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We study magnetic, transport, and thermodynamic properties of the half-filled two-dimensional (2D) Hubbard
model with layered distributed repulsive interactions using unbiased finite temperature quantum Monte Carlo
simulations. Antiferromagnetic long-ranged correlations at T = 0 are confirmed by means of the magnetic
structure factor and the onset of short-ranged ones is at a minimum temperature, which can be obtained by
peaks in susceptibility and specific heat following a random-phase-approximation (RPA) prediction. We also
show that transport is affected in the large interaction limit and is enhanced in the nonrepulsive layers suggesting
a change of dimensionality induced by increased interactions. Lastly, we show that by adiabatically switching
the interactions in layered distributed patterns reduces the overall temperature of the system with a potential
application in cooling protocols in cold atoms systems.
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I. INTRODUCTION

Recent improvements on deposition techniques has enabled
the growth of atomically precise layer sequences of different
materials [1]. Among the recently synthesized structures, the
transition metal oxide superlattices (SL’s), for example, play
a key role, as they offer the potential for future use in devices
[2]. LaAlO3-SrTiO3 superlattices, for instance, have been used
to fabricate diodes with with room-temperature breakdown
voltages of up to 200 V [3], as well as field-effect devices
[4–6]. Most of the compounds used in these superlattices are
characterized by the presence of strong electronic correlations,
that give rise to complex collective quantum phases. Among
the correlation-driven phenomena occurring in these mate-
rials one can highlight the interface superconductivity [7],
magnetism between nonmagnetic interfaces [8], coexistence
of magnetic order and two-dimensional superconductivity at
LaAlO3/SrTiO3 interfaces [9], and others. These phenomena
have led to the intense study of the interface between oxides
in superlattice structures [2,10].

Another interesting point of view is the study of the change
of magnetic and transport properties as the width of one or
both of the layers on a superlattice is altered. Superlattices
made of paramagnetic correlated metal LaNiO3 and wide-gap
insulator LaAlO3, grown by pulsed laser deposition, show
collective metal-insulator transitions and antiferromagnetic
transitions as a function of temperature when the lanthanum
nickelate is as thin as two unit cells. Conversely, samples
with thicker LaAlO3 layers remain metallic and paramagnetic
at all temperatures [11]. It is also possible to tune the
magnetic character from antiferrogmagnetic to ferromagnetic
of a thin film of LaAlO3 grown on top of SrTiO3 when the
thickness of the the lanthanum alluminate has six or more
unit cells [12]. Superlattices with heavy fermion compounds
also show interesting behavior with decreasing layer thickness:
epitaxially grown superlattices of antiferromagnetic CeIn3

and metallic LaIn3 [13] show a linear decrease of the Néel
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temperature when the width of the CeIn3 layer is reduced,
vanishing when it is two atoms thick.

In the context of cold atoms, which presents a framework to
investigate many-body phenomena in a highly tunable fashion
[14,15], although spatially varying interactions have not yet
been realized in optical lattices, they have recently become
available in trapped ultracold gases. The ability to control
a magnetic Feshbach resonance with laser light [16] has
increased the tunability of interactions for bosonic systems.
Submicrometer spatial modulation of the interaction was
already achieved in a 174Yb Bose-Einstein condensate [17]
and new optical controls of Feshbach resonances for fermionic
ultracold gases [18–20] have also been proposed. Only recently
[21], however, it was possible to overcome two major diffi-
culties that plagues the experiments using optical Feshbach
resonances: heating from off-resonant light scattering that
leads to a rapid decay of the quantum gas and an unwanted shift
of the energy levels that leads to the deformation of the trap
potential, recently demonstrated by trapping a Bose-Einstein
condensate of Cs atoms subjected to a position dependent
modulation of the inter-atomic interactions.

Overall, either in condensed matter or in atomic physics
realms, these experiments illustrate that the properties of
otherwise homogeneous systems can be drastically altered
when they are cast into ultrathin layers forming a superlattice.
A simple model that incorporates both fermionic correlations
and superlattices structure can help to elucidate some of the
issues in these fields and potentially indicate new routes of
experimental investigation. Here we study a two-dimensional
model where one-dimensional strongly correlated strips of
width LU are intercalated by noninteracting strips of width
L0, forming 2D superlattices. The two-dimensional “bulk”
noninteracting system corresponds to a paramagnetic metal;
conversely, at half-filling, the two-dimensional interacting
system has an antiferromagnetic, Mott-insulator ground-state.
The questions that we wish to address here are the following.
(i) What are the magnetic and transport properties of these
superlattices? (ii) How do they depend on layer thicknesses?
(iii) Is the magnetic order preserved in the presence of
noninteracting sites? (iv) How are the temperature scales
affected by the superlattice structure? (v) Can we devise new
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cooling protocols in optical lattices by adiabatically changing
the spatially modulated interactions?

The paper is organized as follows. Section II describes the
model and method used to perform the simulations. Section III
describes magnetism whereas Sec. IV investigates the resulting
transport in these superlattice structures. Section V is dedicated
to the thermodynamical properties where the signatures of
charge and spin fluctuations are analyzed in specific heat,
spin susceptibility and entropy data; Sec. VI summarizes our
findings.

