). We can also express this in the components

of Sij by using

γa = 1

2
√

3
Sij


a
ij , (B43)

which gives

γ1 = 1

2
√

3
(Sxx − Syy), γ2 = 1

2
Szz, (B44)

γ3 = 1√
3
Sxz, γ4 = 1√

2
Syz, γ5 = 1√

3
Sxy. (B45)

We used the symmetry Sij = Sji and vanishing of the trace
Sxx + Syy + Szz = 0 of S.

Next consider the symmetric third-rank spin tensor

B̄ijk = JiJjJk + permutations of ijk. (B46)

It can be decomposed according to

B̄ijk = bmFm
ijk + BμE

μ

ijk. (B47)

Using δij B̄ijk = 41
2 Jk , we obtain

bm = 1

6
B̄ijkF

m
ijk = 41

4

√
2

5
Jm. (B48)

Consequently, the irreducible component

Bijk = B̄ijk − bmFm
ijk

= B̄ijk − 41
4

2
5

(
δij e

(m)
k + δike

(m)
j + δjke

(m)
i

)
Jm

= B̄ijk − 41
10

(
δij Jk + δikJj + δjkJi

)
(B49)

coincides with Bijk derived in Eq. (26). We introduce the
matrices Wμ such that they satisfy tr(WμWν) = 4δμν according
to

Wμ = 2

3
√

3
Bμ. (B50)

Applying Eqs. (B24), we then arrive at Eqs. (38)–(44).
It is instructive to relate Ji and Wμ to the matrices γab

with a < b. Applying M = 1
4 tr(M�A)�A with M = Ji,Wμ

and �A = γab yields

Jx = 1

2
γ14 +

√
3

2
γ24 + 1

2
γ35, (B51)

Jy = 1

2
γ13 −

√
3

2
γ23 − 1

2
γ45, (B52)

Jz = −γ15 − 1

2
γ34, (B53)

and

W1 = − 1

2
√

5
γ14 − 1

2

√
3

5
γ24 + 2√

5
γ35, (B54)

W2 = − 1

2
√

5
γ13 + 1

2

√
3

5
γ23 − 2√

5
γ45, (B55)

W3 = 1√
5
γ15 − 2√

5
γ34, (B56)

W4 =
√

3

2
γ14 − 1

2
γ24, (B57)

W5 = −
√

3

2
γ13 − 1

2
γ23, (B58)
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W6 = γ25, (B59)

W7 = γ12. (B60)

3. Higher-rank tensors and Cayley–Hamilton

The procedure outlined in the previous section can also
be applied to construct higher-rank irreducible spin tensors.
However, for a representation of the spin j algebra, no
irreducible spin tensor with rank 	 > 2j exists [30]. We recall
the proof of this statement here explicitly for j = 3/2 and then
discuss the general case.

Consider the symmetric fourth-rank j = 3/2 spin tensor

K̄ijkl = JiJjJkJl + permutations of ijkl. (B61)

The tensor is easily made traceless by an appropriate ansatz
and employing JiSklJi = 3

4Skl , which yields

Kijkl = K̄ijkl − 5(δijSkl + δikSjl + δilSjk + δjkSil

+ δjlSik + δlkSij ) − 41
2 (δij δkl + δikδjl + δilδjk)14.

(B62)

We then indeed have δijKijkl = 0 for all kl. However, we even
verify by explicit computation that

Kijkl = 0 (B63)

for all indices ijkl. This finding can be understood as a
consequence of the Cayley–Hamilton (CH) theorem.

The CH theorem states that every operator is a zero of its
characteristic polynomial. For matrices M , as in our case, the
characteristic polynomial is defined as

p(T ) = det(T 1 − M), (B64)

where T is a formal place holder. The zeros of p(λ) for λ ∈ C
are just the eigenvalues of M . According to the CH theorem,
inserting M into the polynomial yields the zero operator. To
see this, let M be Hermitian for simplicity and let it act in some
vector space, solve the eigenvalue problem Me(λ) = λe(λ), and
decompose any vector in this vector space as v = ∑

λ cλe(λ).
But then

p(M)v =
∑

λ

cλp(M)e(λ) =
∑

λ

cλp(λ)e(λ) = 0. (B65)

As v was arbitrary, we conclude p(M) = 0. This proves the
CH theorem for Hermitean matrices.

