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Topological semimetals protected by off-centered symmetries in nonsymmorphic crystals
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Topological semimetals have energy bands near the Fermi energy sticking together at isolated
points/lines/planes in the momentum space, which are often accompanied by stable surface states and intriguing
bulk topological responses. Although it has been known that certain crystalline symmetries play an important
role in protecting band degeneracy, a general recipe for stabilizing the degeneracy, especially in the presence of
spin-orbit coupling, is still lacking. Here we show that a class of novel topological semimetals with point/line nodes
can emerge in the presence of an off-centered rotation/mirror symmetry whose symmetry line/plane is displaced
from the center of other symmorphic symmetries in nonsymmorphic crystals. Due to the partial translation
perpendicular to the rotation axis/mirror plane, an off-centered rotation/mirror symmetry always forces two
energy bands to stick together and form a doublet pair in the relevant invariant line/plane in momentum space.
Such a doublet pair provides a basic building block for emerging topological semimetals with point/line nodes
in systems with strong spin-orbit coupling.
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I. INTRODUCTION

Dirac particles with a pseudorelativistic energy dispersion
have come to the fore in condensed matter physics research
after the discovery of graphene [1]. To protect the fourfold
degeneracy at a Dirac point in graphene, two conditions should
be satisfied. One is the simultaneous presence of time-reversal
(T ) and inversion (P ) symmetries, and the other is the absence
of spin-orbit coupling. When these two conditions are satisfied
at the same time, the Berry phase around a Dirac point has a
quantized value of π , which guarantees the stability of the
Dirac point.

Recently, there have been extensive efforts to extend the
physics of the two-dimensional (2D) graphene to three-
dimensional (3D) systems [2–19]. A natural starting point is
to search for a 3D Dirac point protected by the PT symmetry
and the associated π Berry phase. Interestingly, however, it is
found that the PT symmetry protects a Dirac line node, instead
of a Dirac point, which gives rise to a 3D semimetal with Dirac
line nodes where fourfold band degeneracy occurs along a line
in momentum space [2–10]. As in the case of graphene, such a
Dirac line node protected by the PT symmetry is unstable in
the presence of the spin-orbit coupling. It is also reported that
a Dirac line node can exist in systems with a mirror symmetry
when two bands with different mirror eigenvalues cross in the
mirror plane [11–16]. However, the resulting line node is also
unstable once the spin-orbit coupling is turned on.

In fact, the existence of a 3D Dirac point in systems with
the spin-orbit coupling requires the introduction of additional
crystalline symmetries other than the time-reversal and the
inversion symmetries [20–26]. Up to now, two different recipes
are known to yield 3D Dirac semimetals with point nodes. One
is to introduce an additional uniaxial rotation symmetry where
3D Dirac points can occur when two bands with different
rotation eigenvalues cross on the rotation axis [22–24]. Cd3As2

and Na3Bi belong to this class [27–32]. Although a Dirac point
does not carry a nonzero monopole charge which protects
a Weyl point in the case of Weyl semimetals, the rotation
symmetry provides an integer topological charge at the Dirac
point, thus guarantees its stability [25].

The second recipe is to introduce an additional nonsym-
morphic symmetry such as glide mirrors or screw rotations.
When the double point group of a crystal possesses a four-
dimensional irreducible representation, a Dirac point can
appear at the Brillouin zone (BZ) boundary [20,21]. For sev-
eral representative space groups, projective symmetry group
analysis has been performed, which suggests β-BiO2 [20] and
distorted spinel compounds [21] as candidate systems of 3D
Dirac semimetals belonging to this class. Since each Dirac
point is protected by a different combination of crystalline
symmetries depending on the space group of the crystal,
careful symmetry analysis is required, case by case, to find
the relevant topological charge of each Dirac point.