II. MODEL AND METHOD

We consider a modified version of the Hubbard model (HM)
with site-dependent repulsive interactions; the Hamiltonian,
using periodic boundary conditions, reads

Ĥ = −t
∑

〈i,j〉,σ
(ĉ†iσ ĉjσ + ĉ

†
jσ ĉiσ )

+
∑

i

Ui

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)
− μ

∑
i,σ

n̂iσ , (1)

where ĉ
†
iσ (ciσ ) is the fermionic creation(annihilation) operator

in site i with pseudospin σ =↑ , ↓ and n̂iσ is the number
operator. t is the hopping parameter between nearest-neighbor
sites (〈i,j 〉), of an L×L square lattice, Ui is the site dependent
repulsion, and μ is the chemical potential that controls the band
filling yielding a given electronic density ρ. The interaction
term is written in particle-hole symmetric form. Thus tuning
μ = 0 drives the electronic occupation to one in all sites
for any combination of the Hamiltonian parameters t , Ui

and temperatures T .1 We have restricted our study to half-
filled systems (ρ = 1.0). To simulate the layered systems we
construct a pattern of repulsive and noninteracting layers where
U > 0 and U = 0, respectively. We define the width of the
repulsive layer as LU and the width of the noninteracting one as
L0 as depicted in Fig. 1 for the LU = 2 L0 = 1 case, in a 12×12
lattice. Note that not all patterns are commensurate with the
available lattice sizes we can numerically investigate (we have
considered lattices up to 18×18), therefore, a finite size scaling
analysis is in some cases elusive. We set t as our energy scale.

The ground-state magnetic and transport properties of the
site-dependent Hubbard model have been extensively studied
in one-dimension. The nonsymmetric Hamiltonian was studied
with different numerical approaches, such as the Lanczos
method [22–24], density matrix renormalization group [25],
within the Hartree-Fock approximation [26], and within the
Luttinger liquid framework [27]. The effect of an on-site
energy in one of the sublattices was also considered [28,29]
and was shown to strongly alter the ground state properties.

Going beyond one-dimensional systems, other studies have
focused on the interface properties of metallic and interacting

1It is worth mentioning that the reason behind it is that in Eq. (1)
the repulsive sites (Ui > 0) have a lower onsite energy which then
balances the occupancy irrespectively of whether a site possesses
U = 0 or U �= 0. Hence, we are focused here on the effects of
the underlying superlattice structure in the physical properties for
a situation where charges are still homogeneously distributed.

FIG. 1. Cartoon of the regularly distributed on-site repulsive
interactions for the LU = 2 L0 = 1 case in a 12×12 lattice. Through-
out this work, x represents the direction along the layers and y

perpendicular to it.

regions at finite temperatures. These studies often focus on
the penetration of the magnetism in the metallic regions and
induced metallic behavior on the insulating side in two [30]
and three dimensions [31,32], where hybridization effects are
explored by tuning the hopping at the interfaces in order to
explore the interplay of magnetism and Kondo screening. Here,
on the other hand, we aim to provide an in-depth study for the
case of many interfaces forming a superlattice. Other studies
[33] were primarily attained to the interface effects of metallic
and insulating thin films with a potential realization of corre-
lated transistors. We focus as well in the induced magnetism
in metallic regions, the anisotropic transport due to the layered
structure, finite temperature scales for spin and moment for-
mation and, lastly, in cooling mechanisms that could be poten-
tially employed in cold atoms experiments in optical lattices.

We use finite temperature determinantal quantum Monte
Carlo (QMC) simulations to unbiasedly probe magnetic,
transport, and thermodynamic properties of the half-filled two-
dimensional superlattices. In this method, the partition func-
tion is expressed as a path integral by using the Suzuki-Trotter
decomposition of exp(−βH), introducing the imaginary-time
interval �τ . The interaction term is decoupled through a
discrete Hubbard-Stratonovich transformation [34,35], which
introduces an auxiliary Ising field. This allows one to eliminate
the fermionic degrees of freedom, and the summation over
the auxiliary field (which depends both on the site and the
imaginary time) is carried out stochastically. Initially this field
is generated randomly, and a local flip is attempted, with the
acceptance rate given by the Metropolis algorithm. The process
of traversing the entire space-time lattice trying to change the
auxiliary field variable constitutes one QMC sweep. The errors
associated with the Suzuki-Trotter decomposition in the QMC
method are proportional to O[(�τ )2U ], so we have set �τ =
0.125/t to 0.05/t depending on the value of the interaction
strength U , to guarantee small enough systematic errors.2

2We have typically used 1000 warm up sweeps for equilibration,
followed by 4000 measuring sweeps, where the error bars are
estimated by the statistical fluctuations. When necessary, the data
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FIG. 2. Local moment profile throughout layers for different SL’s
with L = 12 and U/t = 4 at temperature T/t = 0.1. Filled and empty
symbols denote repulsive and free (U = 0) sites, respectively.

III. MAGNETISM

A. Short-ranged correlations

The longstanding question of induced magnetism in metal-
lic nonordered regions due to the proximity to a magnetically
ordered insulator can be initially tackled in a superlattice con-
struction by investigating how the short-ranged correlations
are modified by the layered pattern. Pushing the limits of short
ranged to local (i.e., in the same site) we first investigate the
local moment, defined as 〈(m̂z

i )2〉 ≡ 〈(n̂i↑ − n̂i↓)2〉. Beyond its
purely theoretical relevance, we stress that in the situation
that the proposed Hamiltonian [Eq. (1)] could be emulated in
optical lattices experiments, this is precisely the quantity that
was recently measured to probe local spin order in a study of
the two-dimensional Fermi-Hubbard model using trapped cold
atoms [36]. From the theoretical point of view it is important
to understand the local magnetic properties when approaching
the ground state at T = 0. However, with the connection to
experiments in cold atoms in mind, again, here we will focus
in ranges of temperatures that, although lower than the ones
achieved in current experiments, could be potentially used as
a guidance for future experiments.