To prove Eq. (B63) via CH, we follow Ref. [30]. For the
spin j = 3/2 matrices, we have(

h · J − 3
2

)(
h · J − 1

2

)(
h · J + 1

2

)(
h · J + 3

2

) = 0, (B66)

where h ∈ R3 is an arbitrary quantization axis with |h| = 1.
This well-known fact is a manifestation of the CH theorem.
Indeed, given the representation from Eq. (B35) with h = ez,
we see the characteristic polynomial of h · J = Jz to be

p(T ) =
j∏

m=−j

(T − m). (B67)

Applying rotation invariance then yields Eq. (B66) as the more
general case. We multiply Eq. (B66) by the irreducible fourth-
rank tensor ̂hihjhkhl constructed from the product hihjhkhl

along the lines introduced above, and integrate over all possible
values of h to find

0 =
∫

d3h

j∏
m=−j

(h · J − m) ̂hihjhkhl

=
∫

d3h (h · J)4
̂hihjhkhl ∝ Kijkl . (B68)

In the integration, all terms except to those involving (h · J)4

vanish as they are either odd in h or would result in a
partial traces of ̂hihjhkhl , which vanishes by construction.
The remaining integration projects onto the symmetric and
traceless part of JiJjJkJl , which is precisely Kijkl . The
proof also works for different j since in this case p(T ) has
2j + 1 factors so that upon multiplication with hi1 · · ·hi2j+1

and subsequent integration, the irreducible tensor of rank
	 = 2j + 1 is projected out and seen to vanish. Further note
that multiplying Eq. (B66) with an arbitrary power of (h · J),
one can show in the same manner that all irreducible spin
tensors with 	 � 2j + 1 vanish.

APPENDIX C: FIERZ IDENTITIES

In this Appendix, we derive Fierz identities for both the
rotation symmetric and the anisotropic case. For a detailed
discussion of Fierz identities in general see also Refs. [26,42].
Let X again be the space of Hermitean 4 × 4 matrices, and
let {�A}A=1,...,16 be an R basis of X . Assume the basis to be
orthogonal according to

tr(�A�B) = 4δAB. (C1)

Every matrix M ∈ X can then be expressed as

M = 1
4 tr(M�A)�A. (C2)

Further let ψ = (ψ1,ψ2,ψ3,ψ4)t be a four-component vector
with anticommuting Grassmann variables ψi . Given M,N ∈
X , general four-fermion interaction terms can be decomposed
as

(ψ†Mψ)(ψ†Nψ) = − 1
16 tr(M�AN�B)(ψ†�Aψ)(ψ†�Bψ),

(C3)

(ψ†Mψ∗)(ψ tNψ) = 1
16 tr(M�AN�B)(ψ†(�A)tψ)(ψ†�Bψ),

(C4)

respectively. Now apply Eq. (C3) for the basis vectors M =
�A and N = �B , or sums thereof. One would expect the
trivial result to emanate. However, this is not the case, and the
nontrivial relations obtained with this procedure are the Fierz
identities.

We first consider the rotation invariant case. Let

X1 = (ψ†ψ)2, (C5)

X2 = (ψ†γaψ)2, (C6)

X3 = (ψ†Jiψ)2, (C7)

X4 = (ψ†Wμψ)2 (C8)
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be the four-fermion terms allowed by rotation symmetry.
Applying Eq. (C3) according to∑

i

(ψ†Miψ)(ψ†Niψ)

= − 1

16

(∑
i

tr(Mi�
ANi�

B)

)
(ψ†�Aψ)(ψ†�Bψ),

(C9)

with {Mi,Ni} containing the matrices that enter X1,...,4, we
arrive at

X = FX (C10)

with X = (X1,X2,X3,X4)t and

F =

⎛
⎜⎜⎜⎝

−1/4 −1/4 −1/4 −1/4

−5/4 3/4 −1/4 −1/4

−3/4 −3/20 −11/20 9/20

−7/4 −7/20 21/20 1/20

⎞
⎟⎟⎟⎠. (C11)