In this paper, we propose an alternative mechanism to
realize novel 3D semimetals with Dirac point/line nodes in
systems with strong spin-orbit coupling as well as P and
T symmetries. To protect nodal points/lines with fourfold
degeneracy, we find that off-centered crystalline symmetries
play a crucial role. In contrast to the case of ordinary
glide mirror or screw rotation symmetries having a partial
translation in the invariant space of the associated point group
symmetry, an off-centered rotation/mirror symmetry involves
a partial translation that is orthogonal to the invariant space.
In centrosymmetric crystals, such an off-centered symmetry
naturally arises as a combination of a screw/glide symmetry
and inversion symmetry P . An off-centered mirror/rotation
symmetry possesses the characteristics of both the sym-
morphic and nonsymmorphic symmetries. Namely, it has
momentum independent quantized eigenvalues, whereas its
commutation relation with inversion symmetry P depends on
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the momentum. Due to such a mixed nature of the off-centered
symmetry, a pair of bands, each with Kramers degeneracy,
form a doublet pair in its invariant space in the first BZ, and
provide a basic building block for nodal points/lines. Similarly,
when the rotation axis (mirror plane) of a screw (glide)
symmetry does not pass the inversion center, an off-centered
screw (glide) symmetry can be defined, which also leads to
doublet pair formation and emerging Dirac points (lines) in
the relevant invariant space. When an external magnetic field
is applied to these semimetals, a Dirac-type point/line node
with fourfold degeneracy splits into two Weyl-type point/line
nodes with twofold degeneracy, with emergent surface states
connecting the split nodes.

The rest of the paper is organized as follows. The nature
of off-centered rotation/mirror symmetries is described in
Sec. II. In Sec. III (Sec. IV), we explain the basic mechanism
protecting point (line) nodes with fourfold degeneracy by off-
centered rotation (mirror) symmetries. A simple tight-binding
Hamiltonian describing various topological semimetals pro-
tected by off-centered symmetries is proposed in Sec. V.
The influence of time-reversal breaking on the topological
semimetals is described in Sec. VI, which is followed by
the discussion in Sec. VII. Detailed information about the
tight-binding Hamiltonian is given in Appendix A. The
topological charges of various semimetal phases are defined
in Appendix B. The stability of nodal and line nodes is further
supported by the Clifford algebras approach described in
Appendix C. In Appendix D, we perform a low-energy k · p
Hamiltonian analysis. Finally, we explain the properties of
semimetals protected by off-centered screw/glide symmetries
in Appendix E.

II. NATURE OF OFF-CENTERED ROTATION/MIRROR
SYMMETRIES

Generally, a nonsymmorphic symmetry element g̃ = {g|t}
is composed of a point group symmetry operation g and
a partial lattice translation t = t⊥ + t‖ where t‖ (t⊥) is
the component invariant (variant) under the point symmetry
operation g [33]. For instance, in the case of a nonsymmorphic
mirror symmetry M̃ = {M|t}, we have

M t‖ = t‖, M t⊥ = −t⊥. (1)

Since M2 = −1 (M2 = +1) for particles with a half-integer
(integer) spin, when the nonsymmorphic mirror symmetry
M̃ = {M|t} is operated twice, it should be an element of the
lattice translation group, i.e., {M|t}2 = {M2|2t‖} ∈ T, where
T is the group of the pure lattice translation of a given crystal.
Thus 2t‖ should be a unit lattice translation in the mirror
invariant plane whereas t⊥ is not influenced by the constraint
above.

In fact, t⊥ is a fragile quantity whose value depends on
the choice of the reference point of the point group symmetry
operation. For instance, if the reference point for the point
group symmetry operation is shifted by d = d⊥ + d‖, the
nonsymmorphic mirror symmetry {M|t} also translates to
{M|t − 2d⊥}. Thus by choosing 2d⊥ = t⊥, the perpendicular
component of the partial translation can be erased. The
resulting nonsymmorphic mirror symmetry is conventionally

considered as the definition of a glide mirror symmetry
M̃‖ ≡ {M|t‖}.

However, t⊥ can also play a nontrivial role in the presence
of an additional point group symmetry {g|t ′} centered at a
different reference point with t ′⊥ �= t⊥ modulo unit lattice
translation. For instance, one can choose the inversion center
as the reference point of the point group symmetry, thus
inversion is given by {P |0} whereas the nonsymmorphic mirror
is {M|t}. Here, the important point is that an additional shift
of the reference point affects the form of the two operators
simultaneously. Namely, under the shift of the reference point
by d = d⊥ + d‖, the two symmetry operators transform as
{M|t} −→ {M|t − 2d⊥} and {P |0} −→ {P | − 2d⊥ − 2d‖},
which indicates that even if t⊥ is subtracted from the nonsym-
morphic mirror symmetry by choosing 2d⊥ = t⊥, it preserves
its identity in conjunction with the inversion symmetry P .
Therefore in systems with the inversion symmetry, an off-
centered mirror symmetry, defined as

M̃⊥ ≡ {M|t⊥}, (2)

deserves a separate consideration.
An off-centered rotation symmetry can also be defined in

a similar way. A generic nonsymmorphic rotation symmetry
element C̃n = {Cn|t} (n = 2,3,4,6) satisfies

Cn t‖ = t‖, Cn t⊥ = t ′
⊥, (3)

where Cn denotes the n-fold rotation symmetry and t ′
⊥ is a par-

tial translation rotated by Cn satisfying t⊥ · t ′
⊥ = |t⊥|2 cos 2π

n
.

