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Fermionic algebraic quantum spin liquid in an octa-kagome frustrated antiferromagnet

Cheng Peng,1 Shi-Ju Ran,2 Tao Liu,1 Xi Chen,1 and Gang Su1,3,*

1Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

2ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
3Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
(Received 12 September 2016; revised manuscript received 23 December 2016; published 22 February 2017)

We investigate the ground state and finite-temperature properties of the spin-1/2 Heisenberg antiferromagnet
on an infinite octa-kagome lattice by utilizing state-of-the-art tensor network-based numerical methods. It is
shown that the ground state has a vanishing local magnetization and possesses a 1/2-magnetization plateau
with an up-down-up-up spin configuration. A quantum phase transition at the critical coupling ratio Jd/Jt = 0.6
is found. When 0 < Jd/Jt < 0.6, the system is in a valence bond state, where an obvious zero-magnetization
plateau is observed, implying a gapful spin excitation; when Jd/Jt > 0.6, the system exhibits a gapless excitation,
in which the dimer-dimer correlation is found decaying in a power law, while the spin-spin and chiral-chiral
correlation functions decay exponentially. At the isotropic point (Jd/Jt = 1), we unveil that at low temperature
T , the specific heat depends linearly on T , and the susceptibility tends to a constant for T → 0, giving rise to a
Wilson ratio around unity, implying that the system under interest is a fermionic algebraic quantum spin liquid.
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I. INTRODUCTION

Quantum spin liquid (QSL) [1], also known as quantum
disorder or quantum paramagnet, has received considerable
attention since it was proposed to describe a possible magnetic
disordered state in interacting spin systems even at tempera-
tures down to zero. It is intuitive that in two-dimensional (2D)
quantum spin models highly geometric frustration and low co-
ordination number usually lead to strong quantum fluctuations,
capable of destroying the semiclassical long range orders in
the ground state, and thereby inclining to generate a QSL [2].
In the past decades, there have been extensive numerical sim-
ulations [3–7] and experimental efforts [8,9] showing that the
spin-1/2 Heisenberg antiferromagnetic model (HAFM) on a
kagome lattice is the most promising QSL candidate. However,
because of the intractability of the quantum frustrated system,
some unsettled issues are still remaining in hot debate, e.g.,
whether the ground state of the kagome HAFM is a gapped
Z2 spin liquid or a gapless Dirac QSL.

Recently, a series of layered compounds BiOCu2(XO3)
(SO4)(OH) · H2O, (X = Te,Se), were discovered [10,11]. The
2D framework built by magnetic Cu2+ ions in these com-
pounds shows an extremely unusual lattice (see Fig. 1). Such
a lattice, we dub it as the octa-kagome lattice, does not belong
to any of the 2D uniform Archimedean lattices. The OKL can
be regarded as a variant of the standard kagome lattice by
inserting a dimer between the corner sharing triangles along
one direction, which can also be viewed as corner and edge
sharing octagons. Owing to strong geometric frustrations and
lower coordination numbers in the OKL, the spin-1/2 HAFM
on the OKL could be a long-sought QSL candidate more
promising and intriguing than on a kagome lattice.

Motivated by the recently synthesized layered compounds
BiOCu2(XO3)(SO4)(OH) · H2O, (X = Te,Se), we shall study
systematically the ground state and thermodynamic properties
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of the spin-1/2 HAFM on the OKL using state-of-the-art tensor
network (TN)-based numerical methods. Our results show that
the system under investigation possesses a fermionic algebraic
QSL phase. This paper is organized as follows: In Sec. II,
the model and TN-based simulating methods are described in
detail. In Sec. III, by calculating the local magnetization, we
shall show that the ground state of this system is magnetically
disordered. In Sec. IV, the spatial dependence of spin-spin,
dimer-dimer, and chiral-chiral correlation functions of the
system under interest in the ground state will be given.
In Sec. V, the magnetic curves and the phase diagram in
the ground state are presented. In Sec. VI, the temperature
dependence of the specific heat and the susceptibility will be
discussed. Finally, we give a conclusion in Sec. VII.

II. MODEL AND METHODS

The Hamiltonian under interest reads

H = Jd

∑
〈ij〉

Si · Sj + Jt

∑
〈lm〉

Sl · Sm − h
∑

i

Sz
i , (1)

where Si is the spin operator on the ith site, Jd (Jt ) is the
coupling constant between nearest neighbor spins standing
inside the dimer (triangle), as indicated in Fig. 1, and h is the
magnetic field. We set Jt = 1 as the energy scale.