We have F 2 = 14. Denote F ′ = F − 14, which has matrix rank
rank(F ′) = 2. This constitutes the number of Fierz identities.
After row reduction, F ′ is given by

F ′ ∼

⎛
⎜⎜⎜⎝

1 1/5 1/5 1/5

0 0 1 −3/7

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠, (C12)

from which we read off the Fierz identities

0 = (ψ†ψ)2 + 1
5 (ψ†γaψ)2 + 1

5 (ψ†Jiψ)2 + 1
5 (ψ†Wμψ)2,

0 = 1
3 (ψ†Jiψ)2 − 1

7 (ψ†Wμψ)2. (C13)

These relations allow to eliminate two couplings from the
analysis of the rotation invariant case.

Next consider the cubic symmetric case with L =
(L1, . . . ,L8)t and the Li from Eq. (50)–(57). With the same
procedure as in the rotation invariant setup, we obtain

L = FL (C14)

with

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1/4 −1/4 −1/4 −1/4 −1/4 −1/4 −1/4 0

−1/2 0 1/2 −1/10 −2/5 0 1/2 −2/5

−3/4 3/4 1/4 −3/20 3/20 −1/4 −3/4 2/5

−3/4 −3/20 −3/20 −11/20 9/20 9/20 9/20 0

−3/4 −3/5 3/20 9/20 −1/10 3/10 −9/20 3/5

−3/4 0 −1/4 9/20 3/10 −1/2 3/4 −1/5

−1/4 1/4 −1/4 3/20 −3/20 1/4 −1/4 −2/5

0 −3/10 1/5 0 3/10 −1/10 −3/5 −3/5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C15)

We have F 2 = 18. For F ′ = F − 18, we have rank(F ′) = 5,
implying five Fierz identities, and row reduction yields

F ′ ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1/3 0 0 0 2 5/3
0 1 −2/3 0 0 0 0 5/3
0 0 0 1 0 0 −3 −3
0 0 0 0 1 0 −3 −9/2
0 0 0 0 0 1 −3 −5/2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C16)

We read off the Fierz identities

0 = L1 + 1
3L3 + 2L7 + 5

3L8, (C17)

0 = L2 − 2
3L3 + 5

3L8, (C18)

0 = L4 − 3L7 − 3L8, (C19)

0 = L5 − 3L7 − 9
2L8, (C20)

0 = L6 − 3L7 − 5
2L8. (C21)

We may use them to eliminate L4,...,8 by means of

L4 = − 3
2L1 − 3

10L2 − 3
10L3, (C22)

L5 = − 3
2L1 − 6

5L2 + 3
10L3, (C23)

L6 = − 3
2L1 − 1

2L3, (C24)

L7 = − 1
2L1 + 1

2L2 − 1
2L3, (C25)

L8 = − 3
5L2 + 2

5L3. (C26)

APPENDIX D: CUBIC INTEGRALS

We parametrize momentum integrations by means of

∫
q
(. . . ) =

∫ 2π

0
dφ

∫ π

0
dθ

∫ ∞

0
dq q2 sin θ (. . . ). (D1)

We write X = ∑5
a=1(1 + δsa)2d2

a and da ≡ da(q). Further let
χ (q2) be any function of q2 with compact support (such as in
the momentum shell 
/b � q � 
). The functions fi(δ) are
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then defined for |δ| < 1 according to∫
q

1

X1/2
χ (q2) = f1(δ)

∫
q

1

q2
χ (q2), (D2)

∫
q

1

X3/2
χ (q2) = f2(δ)

(1 − δ2)

∫
q

1

q6
χ (q2), (D3)

∫
q

1

X5/2
χ (q2) = f3(δ)

(1 − δ2)3

∫
q

1

q10
χ (q2), (D4)

and

a = 1,2 :∫
q

d2
a

X1/2
χ (q2) = 1

5
f1e(δ)

∫
q
q2 χ (q2), (D5)

∫
q

d2
a

X3/2
χ (q2) = 1

5

f2e(δ)

(1 − δ)

∫
q

1

q2
χ (q2), (D6)

∫
q

d2
a

X5/2
χ (q2) = 1

5

f3e(δ)