Since Cn fulfills Cn
n = −1 (Cn

n = +1) for particles with a half-
integer (integer) spin, a nonsymmorphic rotation symmetry
{Cn|t} is under the following constraint, {Cn|t}n = {Cn

n |nt‖} ∈
T, thus t‖ should have the form of t‖ = p

n
â‖ p = 0,1,...,n − 1,

where â‖ is the unit translation along the rotation axis. Again,
t⊥ is not constrained in this case.

If the reference point for the point group symmetry opera-
tion is shifted by d = d⊥ + d‖, the nonsymmorphic rotation
symmetry {Cn|t} also transforms to {Cn|t + Cnd⊥ − d⊥}.
Thus by choosing d⊥ to satisfy t⊥ = d⊥ − Cnd⊥, t⊥ can be
removed, leading to a conventional screw rotation symmetry
C̃

‖
n ≡ {Cn|t‖}. However, in the presence of an additional point

group symmetry centered at a different reference point, such
as {P |0}, an off-centered nonsymmorphic rotation symmetry

C̃⊥
n ≡ {Cn|t⊥} (4)

can be defined, and the partial translation t⊥ can cause
intriguing physical consequences as shown in the following.

III. POINT NODES PROTECTED BY OFF-CENTERED
ROTATION SYMMETRIES

In electronic systems having both time-reversal and in-
version symmetries, eigenstates are doubly degenerate at
any momentum. Due to level repulsion between degenerate
bands, accidental band degeneracy is lifted unless additional
crystalline symmetry is supplemented [24]. Here we show that
the presence of an off-centered symmetry creates symmetry-
protected band degeneracy at the BZ boundary. For simplicity,
let us first introduce an off-centered twofold rotation C̃⊥

2z =
{C2z| 1

2 x̂ + 1
2 ŷ} to an orthorhombic crystal with T and P
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symmetries. Here, x̂, ŷ, and ẑ denote the unit lattice vectors
in the x, y, and z directions, respectively. To understand the
origin of band degeneracy, let us examine how a spatial
coordinate r = (x,y,z) transforms under C̃⊥

2z,

C̃⊥
2z :(x,y,z) −→

(
−x + 1

2
, − y + 1

2
,z

)
,

(C̃⊥
2z)

2 :(x,y,z) −→ (x,y,z). (5)

One can see that since (C̃⊥
2z)

2
does not accompany a partial

translation, it is actually equivalent to a symmorphic operation
C2

2z, which leads to (C̃⊥
2z)

2 = −1 independent of the spatial
coordinate. Thus, at the momentum k invariant under C̃⊥

2z, each
band |�(k)〉 can be labeled by the momentum independent C̃⊥

2z

eigenvalue ±i, C̃⊥
2z|�±(k)〉 = ±i|�±(k)〉. Since the system is

invariant under C̃⊥
2z along the four lines k1 = (0,0,kz), k2 =

(π,0,kz), k3 = (0,π,kz), k4 = (π,π,kz) with kz ∈ [−π,π ], a
state |�(k)〉 on any of these lines carries a constant C̃⊥

2z

eigenvalue.
Now we consider the combined effect of P and C̃⊥

2z. From
the combined transformations

P C̃⊥
2z :(x,y,z) −→

(
x − 1

2
,y − 1

2
, − z

)
,

C̃⊥
2zP :(x,y,z) −→

(
x + 1

2
,y + 1

2
, − z

)
, (6)

we obtain

C̃⊥
2zP |�(k)〉 = eikx+iky P C̃⊥

2z|�(k)〉. (7)