As we have discussed in the previous section, the symmetric
form of the Hamiltonian requires that at half-filling, the charge
distribution is homogeneous throughout the lattice. The local
moment profile, on the other hand, is not homogeneous and
strongly depends on the superlattice pattern, as can be clearly
observed in Fig. 2, following closely the same periodicity of the
superlatice structure.3 Double occupations are less likely on
repulsive sites than on noninteracting ones, therefore the local
moment is larger on the interacting sites. In the homogeneous

were estimated over an average of simulations with different random
seeds.

3We focus on relatively small lattices for the current computational
capabilities since the size dependence is minimal for local quantities,
as the local moment. This allows us to have very good statistics after
all.

FIG. 3. Local moment dependence with U/t for different SL’s
with L = 12 at temperature T/t = 0.1. Filled and empty symbols
denote repulsive and free (U = 0) sites, respectively.

Hubbard model the local moment increases monotonically
with the interaction strength [37]. At half-filling for U = 0,
it takes the uncorrelated value 〈(m̂z

i )2〉 = 1/2, while as U

increases the double and empty occupancies decrease, until for
U → ∞ they are completely suppressed leading to 〈(m̂z

i )2〉 =
1, which corresponds to the spin- 1

2 Heisenberg limit.
The U dependence of the local moment for the layered

system at T/t = 0.10 is shown in Fig. 3. The plot displays
the average local moment within repulsive [Fig. 3(a)] and
free [Fig. 3(b)] sites. In the former, 〈(m̂z

i )2〉U increases
monotonically with U , and approaches the values for the
homogeneous system as LU increases. On the other hand,
the local moment in the noninteracting sites is affected by
the strength of the interaction on the neighboring repulsive
ones and displays a nonmonotonic behavior with U . Starting
from U = 0, when we increase U , the effect of the interactions
“leaks” into the noninteracting sites, resulting in an increase of
the local moment even though in these sites the interaction is
turned off. Note, though, the difference in scale from Fig. 3(a).
The induced moment localization in free sites is almost seven
times smaller than the moment acquired in repulsive sites for
U/t ≈ 8. However, Fig. 3(b) clearly shows that an increase in
the ratio LU/L0 increases 〈(m̂z

i )2〉0 for finite values of U/t .
It is interesting to note that for different superlattices with
the same ratio LU/L0, such as LU = 1, L0 = 1, and LU = 2
L0 = 2, the thinner noninteracting layer in the former favors
the “leakage” of local moment. Ultimately, when U → ∞,
fermions on repulsive layers become completely localized
[see Fig. 3(a)], hopping between the free and repulsive sites is
suppressed (see Sec. IV), pushing the local moment back to
its noninteracting value on the free sites [Fig. 3(b)].
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FIG. 4. (a) Local moment in free sites as a function of U/t for
different SL’s with L = 12 at temperature T/t = 0.1. Empty symbols
represent sites at the edge of the free layers whereas crossed symbols
represent sites at the central line of the free layer: see cartoon in (b)
with the example for the SL configuration LU = 1 L0 = 3.

To better understand the enhancement of moment localiza-
tion in noninteracting sites, we probe the effects of the vicinity
of a correlated layer, by considering separately the different
lines that compose the noninteracting layer. Figure 4(a) shows
the local moment in sites at the edges of the free layer (i.e., in
the noninteracting line neighboring a repulsive layer; open
symbols) and along the central line of the layer (crossed
symbols)—see schematics in Fig. 4(b) for LU = 1 and L0 = 3.
When L0 = 1 or L0 = 2, edge and center lines coincide.
Additionally, when L0 > 2, one can clearly see that the central
line of the free layer is barely affected by the repulsive layers as
〈(m̂z

i )2〉0 remains very close to the noninteracting value (0.5).
The increase in 〈(m̂z

i )2〉0 is larger for superlattices with L0 = 1;
in these cases, each free line has two neighboring repulsive
lines. The effect of the repulsive layers goes beyond nearest
neighbors, as for fixed L0 = 1, the local moment is larger for
the superlatice with LU = 3 than for the one with LU = 1.

We now turn to spin-spin correlation functions defined
as c(i − j) ≡ 〈m̂z

i m̂
z
j 〉. Recently, single atom imaging for

fermionic atoms trapped on optical lattices has been achieved
in experiments with 6Li [38,39] and 40K atoms [40–42]
enabling the measurement of spin-spin correlation functions
in cold atom experiments [36,43,44]. Thus we show in Fig. 5
the NN spin-spin correlation functions as a function of
U/t for different superlattices at T/t = 0.10. The negative
values in all cases considered show the antiferromagnetic
arrangement. Similarly to what is seen for the local moment,
nearest-neighbor (NN) spin correlations along repulsive sites
[Fig. 5(a)] approach the values for homogeneous systems as
LU/L0 increases. Note that for L0 > 1, increasing the width of
the free layers has very little effect on the magnetic correlations
along the repulsive sites. On the other hand, a “leakage”
of magnetic correlations from the repulsive sites is present
along free layers. This “leakage” is strongly dependent on
the neighboring sites. NN-spin-spin correlations along the
central line of the free layer (crossed symbols) and also for
the line at the edge of the free layer (open symbols), are
shown in Fig. 5(b). For wide (L0 = 5) free layers, NN-spin-
spin correlations along the central line of a noninteracting
layer [crossed pentagons, Fig. 5(b)] remain close to the
noninteracting value. On the contrary, correlations along the

FIG. 5. Nearest-neighbor spin-spin correlation function as a
function of U/t at T/t = 0.10 for L = 12 lattices. Correlations
are calculated along (a) repulsive (filled symbols) and (b) free
(empty symbols) layers, and (c) perpendicular to the layers, between
a free and a repulsive site (half-filled symbols). Stars represent
the corresponding homogeneous system. The dashed line represent
the Heisenberg model nearest-neighbor spin-spin correlations QMC
result [45].

edges of the free layer [open pentagons, and open circles,
Fig. 5(b)] increase in modulus with U/t and follow closely
those for LU = 1 and L0 = 2 (open triangles). From this, one
could think of a mechanism where at the “interface” between
the layers a hybridization of the orbitals of each site induces a
singlet formation as a result of the strongly localized moment
in the repulsive layer. It has been argued that this would occur
in similar systems [30] where shielding would prevent the
correlations to spread inside the free layer.