(1 + δ)(1 − δ)3

∫
q

1

q6
χ (q2), (D7)

and

a = 3,4,5 :∫
q

d2
a

X1/2
χ (q2) = 1

5
f1t(δ)

∫
q
q2 χ (q2), (D8)

∫
q

d2
a

X3/2
χ (q2) = 1

5

f2t(δ)

(1 + δ)

∫
q

1

q2
χ (q2), (D9)

∫
q

d2
a

X5/2
χ (q2) = 1

5

f3t(δ)

(1 − δ)(1 + δ)3

∫
q

1

q6
χ (q2). (D10)

We also need∫
q

d3d4d5

X5/2
χ (q2) =

√
3

35

f345(δ)

(1 + δ)3

∫
q

1

q4
χ (q2). (D11)

The integrals on the left-hand sides of these equations
generically appear in the derivation of RG equations carried
out in this work. We see that the difference to the isotropic
case (δ = 0) appears through scaling factors (1 ± δ)−1, which
may qualitatively change the flow for |δ| → 1, and rather
unimportant prefactors fi(δ) representing the fine print. The
functions fi(δ) are shown in Fig. 8.

The definitions (D2)–(D11) imply some immediate rela-
tions between the fi(δ). Employing

∑
a d2

a = q4, we find

5f1(δ) = 2f1e(δ) + 3f1t(δ), (D12)

5f2(δ) = 2(1 + δ)f2e(δ) + 3(1 − δ)f2t(δ), (D13)

5f3(δ) = 2(1 + δ)2f3e(δ) + 3(1 − δ)2f3t(δ). (D14)

Further we have

5f1(δ) = 2(1 − δ)f2e(δ) + 3(1 + δ)f2t(δ), (D15)

5f2(δ) = 2f3e(δ) + 3f3t(δ). (D16)

In particular, Eq. (D15) implies that

2F−(δ) + 3F+(δ) = 5 (D17)

for the functions F± defined in Eqs. (70) and (71). Accordingly,

F−(−1) = 5
2 , (D18)

F+(1) = 5
3 . (D19)

The latter two results are relevant for the analysis of short-
range interactions in the limit of strong anisotropy.

The angular φ integration can be performed analytically
with the help of the complete elliptic integrals of the first and
second kind given by

K(m) =
∫ π/2

0
dα

1√
1 − m sin2 α

, (D20)

E(m) =
∫ π/2

0
dα

√
1 − m sin2 α. (D21)

These functions are implemented in common computer alge-
bra packages. We have K(0) = E(0) = π

2 and

2mK ′(m) = −K(m) + 1

1 − m
E(m), (D22)

2mE′(m) = E(m) − K(m). (D23)

Upon substituting α = 2φ, we have

K̃n(A) :=
∫ 2π

0
dφ

1

(1 + A cos2 φ sin2 φ)n/2

= 8
∫ π/4

0
dφ

1

(1 + A cos2 φ sin2 φ)n/2

= 4
∫ π/2

0
dα

1(
1 + A

4 sin2 α
)n/2 . (D24)

We then find

K̃1(A) = 4K

(
−A

4

)
, (D25)

K̃3(A) = 4

1 + A
4

E

(
−A

4

)
, (D26)

K̃5(A) = 4

3
(
1 + A

4

)2

[
2

(
2 + A

4

)
E

(
−A

4

)

−
(

1 + A

4

)
K

(
−A

4

)]
. (D27)

For this note that an m derivative of Eq. (D20) yields

2mK ′(m) =
∫ π/2

0
dα

m sin2 α − 1 + 1

(1 − m sin2 α)3/2

= −K(m) +
∫ π/2

0
dα

1

(1 − m sin2 α)3/2
. (D28)

Thus
∫ π/2

0 dα 1
(1−m sin2 α)3/2 = 2mK ′(m) + K(m) = 1

1−m
E(m)

due to Eq. (D22), which proves Eq. (D26). Tak-
ing another m derivative of the just obtained rela-
tion, we find

∫ π/2
0 dα 1

(1−m sin2 α)5/2 = 1
1−m

+ d
dm

( 1
1−m

E(m)) =
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FIG. 8. The functions fi(δ) defined in Eqs. (D2)–(D11) and used at various places in the analysis. The solid red lines display fi(δ), whereas
the dashed blue lines constitute unity as a guide to the eye. We also show fe2 (δ) and f�(δ) characterizing the charge fixed point. As essential
features the functions fi satisfy fi(0) = 1 and are positive of order unity for all δ. Consequently they barely influence the qualitative RG flow,
although, of course, they induce quantitative changes.