Thus along the two C̃⊥
2z invariant lines k2 = (π,0,kz), k3 =

(0,π,kz) with kz ∈ [−π,π ], P and C̃⊥
2z anticommute, i.e.,

{C̃⊥
2z,P } = 0. Moreover, since the time-reversal symmetry T

commutes with both P and C̃⊥
2z, we obtain {C̃⊥

2z,PT } = 0,
which gives rise to

C̃⊥
2z[PT |�±(k)〉] = −PT [C̃⊥

2z|�±(k)〉]
= −PT [±i|�±(k)〉]
= ±iPT |�±(k)〉. (8)

Thus |�±(k)〉 and PT |�±(k)〉, which are locally degenerate
at the momentum k, have the same C̃⊥

2z eigenvalues of
±i. Therefore when two degenerate bands having different
C̃⊥

2z eigenvalues cross, the resulting band crossing point is
protected and forms a 3D Dirac point with fourfold degeneracy.

In fact, the anticommutation relation between P and C̃⊥
2z

puts a strong constraint on the band structure along the C̃⊥
2z

invariant axis. Considering

C̃⊥
2z[P |�±(k)〉] = −P [C̃⊥

2z|�±(k)〉]
= −P [±i|�±(k)〉]
= ∓iP |�±(k)〉, (9)

one can find that two energetically degenerate states |�±(k)〉
and P |�±(k)〉, which are located at k and −k, respectively,
have the opposite C̃⊥

2z eigenvalues. Let us recall that at each
momentum k, a Kramers pair should have the same C̃⊥

2z

eigenvalue. This means that on the C̃⊥
2z invariant axis where
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FIG. 1. 3D Dirac points protected by an off-centered twofold
rotation C̃⊥

2z. (a) A schematic figure describing the distribution of
3D Dirac points in momentum space. The location of four 3D Dirac
points is marked in red dots. The bold blue arrow indicates the axis for
C̃⊥

2z symmetry. The pink square indicates the plane of the glide mirror
symmetry M̃‖

z , which is dual to C̃⊥
2z. (b) The band structure along the

U -X-U line on which {P,C̃⊥
2z} = 0. A pair of degenerate bands (a

doublet pair) form a 3D Dirac point at each time-reversal invariant
momentum (TRIM). (c) The band structure when two doublet pairs
cross on the U -X-U line. There are in total 4n (n is an integer) 3D
Dirac points, which are all away from TRIMs. In (b) and (c), the
integers in the bottom indicate the number N (kz) defined in Eq. (B2)
from which the topological charge Q can be found by using Eq. (B1).

{P,C̃⊥
2z} = 0 is satisfied, there should be a pair of degenerate

bands with different C̃⊥
2z eigenvalues, which we call a doublet

pair. Since a doublet pair should form a band structure which is
symmetric with respect to a TRIM, they should be degenerate
at the two TRIMs on the C̃⊥

2z invariant axis as shown in
Figs. 1(a) and 1(b). Here, each of the degenerate points with
fourfold degeneracy represent a 3D Dirac point located at a
TRIM.

Due to the presence of a quantized C̃⊥
2z eigenvalue, the

band crossing points between two different doublet pairs can
also generate 3D Dirac points. Namely, as long as the two
crossing bands have different C̃⊥

2z eigenvalues, the crossing
points are symmetry protected. In general, such a crossing
between doublet pairs generates 4n (n is an integer) band
crossing points, and the location of each Dirac point is away
from TRIMs as shown in Fig. 1(c).

For comparison, let us consider a similar problem in sys-
tems with a twofold screw rotation C̃

‖
2z = {C2z| 1

2 ẑ} satisfying

(C̃‖
2z)

2 :(x,y,z) −→ (x,y,z + 1). (10)

Along the line invariant under C̃
‖
2z, the relevant eigenstates

satisfy C̃
‖
2z|�±(k)〉 = ±ieikz/2|�±(k)〉. Due to the momentum

dependence of the eigenvalues, the two different C̃
‖
2z eigen-

sectors should be interchanged when the momentum kz is
shifted by 2π . Moreover, it is straightforward to show that
C̃

‖
2zP |�(k)〉 = e−ikzP C̃

‖
2z|�(k)〉. Then along the line invariant

under C̃
‖
2z, where C̃

‖
2z|�±(k)〉 = ±ie

i
2 kz |�±(k)〉, we obtain

C̃
‖
2z[PT |�±(k)〉] = eikzP T[C̃‖

2z|�±(k)〉]
= eikzP T[±ie

i
2 kz |�±(k)〉]