However, there is no need to speculate. One can directly
investigate the coupling of the adjacent spins in repulsive
and free layers by probing the NN-spin-spin correlations
along the y direction, i.e., taken perpendicular to the direction
of the layers. This is shown in Fig. 5(c). Its dependence with
the interaction U is reminiscent to the effect of the local
moment in free sites: For small values of U , the adjacent
spins in repulsive and free layers display AF correlations that
increase with increasing U , reaching its maximum values for
different SL’s configurations for U/t ≈ 8. Larger interaction
strengths reduce the magnitude of this coupling, due to the
decrease in the local moment within the free sites as shown in
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FIG. 6. (a) and (b) [(c) and (d)] display the local moment and
NN spin-spin correlation function inside the repulsive [free] layer as
a function of the temperature for three different SL structures. (e)
also provides the temperature dependence but for the NN spin-spin
correlation function where one site is at the repulsive layer and the
other at the free one, computing, essentially, the coupling between
the two types of layers.

Figs. 3(b) and 4(a). For U/t ∼ 16, the NN spin correlations are
comparable to the noninteracting case, denoting that the layers
become uncorrelated. Hence we can rule out the shielding
mechanism since even the local moments at the interface
from the free layer side become less localized and the overall
correlation with the repulsive layer is diminished for large U .

Lastly, we want to understand how robust is this maximum
spreading of the correlations that happens for U/t ≈ 8 from
variations of the temperature. Figure 6 displays the local
moments and NN spin-spin correlation functions either inside
a repulsive layer [panels (a) and (b)] or inside a free one
[panels (c) and (d)], as a function of temperature. For large
temperatures, all the quantities reduce to its uncorrelated
value, i.e., the local moment is 〈(m̂z

i )
2〉 = 0.5 and the nearest-

neighbor correlation is vanishing. Note that the temperature
used in the previous analysis (T/t = 0.1) is already low
enough to capture physics close to the ground state since most
of the quantities are on the verge of saturation or already
saturated. Hence we expect that in the limit T → 0, the
decrease in moment localization for large values of interaction
in sites within the free layer will be robust. Figure 6(e) also
shows the NN spin-spin correlation function for sites at the
interface between repulsive and free layers, where one can see
that this coupling is larger, at low T , when the width of the
free layer is small.

B. Long-range ordering

From a theoretical point of view, it is an open question
whether selecting the interactions in a layered pattern still
renders a global long-range magnetic order for the ground
state. The two-dimensional half-filled homogeneous HM on
the square lattice is known to display long-range AF order
for any nonzero value of the local interaction energy U at
T = 0 [37]. Given that for the SLs this repulsive energy is not
regularly distributed throughout the lattice, it is not obvious
which magnetic arrangement minimizes the total energy when
approaching this limit. In order to probe it, we calculate the
magnetic structure factor

S(q) = 1

L2

∑
i,j

eiq·(i−j)c(i − j), (2)

where q denotes the wave vector. Here, we make the choice of
neglecting the periodicity of the SL and use as the wave vector
the one associated with the homogeneous lattice. This will help
to infer whether the long-range AF order is globally obtained
regardless of the underlying superlattice structure. The peaks
in this quantity are related with the dominant spin ordering.
For all the studied SL’s, we observe a peak at q = (π,π )
related with AF ordering in both principal lattice directions,
as shown in Fig. 7. This peak becomes more pronounced as
the number of repulsive sites is increased in relation to the
number of free ones and one would be led to identify it with the
increased average value of interaction strength. To characterize
this picture, we can define an effective repulsive interaction,

Ueff ≡ LU

LU + L0
U, (3)

and choose different SL’s configurations, then setting a specific
value of U in order to keep the average repulsive interaction
constant. Indeed, if magnetic properties were only ruled by
Ueff , different SL’s would display the same S(π,π ) as long as
Ueff is kept fixed. However, this is not observed [Fig. 8(a)]
and the widths of the layers strongly affect spin correlations.

FIG. 7. Structure factor along a path in momentum space for
different SL’s with L = 12, U/t = 4, and T/t = 0.0625. All SL’s
shown display a dominant q = (π,π ) related with an overall AF
ordering in both directions neglecting the underlying SL structure.
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FIG. 8. AF structure factor vs inverse temperature β for different
SL’s with L = 12 and Ueff/t = 4. It is clearly seen that an effective
U model does not explain all the features of magnetism in SL’s.
Finite-size dependence of AF structure factor for the SL’s LU = 1,
L0 = 1, and various Ueff/t . The linear extrapolation to limit L → ∞
shows that the AF order is long ranged.

Not only the absolute values of the AF spin correlations are
different when approaching the ground state, but also the
temperature in which spin correlations reach their asymptotic
value, which occurs when the typical size of spin correlations
ξ becomes larger than linear lattice size L.