It is usually challenging to simulate quantum many-body
systems. Due to strong correlations and quantum fluctuations,
most traditional methods fail to capture their novel properties.
For example, mean-field theories underestimate long range
fluctuations that may be critically important to the exotic many-
body phenomena; quantum Monte Carlo suffers from the noto-
rious sign problem [12] when calculating frustrated spin mod-
els as well as fermionic models away from the half filling; etc.

In this work, we use state-of-the-art TN algorithms to
explore the spin-1/2 Heisenberg antiferromagnet on the OKL.
A TN scheme is free from the negative-sign problem, and has
been demonstrated to be a powerful numerical tool not only in
strongly correlated quantum systems [13–15], but also in sta-
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FIG. 1. Structure of the octa-kagome lattice (OKL). It can be
obtained by stretching the triangles in a kagome lattice (KL) along
the horizontal direction. If one stretches all three directions of the
triangles in a KL, it will end up with a star lattice. The OKL can also be
viewed as corner and edge sharing octagons. The blue balls represent
spins sitting on the lattice site, and the red dashed parallelogram
depicts a four-site unit cell, where a1 and a2 are basis vectors.
Jt (black) and Jd (orange) denote Heisenberg exchange couplings
between nearest neighbor spins inside triangles and in-between
triangles, respectively.

tistical physics [16–19], quantum information [20–22], and so
on. The central task in such kinds of algorithms is to compute
the TN contraction [21,23], i.e., to sum over all shared bonds
in the TN. However, except for some special cases [24–27],
the contraction of the TN with a regular geometry (e.g., square
or honeycomb) has been shown to be NP-hard [21].

Generally, there are two ways to deal with the TN simula-
tions: renormalization [16,18,19,28–36] and encoding [37–39]
schemes. The former follows a contraction-and-truncation
scheme, while the latter encodes the TN contraction into a
local self-consistent problem. Specifically, the renormalization
scheme originates from Wilson’s numerical renormaliza-
tion group method [40,41], which solves successfully the
Kondo [42] problem. Then, the density matrix renormalization
group (DMRG) [43,44] was proposed by White, where the
boundary condition (especially in one dimension) is better
considered with entanglement. For 2D systems, algorithms
based on the tensor renormalization group and the infinite
projected entangled pair state (iPEPS) [31] were proposed. The
degrees of freedom is coarse grained in such a way that when
the tensor is invariant under renormalization, it represents
approximately an infinite system.

The encoding scheme follows an opposite way known as
the “mean-field” idea that considers well the entanglement
with the help of the TN. The mean-field idea is incredibly
important in numerical physics, which gives birth of the great
density functional theory [45,46] and ab initio scheme which
has been widely used in both physics and chemistry. To
better deal with the strong correlations in many-body physics,
the dynamic mean-field theory [47–51] and density matrix
embedding theory [52–54] were also proposed. By combining
the mean-field idea with the TN and multilinear algebra, the
ab initio optimization principle was proposed [39], where an
infinite TN is equivalently transformed into a local tensor
embedded in an entanglement bath.

We here employ three kinds of TN-based algorithms,
namely, cluster update [55–57] and full update schemes

FIG. 2. (a) The corresponding ground state TN representation
on the OKL (black dashes). (b) The unit cell containing two
nonequivalent tensors A (red circle) and B (green circle), and three
different diagonal matrices λ1 (blue diamond), λ2 (pink diamond),
and λ3 (yellow diamond).

[31,58,59] of the iPEPS [29–31] (a contraction-and-truncation
scheme) and the network contractor dynamics [38] (NCD)
approach (an encoding scheme) to investigate our model for
mutually validating the results obtained by each scheme. Con-
sequently, the calculated results are consistent with each other,
which manifests itself in the reliability of our simulations.

A. Tensor-network state ansatz

We start from a TN state ansatz, as shown in Fig. 2, to
describe the states at zero temperature. Such a TN state is
composed of two nonequivalent tensors A and B, and three
different diagonal matrices λ1, λ2, and λ3. A and B (each of
which contains three virtual bonds that carry the entanglement
of the state) are located on the two inequivalent triangles of
the OKL. The physical degrees of freedom of the three spins
in triangle A are put on tensor A, where the dimension of the
physical space is 8. In this way, the dimension of the physical
bond of tensor B is 2, which is the Hilbert space of the spin
on the right side with the Jd coupling. Mathematically, such a
TN state is written as

|�〉 =
∑
{s}

Dc∑
μ,ν,ξ=1

( ∏
k∈TN

[λ1]μμ[λ2]νν[λ3]ξξA
sk,1sk,2sk,3

μνξ

×B
sk,4

μνξ |sk,1sk,2sk,3sk,4〉
)