= ∓ie
i
2 kzP T |�±(k)〉, (11)

which show that the degenerate states |�±(k)〉 and PT |�±(k)〉
belong to different eigensectors of C̃

‖
2z symmetry. Therefore,
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when two bands, each of which is doubly degenerate, touch,
there always is some finite hybridization between degenerate
bands. Thus C̃

‖
2z symmetry cannot protect a stable Dirac point

at a generic momentum. One exception is when the band
crossing happens at the time-reversal invariant momentum
(TRIM) with kz = π . In this case, two bands having the same
C̃

‖
2z eigenvalues form a Kramers pair, and two Kramers pairs

having different C̃
‖
2z eigenvalues are connected by P , leading

to fourfold degeneracy [34]. However, such a degeneracy point
does not form a 3D Dirac point. Instead, it becomes a part of
a line node in the kz = π plane protected by M̃⊥

z = C̃
‖
2zP , as

discussed in Sec. IV.

IV. LINE NODES PROTECTED BY OFF-CENTERED
MIRROR SYMMETRIES

An off-centered mirror symmetry can create a stable line
node with fourfold degeneracy in systems with P and T

symmetries. For convenience, let us consider M̃⊥
x = {Mx | 1

2 x̂},
which transforms a spatial coordinate r in the following way:

M̃⊥
x : (x,y,z) →

(
−x + 1

2
,y,z

)
,

(M̃⊥
x )2 : (x,y,z) → (x,y,z). (12)

From M2
x = −1, we obtain (M̃⊥

x )
2 = −1 independent of a

spatial coordinate. Thus, at the momentum k invariant under
M̃⊥

x , i.e., at any momentum in the 2D plane with kx = 0 or
kx = π , each band |�(k)〉 can be labeled by the momentum in-
dependent M̃⊥

x eigenvalue ±i, i.e., M̃⊥
x |�±(k)〉 = ±i|�±(k)〉.

Now we consider the combined effect of P and M̃⊥
x . From

PM̃⊥
x :(x,y,z) −→

(
x − 1

2
, − y, − z

)
,

M̃⊥
x P :(x,y,z) −→

(
x + 1

2
, − y, − z

)
, (13)

we obtain

M̃⊥
x P |�(k)〉 = eikx P M̃⊥

x |�(k)〉. (14)

Thus in the kx = π plane, P and M̃⊥
x anticommute, i.e.,

{M̃⊥
x ,P } = 0. Moreover, since the time-reversal symmetry T

commutes with both P and M̃⊥
x , we obtain {M̃⊥

x ,PT } = 0,
which gives rise to

M̃⊥
x [PT |�±(k)〉] = −PT [M̃⊥

x |�±(k)〉]
= −PT [±i|�±(k)〉]
= ±iPT |�±(k)〉. (15)

Thus |�±(k)〉 and PT |�±(k)〉, which are degenerate at the
momentum k, have the same M̃⊥

x eigenvalues of ±i. Therefore
when two degenerate bands having different M̃⊥

x eigenvalues
cross, the resulting band crossing point is protected and forms
a line node with fourfold degeneracy on the invariant plane
kx = π .

In fact, the anticommutation relation between P and M̃⊥
x

puts a strong constraint on the band structure in the M̃⊥
x

invariant plane. Considering

M̃⊥
x [P |�±(k)〉] = −P [M̃⊥

x |�±(k)〉]
= −P [±i|�±(k)〉]
= ∓iP |�±(k)〉, (16)

we find that two energetically degenerate states |�±(k)〉 and
P |�±(k)〉, which are located at k and −k, respectively, have
the opposite M̃⊥

x eigenvalues. It is worth to remind that a
Kramers pair at each momentum k, which are degenerate due
to PT symmetry, have the same M̃⊥

x eigenvalue. This means
that in the kx = π plane where {P,M̃⊥

x } = 0 is satisfied, two
bands (each with Kramers degeneracy) having different M̃⊥

x

eigenvalues should form a doublet pair again as in the case
of the off-centered rotation symmetry. Since the whole band
structure in the kx = π plane is symmetric with respect to a
TRIM, each doublet pair should be degenerate along a line,
which passes two TRIMs as shown in Figs. 2(a) and 2(b). Here
a set of the degenerate points form a line node with fourfold
degeneracy.