The presence of long-ranged AF ordering in the thermo-
dynamic limit is determined by a proper finite-size scaling
analysis of the q = (π,π ) structure factor. Spin-wave theory
[46], predicts that the finite-size corrections to S(π,π ) are
linear in 1/L:

S(π,π )

N
= m2

AF

3
+ a

L
, (4)

where mAF is the long-ranged AF order parameter and a is
a constant. This dependence is displayed in Fig. 8(b) for the
LU = 1 and L0 = 1 SL showing that, indeed, long-range AF
order is present for all the analyzed values of Ueff .

Compiling the values for the magnetic order parameter
for different configurations, in Fig. 9, we compare mAF for
the superlattices with recent QMC data for the homogeneous
lattice [47]. The order parameter for different SL’s is always
smaller than for the homogeneous system, but for Ueff/t � 7,
it follows the same trend, i.e., it increases with increasing
interaction strength. Moreover, the comparison among the
different SL’s configurations shows that this ordering depends
nontrivially on the chosen pattern. Superlattices with the same
LU/L0 ratio, such as LU = 1, L0 = 1, and LU = 2, L0 = 2,
do not always have the same value of mAF when Ueff is
kept fixed. Thus an effective interaction mechanism is not
sufficient to explain the observed long-range magnetic order.
For larger Ueff , the order parameter does not saturate at the
Heisenberg limit value (dashed line), as one would naively
expect, and instead decreases. For large values of U/t , the free
and repulsive layers decouple, as signaled by the reduced value
of near-neighbor spin-spin correlations shown in Fig. 5(c). In

FIG. 9. Staggered magnetization mAF dependence with Ueff/t and
four different SL’s compared with homogeneous result obtained from
Ref. [47]. The continuous line is obtained from RPA approximation
[48] and the dashed one is the QMC Heisenberg [45] result.

the U → ∞ limit, the SL’s become a set of uncoupled free and
repulsive chains that are unable to sustain long range order in
two dimensions.

IV. TRANSPORT PROPERTIES

Better insight on the interplay of localization- and delo-
calization in repulsive and free layers, initially obtained by
investigating the spin correlations in the previous section, can
be gained by checking some of the transport properties of the
system. We start our study of the transport by analyzing the
total effective hopping [49],

tSL

t
=

〈∑
〈i,j〉,σ (ĉ†iσ ĉjσ + ĉ

†
jσ ĉiσ )

〉
SL〈 ∑

〈i,j〉,σ (ĉ†iσ ĉjσ + ĉ
†
jσ ĉiσ )

〉
0

, (5)

which we define as the ratio of the kinetic energy on a
superlattice, averaged over both the directions, along and
across the layers, to its noninteracting counterpart value.
We start by checking the temperature dependence of this
quantity in Fig. 10 for different SL structures at U/t = 8. In

FIG. 10. Temperature dependence of the ratio of kinetic energies
of superlattices to the noninteracting result. The lattice size is 12×12
and the interactions in the repulsive sites is U/t = 8.
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FIG. 11. (a) Effective hopping as a function of interaction
strength U/t , for the homogeneous system and different superlat-
tices with L = 12 and T/t = 0.10. (b) and (c) with the effective
hopping contribution split along direction along and across layers,
respectively.

the high-temperature limit (T � t), the effect of interactions
(either layered or homogeneously distributed) is negligible and
the kinetic energy is essentially equivalent to the kinetic energy
of the noninteracting system (tSL/t → 1). For decreasing
temperatures, the actual pattern of interactions affects the
overall charge mobility and the correspondent kinetic energy
for interacting SL’s drops to a fraction of the noninteracting
value which is inversely proportional to LU/L0. In the
following, we will focus on values of temperature T/t = 0.1,
which is small enough to capture the physical aspects when
approaching the ground state for the different superlattices
structures, since the kinetic energy is either converged or
in the verge of convergence for decreasing temperatures,
but not so small to render unnecessarily complicated large
simulations. It is important to notice that quantum fluctuations
are responsible for the fact that the kinetic energy is still finite
when approaching the zero-temperature limit.

Figure 11(a) shows the U dependence of tSL/t for different
superlattices and also for the homogeneous system for 12×12
lattices at T/t = 0.1. In all cases, increasing U induces charge
localization in at least the repulsive layers and, therefore,
decreases the total hopping energy in comparison to the nonin-
teracting limit. We can see that tSL/t is strongly dependent on
the ratio LU/L0, converging towards the noninteracting limit
(teff/t = 1) as LU/L0 → 0 (see, for instance, black squares
for LU = 1 and L0 = 11) and approaching the homogeneous
system results as LU/L0 increases (see right triangles for
LU = 11 and L0 = 1).

The large anisotropic character introduced by the layered
construction makes it important to analyze the effective
hopping along (x) and across (y) the direction of the layers,
which we define as

(
tSL

t

)
α

=
〈∑

j,σ ĉ
†
j+α̂σ ĉjσ + ĉ

†
jσ ĉj+α̂σ

〉
SL〈 ∑

j,σ ĉ
†
j+α̂σ ĉjσ + ĉ

†
jσ ĉj+α̂σ

〉
0

, (6)

where α̂ = x̂ or ŷ.
At first sight, one would expect that the anisotropy favors

the electronic transport along the direction of the layers. This
is indeed the case, as can be readily observed in Figs. 11(b)
and 11(c), where the repulsive interaction splits the two
contributions of the effective hopping. In fact, the largest
contribution to the transport in the direction parallel to the
layers should be related to stripes formed by free sites since
within the repulsive layers local moment formation is favored
[see Fig. 3(a)] and, consequently, the mobility is reduced. We
separate the contribution of the kinetic energy along the layers
between the repulsive and free layers via