, (2)

where k refers to the kth unit cell of the whole lattice with a1

and a2 basis vectors [see Fig. 2(a)]. To get the ground state,
the imaginary time evolution is implemented to minimize the
energy of the iPEPS by

|�gs〉 = lim
β→∞

e−βH|�〉
‖ e−βH|�〉 ‖ , (3)

where β = 1/kBT .
It is impossible to calculate Eq. (3) exactly in the

thermodynamic limit, since the dimension of H increases
exponentially with the number of lattice sites. Here, we use the
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FIG. 3. Graphical representation for the cluster update scheme.
(a) The hexagonal cluster is composed of six tensors and twelve
diagonal matrices. (b) We contract the physical indices and virtual
bonds connected with diagonal matrices λ2 and λ3 of the double-layer
tensor cluster to get tensor W , which will later be canonicalized for
updating the diagonal matrices λ1, as well as the tensors A and B. (c)
The orthogonal conditions for renewed λ1 and W . (d) Extracting a
physical index from the hexagonal cluster by Tucker decomposition.

Trotter-Suzuki decomposition to implement the evolution on
the TN state. By splitting the Hamiltonian into two parts, one
has Ha = ∑

k H[k]
left−trangle and Hb = ∑

k(H[k]
dimer + H[k]

right−trangle),
and the first-order Trotter-Suzuki decomposition can be
used to approximate the evolution operator, i.e., e−βH ≈
(eτHa eτHb )N + O(τ 2), with β = Nτ . The approximation be-
comes accurate when the Trotter step τ approaches zero. In
practical calculations, we decrease τ gradually from 1 × 10−1

to 1 × 10−5 so that the Trotter error becomes negligible.
By considering the translation invariance, we can adopt

the local operation instead of evolving the whole system, and
optimize the environment around the local tensors. Inciden-
tally, for finite-temperature thermal states, the imaginary-time
evolution of the density operator can be implemented similarly.

B. Cluster update

We choose a hexagon consisting of six tensors as the
environment for the cluster update, as depicted in Fig. 3(a).
The cluster tensors are transformed into a superorthogonal
form [37] in order to approximate the global environment opti-
mally. Taking Fig. 3(b) as an example, we build a double-layer
structure of the cluster tensor and contract all physical indices
and virtual bonds on the bra and ket layers except the bonds
connected by λ1. For convenience, the shaded part of Fig. 3(b)
is represented by W . The superorthogonalization is much
like the canonicalization for an infinite one-dimensional (1D)
lattice [60]. The update of λ1 and W leads to the conditions

Dc∑
μ,μ′=1

δμμ′[λ1]μμ[λ1]μ′μ′Wμμ′,νν ′ = ηδνν ′ , (4)

Dc∑
ν,ν ′=1

Wμμ′,νν ′ [λ1]νν[λ1]ν ′ν ′δνν ′ = ηδμμ′ . (5)

FIG. 4. (a) Singular value decomposition (SVD) of the double
layer cluster in Fig. 3(d). (b) Permutation of physical indices from
A using Tucker decomposition. (c) Absorbing the physical indices
into B.

Figure 3(c) is the graphical representation of Eqs. (4)
and (5). The update of W is actually acting on A and B

along the λ1 direction, where A and B are renewed to A

and B. Operations on the other two directions are similar. We
iterate this procedure until the cluster satisfies simultaneously
the orthogonality conditions in all three directions. Then, the
environment of the cluster can be best approximated by the
converged diagonal matrices λ1, λ2, and λ3.

Then we permute the physical indices from A to B to evolve
the interactions on the B triangles. This operation will increase
the bond dimensions, and a truncation is needed. Taking
Fig. 3(d) as an example, we leave one physical index and the
corresponding virtual bonds of A open and others contracted
in the cluster. We use Y to denote the intermediate reduced
density matrix, where the dimension of Y is 2Dc × 2Dc.
Moreover, Y is a Hermitian matrix because of the double-layer
structure. Then, we decompose Y using the SVD and only keep
the basis corresponding to the Dc dominant singular values.
This procedure is shown in Fig. 4(a), where U1 is the unitary
matrix given by the SVD holding the spared physical index

of Y , and
=
λ1 is the square root of the singular spectrum after

truncation. U2, U3,
=
λ2, and

=
λ3 are obtained in the similar way.

Finally, we change the position of all three physical indices
from A into B, as depicted in Figs. 4(b) and 4(c). In such a
way, the evolutions given by the interactions of the triangles
A and B are implemented in turn, where the geometry and the
bond dimensions are kept unchanged.