1
3(1−m)2 [2(2 − m)E(m) − (1 − m)K(m)] due to Eq. (D23), and
thus formula (D27). We further have

K̃345(A) :=
∫ 2π

0

cos2 φ sin2 φ

(1 + A cos2 φ sin2 φ)5/2
= −2

3

∂

∂A
K̃3(A)

= 2

3

[
1(

1 + A
4

)2 E

(
−A

4

)
+ 1

1 + A
4

E′
(

−A

4

)]
.

(D29)

The functions K̃i(A) cover all φ integrations needed for the
present analysis.

The remaining θ integrations are sufficiently simple to be
evaluated numerically. Note first that in the usual spherical
coordinates, we have

X = (1 − δ)2q4 + 12δ
∑
i<j

q2
i q

2
j = q4B(1 + A cos2 φ sin2 φ),

(D30)

with

A = 12δ sin4 θ

(1 − δ)2 + 12δ sin2 θ cos2 θ
, (D31)

B = (1 − δ)2 + 12δ sin2 θ cos2 θ. (D32)

Further recall
∫

q χ (q2) = 4π
∫ 



/b
dqq2χ (q2). We thus arrive

at

f1(δ) = 1

4π

∫ π

0
dθ

sin θ

B1/2
K̃1(A), (D33)

f2(δ) = (1 − δ2)

4π

∫ π

0
dθ

sin θ

B3/2
K̃3(A), (D34)

f3(δ) = (1 − δ2)3

4π

∫ π

0
dθ

sin θ

B5/2
K̃5(A). (D35)

Using the same derivative techniques as described in the
previous paragraph, one can show recursion relations such
as

f2(δ) = f1(δ) + 2δf ′
1(δ). (D36)

However, for all practical purposes, we found it more conve-
nient to directly evaluate the individual integrals for numerical
accuracy.

In order to evaluate the fi functions with d2
a appearances

in the numerator, we first observe that in order not to spoil
the analytic φ integration it is convenient to exploit cubic
invariance and consider

a = 1,2 : d2
a → d2

2 = 1
4q4(2 cos2 θ − sin2 θ )2, (D37)

a = 3,4,5 : d2
a → 1

2

(
d2

3 + d2
4

) = 3
2q4 cos2 θ sin2 θ. (D38)
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We then arrive at

f1e(δ) = 5

4π

∫ π

0
dθ

1
4 sin θ (2 cos2 θ − sin2 θ )2

B1/2
K̃1(A),

f2e(δ) = 5(1 − δ)

4π

∫ π

0
dθ

1
4 sin θ (2 cos2 θ − sin2 θ )2

B3/2
K̃3(A),

f3e(δ) = 5(1 + δ)(1 − δ)3

4π

∫ π

0
dθ

1
4 sin θ (2 cos2 θ − sin2 θ )2

B5/2
K̃5(A). (D39)

and

f1t(δ) = 5

4π

∫ π

0
dθ

3
2 sin3 θ cos2 θ

B1/2
K̃1(A),

f2t(δ) = 5(1 + δ)

4π

∫ π

0
dθ

3
2 sin3 θ cos2 θ

B3/2
K̃3(A), (D40)

f3t(δ) = 5(1 − δ)(1 + δ)3

4π

∫ π

0
dθ

3
2 sin3 θ cos2 θ

B5/2
K̃5(A).

To obtain the function f345 note that d3d4d5 = 3
√

3q2
xq

2
yq

2
z = 3

√
3 cos2 φ sin2 φ cos2 θ sin4 θ and, therefore,

f345(δ) = 105(1 + δ)3

4π

∫ π

0
dθ

sin5 θ cos2 θ

B5/2
K̃345(A). (D41)
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