(
t

U,0
SL

t

)
x

=
〈 ∑

j,σ ĉ
†
j+x̂σ ĉjσ + ĉ

†
jσ ĉj+x̂σ

〉U,0
SL〈 ∑

j,σ ĉ
†
j+x̂σ ĉjσ + ĉ

†
jσ ĉj+x̂σ

〉
0

, (7)

where the denominator refers to the average kinetic energy
along one direction of a two-dimensional noninteracting
square lattice. Figure 12 shows how the separate contribution
of the hopping depends on the strength of interactions in free
[panel (a)] and repulsive layers [panel (b)]. One observes,
in the latter, that the transport along repulsive sites does not
significantly change for different SL configurations, remaining

FIG. 12. Ratio between the x component of the kinetic energy at
a finite U/t to the U = 0 case for L = 12 lattice with T/t = 0.10 for
different SLs. In (a), we plot the hopping contribution from the free
layers and in (b) the same for the repulsive ones. The filled (empty)
symbols denote electronic transport between repulsive (free) sites.
To avoid misleading interpretation due to the different number of
repulsive (NU) and free (NU=0) sites, in this case, we have normalized
the results by the number of sites of each type. In (b), we also include
the analytical results in the extreme limits of U/t  1 (perturbation
theory) and U/t � 1 (strong coupling) [49] and the contribution
to the kinetic energy between repulsive sites smoothly interpolates
between both limits albeit the layered distributed interactions.
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close to the correspondent homogeneous results and smoothly
interpolating the limits of small interactions, obtained within
perturbation theory (dashed curve), and the strong coupling
limit [49] (dotted line). On the other hand, in the former, as
U/t is increased, the contribution to the kinetic energy due to
the hopping between free sites is always larger than one, i.e.,
enhanced in comparison to the contribution to the kinetic along
one direction in a completely noninteracting two-dimensional
lattice. In this case, when comparing different SL’s patterns
we can see that the enhancement is maximum when the
free layer is just one-site thick (L0 = 1) and increases with
increasing LU/L0. This feature is an indicative of the change
of dimensionality, as a result of increased interactions, being
related to the picture where free layers become uncoupled to
the repulsive ones as the large U/t limit is approached, which
was also inferred when investigating the magnetism in Sec. III.
This scenario is supported by noting that the the kinetic energy
along the free layers of the SL systematically converges to
the kinetic energy of a one-dimensional noninteracting chain
[dashed-dotted line in Fig. 12(a)] for U/t � 1.

One can also get useful physical information by inves-
tigating wider free layers as in the SL with configurations
LU = 1 and L0 = 3 or 5 [circles and pentagons, respectively,
in Fig. 12(a)]. When analyzing the contribution of the hopping
in the free layers, we see that, the wider the free layer is, the
less its center is affected by the repulsive sites. Still, for the free
sites at the edge between the two regions, the enhancement of
kinetic energy along the x direction is substantial, reaching
∼25% of increase for U/t = 16.

It is still an open question to examine other quantities that
could potentially fully characterize transport, and definitively
quantify whether the superlattice displays a metal-insulator
transition when approaching T = 0 at large U/t limit. Among
them one could highlight the dc conductivity [50,51] and
the Drude weight [52,53] both of which can be computed
using imaginary time-dependent correlation functions in QMC
calculations. However, while the kinetic energy per site
does not change substantially when using different system
sizes, we have checked that the Drude weight and the dc-
conductivity possess dramatic finite size effects. Besides, as
we argued before, the fact that some of the superlattices are not
commensurate with the system size makes a proper finite-size
scaling analysis elusive. Future studies may shed light on this
issue and unequivocally answer the question of whether the
increase of repulsive interactions may induce a Mott-insulator
to anisotropic metal transition in the large U limit.

V. TEMPERATURE SCALES

We now turn to the study of the temperature scales that
characterize the superlattices. The Mermin-Wagner theorem
[54] establishes that long range order is only possible at T = 0
for two-dimensional systems with continuous symmetry.
Nonetheless, one can define finite temperature scales where
strong magnetic and charge correlations start to develop.
The knowledge of such temperature scales is relevant in
the context of fermionic cold atom experiments as spin and
charge correlations in two-dimensional systems were recently
measured [36,44].

FIG. 13. Uniform spin susceptibility χ as a function of temper-
ature for various SL’s with U/t = 4 and for homogeneous systems
with U/t = 0 (line) and 4 (stars) in L = 12 lattices. The peak in this
quantity defines Tspin, the onset of antiferrogmagnetic fluctuations.

A. Spin susceptibility

A crossover temperature Tspin, below which spin correla-
tions grow rapidly, can be obtained by the temperature where
the uniform magnetic susceptibility χ (q = 0,T ) = βS(q = 0)
peaks [55]. Figure 13 shows the susceptibility as a function of
T for different superlattices at U/t = 4. For the SL’s with
LU/L0 < 1, the crossover temperature is below T = t/20, the
smaller temperature reached in most of our simulations and far
beyond what can be reached under cold atoms experiments.
The finite lattices are AF ordered at nonzero temperatures and
we can associate Tspin with the finite Néel temperature for
2D lattices calculated within the random phase approximation
(RPA) and Hartree-Fock calculations: TN ∝ t exp[−2π

√
t/U ]

[37]. Figure 15 compiles the positions of the peaks, Tspin

(empty symbols), as a function of Ueff for different superlattice
patterns, different system sizes and U/t = 4, together with the
RPA form. It clearly shows that the crossover temperature is
governed by the effective interaction strength, essentially being
independent of the underlying superlattice structure.