C. Full update

Unlike the cluster update scheme, the full update scheme
needs to contract all the 2D TNs in order to truncate and obtain
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physical quantities. There are two widely used ways to simu-
late the whole environment, namely, the infinite time-evolving
block decimation (iTEBD) [28] and the corner transfer matrix
renormalization group (CTMRG) [33,34]. Here, we use the
iTEBD in our calculation, where the TN is contracted to a
matrix product state (MPS) on its boundary. A full update can
achieve a higher accuracy than local optimization methods,
but the computation cost is significantly large. We set the
bond dimension of the MPS in iTEBD as D2

c to balance
the accuracy and cost. The permutation of physical indices
and variational optimization of the truncation matrices follow
Refs. [31,57–59].

D. Network Contractor Dynamics

NCD was first proposed to solve the TN contractions in the
calculation of the partition function of 2D quantum models. We
adopt the NCD algorithm to optimize the environment around
the local tensors in a ground state simulation. Different from
the renormalization, NCD follows a TN encoding strategy [39],
and the TN structure is also different from that in Fig. 2.
The specific cell tensor is shown in Fig. 5(a), which contains
six nonequivalent tensors with A1, B1, A2, and B2 located
on triangles, and P1, P2 on dimers. When mapping onto the

FIG. 5. (a) Unit cell of the TN in the NCD scheme, where a1 and
a2 are basis vectors. (b) The construction of T cell. (c) Transformation
from T cell to “defect.” The defect is constructed by six contractors vn

(n = 1,2, . . . ,6) obtained by Eq. (6), and each contractor is denoted
by a yellow circle connected with a bold black line.

OKL, there are eight inequivalent lattice sites in the cell tensor
of NCD, twice as large as the cell tensors of cluster update and
full update schemes. Physical indices are on P1, A2, and B2,
indicating that the Hamiltonian splits into two parts, where
the first part contains interactions between spins sitting on
the dimer denoted by P1 and on triangles denoted by A2

and B2, and the rest of the interactions are included in the
second part of the Hamiltonian. Imaginary time evolution is
applied to minimize the ground state energy, and consequently,
the NCD procedure plays the role of superorthogonalization
to approximate the whole TN contraction. As explained in
Ref. [38], the whole TN contraction is simplified to a local
contraction of a tensor cluster T cell with six contractors
vn,n ∈ [1,2,3,4,5,6]. T cell is a six-order tensor obtained by
contracting the physical indices and connected virtual bonds
of the double-layer cell tensors, as represented in Fig. 5(b),
where we use bold black lines to indicate a fat index that
contains double virtual bonds in one of the six directions.
Each contractor vn is a vector whose dimension is the same as
the nth index of T cell. T cell and vn need to meet the following
self-consistent relation∑

gn 
=ε

T cell
g1g2g3g4g5g6

∏
n
=ε

vn
gn

∝ vε
gε

. (6)

Equation (6) includes six self-consistent equations for
ε ∈ [1,2,3,4,5,6], which should be satisfied simultaneously.
Analytically, the six contractors solved from Eq. (6) are
precisely those given by the rank-1 decomposition [61] of T cell.
The rank-1 tensor, which we call a defect, is given by a direct
product of the six contractors. The graphic representation
of the defect is shown in Fig. 5(c). The defect is actually
the first-order approximation of T cell. If one substitutes the
minimal number of T cell’s with the defects so that no loop
appears, then the original TN will become a tree framework.
Thanks to the self-consistent conditions, there is no need to
compute the whole contraction of such a tree, and only are the
local contraction of T cell and the contractors vn required. In this
sense, the physical quantities calculated from the “defective”
TN can be viewed as a mean-field approximation of the exact
one. In addition, we can introduce more loops into the defected
TN to achieve a higher accuracy, but the computing cost
increases inevitably.

III. DISORDERED GROUND STATE

Let us now study the ground state properties of the spin-
1/2 HAFM on the infinite OKL for isotropic point (Jd = 1).
To testify to the reliability of our calculations, we compare
the ground state energy eg (per site) obtained by different
methods including NCD, cluster update, and full update of
iPEPS (Fig. 6). We found that for large bond dimension Dc >

4, all schemes give consistent results, showing the reliability of
our calculations. A power law dependence is found, with which
the energy of infinite Dc is eg = −0.4524 by extrapolation,
which is lower than −0.4386(5), the extrapolated ground state
energy of the spin-1/2 HAFM on a kagome lattice given by
the DMRG [5,6].

In Fig. 7, we present the local magnetization 〈Sα
i 〉 on each

nonequivalent site in a unit cell for h = 0. Small values of
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FIG. 6. The calculated energy per site for the ground state, eg ,
versus inverse bond dimension 1/Dc (up to Dc = 10 for NCD, Dc =
15 for the cluster update, and Dc = 7 for the full update). It is shown
that eg decreases with enhancing Dc. Power law fittings for NCD
(blue solid line), the cluster update (red dashed line), and the full
update (black dash-dotted line) are given, and eg is extrapolated to
be −0.4517 (NCD), −0.4518 (cluster update), and −0.4524 (full
update) in the infinite Dc limit.