Due to the presence of quantized M̃⊥
x eigenvalues, a band

crossing between two different doublet pairs can also generate
nodal lines. Namely, as long as the two bands have different
M̃⊥

x eigenvalues, their crossing points are symmetry protected.
In general, such crossing between two different doublet pairs
generate 4n (n is an integer) nodal lines, and the location of
each nodal line is away from TRIM as shown in Fig. 2(c).

For comparison, let us consider a similar problem in
systems with a glide mirror M̃

‖
x = {Mx | 1

2 ŷ + 1
2 ẑ} satisfying

(M̃‖
x )2 :(x,y,z) −→ (x,y + 1,z + 1). (17)
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FIG. 2. 3D Dirac lines protected by an off-centered mirror
symmetry M̃⊥

x . (a) A schematic figure describing the distribution
of nodal lines in momentum space. The location of two line nodes in
the kx = π plane is marked in red color. The blue square indicates
the plane of the off-centered mirror symmetry M̃⊥

x . The bold pink
arrow indicates the axis for the screw rotation C̃

‖
2x symmetry, which

is dual to M̃⊥
x symmetry. (b) Distribution of the integer N (π,ky,kz)

defined in Eq. (B9) in the kx = π plane from which the topological
charge Q′ of the line node can be computed by using Eq. (B8). The
corresponding band structure along the S-X-S line is shown in the
bottom. The doublet pair are degenerate at each TRIM, which is a
part of line nodes in the kx = π plane. (c) Distribution of the integer
N (π,ky,kz), when two doublet pairs cross in the kx = π plane. There
are in total 4n (n is an integer) nodal lines, which are away from
TRIM. The corresponding band structure along the S-X-S line is
shown in the bottom.
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FIG. 3. Construction of 3D lattice models by stacking 2D layers.
(a) A schematic figure describing a 3D lattice model obtained by
vertical stacking of 2D square lattices. (b) Structure of a 2D layer
where the B site in a unit cell is shifted along the z direction, thus
the whole system has nonsymmorphic symmetries. (c) An additional
shifting of B sites along the y direction, which breaks the symmetry
C̃⊥

2z (or equivalently, M̃‖
z ). (d) An additional distortion of a unit cell,

which breaks the symmetry M̃⊥
x and M̃⊥

y (or equivalently, C̃
‖
2x and

C̃
‖
2y).

In a plane invariant under M̃
‖
x , the eigenstates satisfy

M̃
‖
x |�±(k)〉 = ±ie

i
2 (ky+kz)|�±(k)〉. Due to the momentum de-

pendence of the eigenvalues, the two different M̃‖
x eigensectors

should be interchanged when either ky or kz is shifted by 2π .
Moreover, it is straightforward to show that

M̃‖
xP |�(k)〉 = ei(ky+kz)PM̃‖

x |�(k)〉. (18)

Then in a 2D plane invariant under M̃
‖
x , we obtain

M̃‖
x [PT |�±(k)〉] = e−i(ky+kz)PT [M̃‖

x |�±(k)〉]
= ∓ie− i

2 (ky+kz)PT |�±(k)〉, (19)

which shows that |�±(k)〉 and PT |�±(k)〉, which are degen-
erate at the momentum k, belong to different eigensectors
of M̃

‖
x symmetry. This means that when two bands, each

doubly degenerate due to the PT symmetry, overlap, there
always is some finite hybridization between them at a generic
momentum, thus a stable line node cannot be protected by
M̃

‖
x symmetry in a mirror invariant plane. Instead, stable

Dirac point nodes are protected by an off-centered symmetry
C̃⊥

2x = M̃
‖
xP on its invariant lines (kx,π,0) and (kx,0,π ).

V. MODEL

To demonstrate the general idea discussed up to now, we
construct a 3D tight-binding Hamiltonian on a tetragonal
lattice, which is composed of 2D square lattices stacked along
the z direction as described in Fig. 3. For a 2D layer, we adopt
the lattice model proposed in Ref. [34] in which a unit cell
contains two sublattice sites, labeled A and B, where the B

sublattice is displaced by rAB = ( 1
2 , 1

2 ,δz) (0 < δz < 1) from
the A sublattice. Here we assume that both the in-plane and

out-of-plane lattice constants to be unity. The vertical shift
δz makes the symmetry of the lattice to be nonsymmorphic.
Explicitly, the Hamiltonian in the real space is given by