B. Specific heat

Another quantity that can provide insight into the tem-
perature scales of the system is the specific heat C. We use
the definition C(T ) = dE/dT to obtain the specific heat by
numerical differentiation of the total energy E(T ). Figure 14
shows C(T ) for different SL’s with L = 12 at U/t = 4 and
also the results for the homogeneous case in the noninteracting
(dashed line) and interacting limits. In the latter, the specific
heat is known to display a two peak structure [56,57]: a
broad high-temperature peak at Thigh, associated with “charge
fluctuations,” and a sharp peak at Tlow associated with “spin
fluctuations.” These denote temperature below which these
degrees of freedom start to freeze. Note that, for fixed U , while
the high-T peak position is very similar for all superlattices,
Tlow strongly depends on the superlattice pattern, shifting to
lower temperatures as the ratio LU/L0 is reduced. We were
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FIG. 14. Temperature dependence of specific heat for four
different SL configurations with L = 12 and the corresponding
homogeneous cases with U/t = 0 and 4. While the high-temperature
peak position is roughly constant at Thigh ≈ t , the low-temperature one
significantly varies for the SL’s presented and displays increasing Tlow

as the Ueff becomes higher and closer to the homogeneous U/t = 4
case. Lines are guides to the eye.

not able to resolve the peak when Tlow < t/20, which is the
case when LU/L0 < 1. For the other cases, Fig. 15 shows the
dependence of Tlow (filled symbols) with Ueff , for different
system sizes and different superlattice patterns with U/t = 4.
Similar to Tspin, Tlow also defines a temperature scale where AF
correlations become relevant, therefore, Tlow obeys the same
RPA-like form for small values of Ueff .

To better understand the position of the peaks and its
dependence with the interaction strength, it is instructive to
recall that the energy can be separated in kinetic and potential
parts which separately contribute to the specific heat. In a

FIG. 15. Position of the low-T peak of the specific heat (full
symbols) and peak of the spin-susceptibility (open symbols) as a
function of Ueff/t for different SL’s with U/t = 4 together with the
homogeneous lattice results. Dashed line corresponds to an RPA-like
form for the temperature scale in which antiferromagnetic fluctuations
occur: T ∝ t exp[−2π

√
t/Ueff ].

FIG. 16. Position of the high-T peak of specific heat for different
SL’s as a function of Ueff , the dashed line denotes the linear
extrapolation to the data presented in the strong coupling limit
(T ∼ U/4.1). Error bars denote the confidence interval of estimating
the peak from the data of the specific heat.

strong coupling picture, the high-T peak can be understood as
the temperature where double occupations (〈d̂〉) are suppressed
and, therefore, is governed by the contribution of the potential
energy P = U 〈d̂〉 to the specific heat. In this regime, Thigh has a
linear dependence with Ueff as Thigh ≈ Ueff/4.1, as can be seen
in Fig. 16. In contrast, for weak interactions, the high-T peak
is determined by the kinetic energy contribution to the specific
heat [56]. Figure 14 clearly shows that Thigh closely follows the
noninteracting peak: Thigh ≈ t = 1, for all superlattices shown
at U/t = 4. Although in the previous section we observed
that an effective interaction cannot explain the discrepancies
in spin-spin correlation functions or the ground state values of
the order parameter for different SL’s, the temperature scales
presented in this section are clearly ruled by Ueff .

C. Entropy

The entropy is a central quantity for cold atoms, as it can
be obtained more easily on experiments than the temperature.
Understanding the behavior of the entropy as a function of
the temperature for different interaction strengths and SL’s
configurations can help in devising new cooling schemes,
which are useful if one is concerned with the emulation of the
low-temperature physics of strongly correlated systems. Here,
we obtain the entropy per particle in units of the Boltzmann
constant kB, by integrating the energy per particle e ≡ E/N

in inverse temperature β:

S(β)

NkB
= ln(4) + βe(β) −

∫ β

0
dβ ′e(β ′). (8)

Figure 17(a) shows this quantity as a function of the
temperature for the SL with LU = 1 and L0 = 3 and different
values of the interaction strength U/t . For a fixed entropy
value (see dotted and dashed horizontal lines), increasing
U/t , which can be tuned by adjusting Feshbach resonances
[14], will lead to heating of the system, i.e., the temperature
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FIG. 17. Entropy as a function of temperature for fixed LU = 1
and L0 = 3 and U/t = 2, 4, 8, and 16 (a) and for fixed U/t = 8, and
different SL configurations in a lattice with L = 8. Dotted (dashed)
lines represent adiabats with S/(NkB) = 0.8 (0.5).

increases with increasing repulsive interactions. Figure 17(b),
on the other hand, displays the temperature dependence of
S/(NkB) for fixed U/t = 8 and different SL configurations, as
well as for the homogeneous system with the same interaction
value. If we start with an SL with LU = 1 and L0 = 7
(diamonds), and adiabatically turn the interaction on within
lines of sites on the free layers, changing the pattern to a
different SL configuration with LU = 1 and L0 = 3 (circles),
and then LU = 1 and L0 = 1 (down triangles), and finally
reaching the homogeneous system (stars), there is a range of
entropies 0.2 � S/NkB � 1.0 for which the temperature is
reduced.