〈Sz
i 〉 and 〈Sx

i 〉 caused by the truncation error can be observed.
By increasing Dc, 〈Sz

i 〉 and 〈Sx
i 〉 decay rapidly, and the

data are fitted (the dashed lines in Fig. 7) with the function
f (Dc) = p(1/Dc)q , where p and q are fitting parameters.
Thus, the extrapolation of local magnetic moments gives a
zero magnetization in the Dc → ∞ limit. In particular, as the
average values of 〈Sz

i 〉 and 〈Sx
i 〉 only fluctuate in the vicinity

of zero with the increase of Dc, we may use a linear fitting for
the average magnetic moments that gives negligible intercepts

FIG. 7. The local magnetic moments (a) 〈Sz
i 〉 and (b) 〈Sx

i 〉 versus
inverse bond dimension 1/Dc calculated by the cluster update, where
i = 1,2,3,4 denote four inequivalent sites in a unit cell marked in
the inset of (a), and the “average” represents the intracellular mean
magnetic moment. The local magnetic moments (c) 〈Sz

i 〉 and (d)
〈Sx

i 〉 versus inverse bond dimension 1/Dc calculated by NCD, where
i = 1,2,3,4,5,6,7,8 denote eight sites in an expanded cell in the inset
of (c), and the average denotes the average of the magnetic moments
over these eight sites.

FIG. 8. Spatial dependence of correlation functions of the spin-
1/2 HAFM on the OKL in (a) semilog and (b) log-log plots. The
vertical direction is represented by subscript “⊥” and the horizontal
direction is marked by “=”. In the vertical direction, the spin-spin
(fitting with blue solid line), chiral-chiral (fitting with red dash-dotted
line), and dimer-dimer (fitting with black dotted line) correlation
functions show exponential decaying behaviors. In the horizontal
direction, the spin-spin (fitting with blue short-dashed line) and chiral-
chiral (fitting with red dash-dot-dotted line) correlation functions
show exponential decaying behaviors, while the dimer-dimer (fitting
with black dashed line) correlation function shows a power law decay.
All correlation functions are calculated by the full update algorithm
with Dc = 5.

about 10−5. The absence of local magnetic moments strongly
suggest that it does not have conventional magnetic orders in
the ground state, i.e., no traditional SO(3) symmetry is broken.

IV. SPIN-SPIN, DIMER-DIMER, AND CHIRAL-CHIRAL
CORRELATION FUNCTIONS

In Fig. 8, we present the spatial dependence of several
correlation functions in the ground state for the system
under interest with Jd = 1. The spin-spin correlation func-
tion |〈Sz

i S
z
j 〉| along the horizontal axis is found to decay

exponentially, satisfying f (|i − j |) = α exp(−|i − j |/ξ ) with
α = 0.084 and the correlation length ξ = 0.16, which shows
that the spin-spin correlation of this system is short ranged and
the ground state is magnetically disordered.

The chiral-chiral correlation function is defined by
|〈CiCj 〉| = |〈[Si1 · (Si2 × Si3 )][Sj1 · (Sj2 × Sj3 )]〉 − 〈Si1 ·
(Si2 × Si3 )〉〈Sj1 · (Sj2 × Sj3 )〉|, where the lattice sites i and j

belong to the left triangles along the horizontal direction. It
is found that the chiral-chiral correlation function also decays
exponentially with α = 0.0054 and ξ = 0.11, revealing the
absence of a long-range spin chiral order.

The dimer-dimer correlation function, which is defined by
|〈DiDj 〉| = |〈(Sz

i S
z
i+1)(Sz

jS
z
j+1)〉 − 〈Sz

i S
z
i+1〉〈Sz

jS
z
j+1〉| for the

ith and j th dimers, is disclosed to exhibit a power-law decay as
of the form |〈DiDj 〉| ∼ 1/|i − j |η with η = 17.96 [Fig. 8(b)].
This fact signatures the possible existence of an algebraic QSL
in this system.

Here it is interesting to ask if the correlations along the
vertical axis behave the same as those along the horizontal
axis. To answer this question, we also calculated the three
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FIG. 9. Magnetic curves of the spin-1/2 HAFM on the OKL. (a)
Jd = 0.2,0.8, and 1, (b) Jd = 0.1,0.4, and 0.55 under low magnetic
fields. Inset of (a): Up-down-up-up (UDUU) spin configuration in a
unit cell in the M = 1/4 plateau phase.

correlation functions in the vertical direction. The results show
that the behaviors in this direction are different, as shown in
Fig. 8. It is seen that all three correlations along the vertical
axis decay exponentially, fitted by the function f (|i − j |) =
α exp(−|i − j |/ξ ), with |〈Sz

i S
z
j 〉| fitted with α = 0.034 and

ξ = 0.94, |〈CiCj 〉| fitted with α = 0.00075 and ξ = 0.47, and
|〈DiDj 〉| fitted with α = 0.00038 and ξ = 0.68. This is owing
to the nonequivalent lattice structure along the two axes. It is
the introduction of Jd that causes the lattice essentially distinct
from a combination of decoupled zig-zag spin chains, of which
the ground state is a valence bond state (VBS) with twofold
degeneracy and a finite magnetic excitation gap [62,63]. A
strong Jd coupling (especially at the isotropic point) is crucial
in the critical phase, which will be discussed later.

We would like to mention that the nature of the correlations
presented here is similar to the case with a resonating valence
bond (RVB) wave function constructed on a square lattice,
where an exponentially decaying spin-spin correlation and
a power-law decaying dimer-dimer correlation were also
observed [64,65].

V. MAGNETIC CURVES AND PHASE DIAGRAM
IN GROUND STATE

The magnetization per site M as a function of magnetic field
h in the spin-1/2 HAFM on the OKL is presented in Fig. 9. One
may observe that in magnetic curves [Fig. 9(a)], for Jd = 0.2,
three plateaus with M = 0, 1

4 , and 1
2 are observed, while for

Jd = 0.8 and 1, apart from the two plateaus with M = 1
4 and 1

2 ,
no M = 0 plateau is found. These results imply that depending
on Jd , there may be two phases in the system, one phase with
a zero-magnetization plateau and the other phase without. As
the width of the M = 0 plateau gives the gap from the singlet
ground state to the first triplet excited state, we find that in the
phase with small Jd the spin excitation is gapful, while in the
other phase with large Jd it is gapless. For a closer inspection,
we calculated the cases with small Jd under weaker magnetic
fields, as given in Fig. 9(b). The results demonstrate that the
spin gap decreases with increasing Jd , suggesting that there
must be a critical point J c

d , at which a quantum phase transition

FIG. 10. Spin gap as a function of Jd for the spin-1/2 HAFM on
the OKL. The inset is the second-order derivative of the ground state
energy with respect to Jd in the absence of a magnetic field. It is clear
that the point Jd = 0.6 is singular, at which the spin gap closes.

(QPT) happens: for Jd < J c
d the ground state is in a gapped

phase, and for Jd > J c
d it is in a gapless phase.

Another interesting phenomenon in magnetic curves is
the occurrence of an M = 1/4 plateau, which can also be
called an M/Ms = 1/2 plateau (briefly 1/2-magnetization
plateau) with Ms = 1/2 the saturation magnetization per site.
The frustrated Heisenberg models on lattices with triangular
structures lead usually to a 1/3-magnetization plateau, which
has been found in, e.g., kagome [66–68] and Husimi [69]
lattices. The occurrence of the 1/2-magnetization plateau in
the present system is understandable, because the unit cell of
the OKL contains four inequivalent lattice sites, leading to the
periodicity n of the ground state being 4, consistent with the
condition of n(S − M) = integer. To explore the nature of this
1/2 plateau, we calculated the local magnetic moment at four
inequivalent sites in a unit cell, and found in this plateau phase
the spin configuration is of UDUU, as illustrated in the inset
of Fig. 9(a). Such a plateau is a commensurate, classical state
stabilized by quantum fluctuations.

To determine accurately the quantum critical point (QCP)
J c

d , we calculated the spin gap as a function of Jd , as given in
Fig. 10, which gives J c

d = 0.6. To further confirm this point,
we also studied the second-order derivative of the ground state
energy with respect to Jd (the inset of Fig. 10), which reveals a
sharp dip at the same point, indicating the QPT indeed appears
at J c

d = 0.6.
By summarizing our calculated results, we present the

ground state phase diagram of the spin-1/2 HAFM on the
OKL in the Jd -h plane, as shown in Fig. 11. It can be seen
that when h = 0, the phase for Jd < 0.6 is a VBS; as in
the limit of Jd → 0, the system approaches to an uncoupled
zig-zag spin chain, whose ground state is a VBS with twofold
degeneracy and a finite magnetic excitation gap [62,63].
Because there is no quantum phase transition for Jd < J c

d ,
the system should stay in the same VBS phase. For Jd > 0.6,
the system enters into a gapless QSL state, which is evidenced
by the algebraically decaying dimer-dimer correlations and
vanishing local magnetic moments. When h > 0, the VBS
state is gradually melted by closing the spin gap, and the system
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FIG. 11. The ground state phase diagram for the spin-1/2 HAFM
on the OKL. A quantum phase transition from the VBS phase
to the QSL phase happens at the critical point J c

d = 0.6. UDUU:
the 1/2-magnetization plateau phase with an up-down-up-up spin
configuration.

enters into a spin canted state. By increasing the magnetic field
further, the system enters into the 1/2-magnetization plateau
(with M = 1/4) phase, in which the spin gap opens again, and
the spin configurations are arranged in UDUU alignments.
Above the UDUU phase, it enters into another spin canted
phase. By increasing h further, all spins are polarized. It should
be remarked that all the phase boundaries in this phase diagram
are obtained by observing various critical magnetic fields.