In both panels of Fig. 17, Ueff/t is increased; in (a) by
increasing the interaction U/t while keeping LU/L0 fixed,
while in (b), by increasing LU/L0 and keeping U/t fixed.
To undestand how the former leads to heating and the
latter to cooling (in an intermediate range of temperatures)
let us examine separately the contributions of the kinetic
(K) [Figs. 18(a) and 18(c)] and potential (P ) [Figs. 18(b)
and 18(d)] energies to the entropy. It is useful to remember
that S = ∫ T

0 dT ′C/T ′, where C = dE/dT is the specific heat
and E = K + P . For fixed LU = 1, L0 = 3, and small U/t ,
the system is similar to the noninteracting one, with most of
the entropy coming from the kinetic energy contribution. In the
opposite limit (large U/t), the contribution from the kinetic
energy moves to higher temperatures and the one associated
with the potential energy becomes more relevant. The potential
energy contribution comes from the double occupancies 〈d̂〉
on repulsive sites. The double occupancies are directly related
to the local moments via 〈d̂〉 = [〈(n̂i↑ + n̂i↓) − (m̂z

i )
2〉]/2.

Starting at high temperatures, where it assumes its uncorrelated
value 〈d̂〉 = 1/4 for all U/t , as T/t decreases, 〈d̂〉 also
decreases. For small U/t , 〈d̂〉 hardly changes with T/t and
the contribution of dP/dT is small. For large U/t , on the
other hand, the change in 〈d̂〉 gives rise to the high-T peak in
dP/dT (and also in C, see Figs. 14 and 16). The freezing of
the charge degrees of freedom as U/t increases at the repulsive
sites leads to heating, observed in Fig. 17(a).

FIG. 18. (a) and (c) [(b) and (d)] show the temperature depen-
dence of the kinetic [potential] energy contributions to the specific
heat for a L = 8 lattice. (a) and (b) focus in a given SL with
configuration LU = 1 and L0 = 3 and different interactions, while
(c) and (d) compare the homogeneous result with a SL (LU = 1 and
L0 = 7) for a given U/t = 8. Dashed lines depict the noninteracting
result.

For fixed U/t and increasing LU/L0, the behavior is similar
to the previous one at smaller Ueff/t : most of the contribution
to the entropy comes from the kinetic energy at temperature
scales around T/t ∼ 1. As LU/L0 increases, two effects take
place, first a high-T peak also develops in the contribution from
the potential energy, similar to what is seen in the previous case,
and, second, the peak in the kinetic energy derivative becomes
sharper and moves to lower temperatures. This second effect is
the responsible for cooling the system as LU/L0 is increased.

Figure 19 shows how the temperature changes with Ueff/t

along the adiabats with S/(NkB) = 0.5 and 0.8. For a fixed

FIG. 19. Temperature as a function of Ueff/t for fixed S/(NkB) =
0.5 (dashed lines) and 0.8 (dotted lines), for fixed LU = 1 and L0 = 3
(squares and up triangles) and for fixed U/t = 8 (circles and down
triangles).

075142-10



MAGNETISM, TRANSPORT, AND THERMODYNAMICS IN . . . PHYSICAL REVIEW B 95, 075142 (2017)

SL, increasing Ueff/t leads to heating. This effect is more
pronounced than in the homogeneous case [55]. Keeping the
SL fixed and increasing U/t increases the temperature by a
factor of three at S/(NkB) = 0.5 for Ueff/t going from 0.5
to 4. Conversely, if there is a way to experimentally turn on
the interaction strength adiabatically on sites from the free
layers, this could be a useful way to cool down the system and
achieve lower temperatures in comparison to homogeneous
ones. Starting from a system with LU = 1, L0 = 7 with
U/t = 8 and T/t = 0.89, turning on the interactions at the
free layers until the homogeneous system is achieved, leads to
a final temperature of T/t � 0.40, more than a factor of two
below the initial one.

VI. CONCLUSIONS

In summary, we have employed quantum Monte Carlo
methods to perform a thorough analysis of the half-filled
Hubbard model on a two-dimensional lattice with layer
distributed onsite interactions U to understand how it affects
the magnetism and charge dynamics. We have found that
although the superlattices contain layers with sites possessing
vanishing interactions, they are still able to sustain a global
antiferrogmagnetic long-range order at finite values of the
ratio U/t . We have probed that for SL’s with LU � L0, this
AF ordering is long ranged at T = 0 but the correspondent
order parameter decreases for large interaction values. In fact,
the exact dependence of this order parameter with the strength
of the interactions depends nontrivially on the superlattice
configuration. In turn, some thermodynamical properties,
e.g., the temperatures in which spin and charge-fluctuations
associated with AF and moment formation start to develop,
can be described by a model of an effective homogeneously
distributed U . The SL’s have a dominant short-ranged AF

ordering at finite temperatures regardless of their different
layer’s construction whose onset follows an RPA-like form:
T ∝ exp[−2π

√
t/Ueff]. This is confirmed by the position of

the peak in magnetic susceptibility, as well as, in the low-T
peak for the specific heat. Regarding the charge dynamics, the
kinetic energy clearly shows an anisotropic behavior, where
transport preferentially takes place in the direction parallel
to the layers. These results suggest a mechanism of reduced
dimensionality induced by the increasing interactions in a
layered pattern. In the large U/t limit, this would ultimately
result in a decoupling of the repulsive and free layers (or
strips). Whether this leads to a transition from a Mott insulator
to an anisotropic metal is still an open question that deserves
further investigation. In connection with the cooling problem
in optical lattices, we have also showed a potential cooling
protocol where one can more than halve the temperature
of the system by adiabatically switching on the interactions
in some layers of the lattice. This may renew interest in
cooling mechanisms that could eventually reach temperatures
to realize the long-sought after d-wave superconductivity in
cold atoms experiments.
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