VI. THERMODYNAMIC PROPERTIES

Next, we explore the thermodynamic properties of the
spin-1/2 HAFM on the OKL using the optimized decimation
of the tensor network state [37]. The free energy can be
obtained by collecting all renormalization factors down to
the targeted temperature. Alternatively, one can also get the
physical quantities by calculating the expectation values of
local operators with tensor-network thermodynamic states.
Considering the precision and cost of thermal-state TN
algorithms, we chose the cluster update scheme to contract
the “environment” around the local inequivalent tensors. The
energy as well as other thermodynamic quantities including
specific heat and susceptibility are thus calculated. To keep a
higher accuracy, we adopted the second-order Trotter-Suzuki
decomposition and fixed the Trotter slice to be 0.01 in the
calculations of thermodynamic properties.

We obtain the temperature dependence of the specific heat
by C(T ) = ∂f /∂T , where f is the free energy per site.
Figure 12 gives the results for Jd = 10−4 and 1. It is observed
that at high temperature, both go to converge, and C(T )
decreases down to zero with increasing temperature. But at
low temperature (see the inset of Fig. 12), both cases show
intrinsically distinct behaviors: the specific heat for Jd = 10−4

exhibits two peaks and is pretty close to the ED result of the
zig-zag spin chain with eight triangles, which also verifies
the reliability of our method. When T → 0, C(T ) shows an
exponentially decaying behavior, suggesting that there should

FIG. 12. Specific heat C(T ) versus temperature T of the spin-1/2
HAFM on the OKL for Jd = 10−4 (blue solid circles) and Jd = 1 (red
open circles). Inset: the low-temperature part of C(T ). For Jd = 1
below T = 0.25, C(T ) can be well fitted by a polynomial C(T ) =
1.741T − 7.96T 2 + 22.51T 3 − 25.61T 4 (black line), and for Jd =
10−4 below T = 0.8, C(T ) is also better compared with an exact
diagonalization (ED) result (cyan dashes) of the zig-zag spin chain
containing eight triangles. Here the bond dimension is Dc = 20.

be a finite excitation gap, being well consistent with the result
in the ground state, as the system in this case is almost
dimerized; for Jd = 1, the specific heat exhibits a single peak,
and when T is very low, C(T ) obeys a polynomial behavior
of the form C(T ) = 1.741T − 7.96T 2 + 22.51T 3 − 25.61T 4.
When T → 0, C(T ) is linearly dependent on the temperature,
which indicates the existence of gapless excitations, and
implies that the system is critical. It is also consistent with
the preceding result that the ground state is an algebraic QSL.

Such criticality is further evidenced by the susceptibility at
low temperature. The susceptibility is calculated according to
χ (T ) = [M(h + �h)|T − M(h)|T ]/�h, where �h = 0.01 is
taken. The results for Jd = 10−4 and 1 are presented in Fig. 13.
One may see that both curves obey the Curie-Weiss law at

FIG. 13. Zero-field magnetic susceptibility χ as a function of
temperature T of the spin-1/2 HAFM on the OKL for Jd = 1
(red open circles) and Jd = 10−4 (blue solid circles). Inset: the
low-temperature part of susceptibility, where the case of Jd = 1 can
be fitted with a polynomial χ (T ) = 0.09566 − 0.06828T + 2.438T 2

(black line), and that of Jd = 10−4 behaves in an exponential way.
Here the bond dimension is Dc = 20.
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high temperature and exhibit a sharp peak at low temperature
due to antiferromagnetic interactions. Significant differences
occur when T → 0. As shown in the inset of Fig. 13, for
Jd = 10−4, χ goes to zero in an exponential way, revealing the
existence of a finite spin gap, while for Jd = 1, χ converges to a
finite constant in a polynomial of the form χ (T ) = 0.09566 −
0.06828T + 2.438T 2, being reminiscent of a Luttinger liquid
behavior, and consistent again with the critical feature of the
ground state.

In addition, it is quite interesting to look at the Wilson ratio
(WR) Rw for the present critical system at the isotropic point.
The WR is defined by Rw = (4/3)(πkB/gμB)2χ/(C/T ),
where χ is the susceptibility, C is the specific heat, kB is the
Boltzmann constant, g is the Landé factor, and μB is the Bohr
magneton. For simplicity we have assumed kB = gμB = 1. It
is known that for a free electron gas, Rw = 1. For most QSL
theories, the WR is usually less than one [1]. For the present
system with Jd = 1, at T → 0, χ tends to a constant, and
C(T ) ∼ T , which gives Rw ≈ 0.72. In consideration of the
fact that the linear temperature dependence of the specific heat
resembles the Luttinger liquid behavior, and the WR Rw is
on the order of unity, which are analogous to the behaviors
induced by fermionic quasiparticles, we conclude that the
present isotropic system should be a fermionic gapless QSL.

VII. CONCLUSION

The ground state and thermodynamic properties of the
spin-1/2 HAFM on the OKL have been systematically studied
with the aid of powerful TN numerical simulations. We
adopted three kinds of TN algorithms in calculations of the
ground state energy per site, which gives −0.4524 by the
infinite Dc extrapolation in the thermodynamic limit, lower

than −0.4386(5) on a kagome lattice. The magnetic order is
melted in the ground state due to strong frustration induced
by corner sharing triangles. A QPT is found in this system.
It is disclosed that below the QCP, the system has a finite
spin gap and is in a VBS state, while above the QCP, the
system is in a gapless QSL state. At the isotropic point,
we uncover that the dimer-dimer correlation function decays
algebraically, while the spin-spin and chiral-chiral correlation
functions behavior in an exponential way. In addition, the
specific heat at low temperature is shown to depend linearly
on temperature, exhibiting a Luttinger liquid behavior, and the
susceptibility tends to a finite constant when T → 0, which
indicates a gapless excitation in the system. The Wilson ratio
is found to be 0.72, close to 1. All these features reveal that the
isotropic spin-1/2 HAFM on the OKL is a fermionic gapless
QSL.
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[31] J. Jordan, R. Orús, G. Vidal, F. Verstraete, and J. I. Cirac, Phys.

Rev. Lett. 101, 250602 (2008).
[32] Z.-C. Gu, M. Levin, and X.-G. Wen, Phys. Rev. B 78, 205116

(2008).
[33] T. Nishino and K. Okunishi, J. Phys. Soc. Jpn. 65, 891

(1996).
[34] T. Nishino and K. Okunishi, J. Phys. Soc. Jpn. 66, 3040 (1997).
[35] Z. Y. Xie, H. C. Jiang, Q. N. Chen, Z. Y. Weng, and T. Xiang,

Phys. Rev. Lett. 103, 160601 (2009).
[36] H. H. Zhao, Z. Y. Xie, Q. N. Chen, Z. C. Wei, J. W. Cai, and T.

Xiang, Phys. Rev. B 81, 174411 (2010).
[37] S.-J. Ran, W. Li, B. Xi, Z. Zhang, and G. Su, Phys. Rev. B 86,

134429 (2012); W. Li, S.-J. Ran, S.-S. Gong, Y. Zhao, B. Xi, F.
Ye, and G. Su, Phys. Rev. Lett. 106, 127202 (2011).

[38] S.-J. Ran, B. Xi, T. Liu, and G. Su, Phys. Rev. B 88, 064407
(2013).

[39] S.-J. Ran, Phys. Rev. E 93, 053310 (2016).
[40] K. G. Wilson, Rev. Mod. Phys. 55, 583 (1983).
[41] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
[42] J. Kondo, Prog. Theor. Phys. 32, 37 (1964).
[43] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[44] S. R. White, Phys. Rev. B 48, 10345 (1993).
[45] K. Burke, J. Chem. Phys. 136, 150901 (2012).
[46] A. D. Becke, J. Chem. Phys. 140, 18A301 (2014).
[47] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).
[48] A. Georges and W. Krauth, Phys. Rev. Lett. 69, 1240 (1992).
[49] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 (1996).

[50] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.
Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).

[51] J. Merino and O. Gunnarsson, J. Phys.: Condens. Matter 25,
052201 (2013).

[52] G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404
(2012).

[53] G. Knizia and G. K.-L. Chan, J. Chem. Theory Comput. 9, 1428
(2013).

[54] I. W. Bulik, G. E. Scuseria, and J. Dukelsky, Phys. Rev. B 89,
035140 (2014).

[55] L. Wang and F. Verstraete, arXiv:1110.4362 [cond-mat.str-el].
[56] W. Li, J. von Delft, and T. Xiang, Phys. Rev. B 86, 195137

(2012).
[57] T. Liu, W. Li, and G. Su, Phys. Rev. E 94, 032114 (2016).
[58] M. Lubasch, J. I. Cirac, and M.-C. Bañuls, Phys. Rev. B 90,
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