Ĥ (0) =
∑
〈i,j〉

t(r ij )ĉ†r i
ĉrj

+
∑
〈〈i,j〉〉

t ′(r ij )ĉ†r i
ĉrj

+
∑

〈i,j,k〉
iλ(r ij ,rjk)ĉ†r i

[(r ij × rjk) · σ ]ĉrk
, (20)

where t(r ij ) [t ′(r ij )] is the hopping amplitude between same
(different) sublattice sites, and λ(r ij ,rjk) denotes the spin-orbit
induced hopping amplitude between the same sublattice sites i

and k through the site j belonging to the other sublattice. Here,
r ij = r i − rj and the Pauli matrix σ indicates the spin degrees
of freedom. More detailed information about the lattice model
is given in Appendix A.

Let us note that Ĥ (0) possesses not only the time-reversal
symmetry T and the inversion symmetry P but also the off-
centered symmetries C̃⊥

2z = {C2z| 1
2 x̂ + 1

2 ŷ}, M̃⊥
x = {Mx | 1

2 x̂},
and M̃⊥

y = {My | 1
2 ŷ}, thus the system corresponds to the space

group No. 59. The corresponding screw/glide symmetries can
be defined as M̃

‖
z = C̃⊥

2zP = {Mz| 1
2 x̂ + 1

2 ŷ}, C̃
‖
2x = M̃⊥

x P =
{C2x | 1

2 x̂}, and C̃
‖
2y = M̃⊥

y P = {C2y | 1
2 ŷ}. By shifting the lo-

cation of the B site relative to the A site in a unit cell, the
symmetry of the Hamiltonian can be systematically lowered,
thus one can examine the role of a particular symmetry to
protect a relevant semimetal phase using a single lattice model.

First, we shift the position of the B site in a unit cell in
the y direction, which makes rAB = ( 1

2 ,δy �= 1
2 ,δz) as shown

in Fig. 3(c). This distortion breaks C̃⊥
2z and M̃⊥

y symmetries,
whereas M̃⊥

x is preserved as well as the P and T symmetries,
thus the system corresponds to the space group No. 11. The
resulting band structure is shown in Fig. 4(a). One can clearly
see that there are two line nodes in the kx = π plane, and
each line node connects two TRIMs, which is consistent with
the prediction of the general theory. To observe the band
crossing between two doublet pairs described in Fig. 2(c),
we construct an eight-band model by adding two copies of the
4 × 4 Hamiltonian in Eq. (20). As the hybridization between
the two 4 × 4 blocks is turned on, each line node passing
two TRIMs splits into two different nodal lines, thus one can
observe four nodal lines, and none of them passes a TRIM as
shown in Figs. 4(b) and 2(c).

The second distortion is achieved by deforming the lattice
along the [110] direction, which breaks M̃⊥

x and M̃⊥
y sym-

metries whereas C̃⊥
2z is preserved as well as the P and T

symmetries, thus the system corresponds to the space group
No. 13. [See Fig. 3(d).] As shown in Fig. 5(a), one can
observe four Dirac points protected by C̃⊥

2z symmetry located
at TRIMs k = (π,0,0), (π,0,π ), (0,π,0), and (0,π,π ). When
the number of bands is doubled by combining two different
4 × 4 Hamiltonians, one can observe four Dirac points on the
line k = (π,0,kz) and also k = (0,π,kz) with kz ∈ (−π,π ),
respectively, as shown in Fig. 5(b). Here none of Dirac points
is located at a TRIM in agreement with the prediction of the
general theory, and the relevant band structure is also consistent
with Fig. 1(c).
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U′ X U S X S′ U′

U′ X U S X S′ U′

FIG. 4. Band structure of a semimetal with Dirac line nodes
protected by M̃⊥

x = {Mx | 1
2 x̂} symmetry. (a) From four-band lattice

models with P , T , and M̃⊥
x symmetries. Here eigenstates are doubly

degenerate at each momentum. Doublet pairs on the kx = π plane
form two Dirac line nodes, each passes two TRIMs. The bold red
lines in the left panel mark the points in the BZ where two bands stick
together. (b) Similar plots from an eight-band lattice model. Crossing
points between two doublet pairs form four Dirac line nodes on the
kx = π plane, which correspond to those marked by red circles in
Fig. 2(c). In the figures, U ′ and S ′ indicate the momenta equivalent
to U and S, respectively.

U′ X U S X S′ U′

U′ X U S X S′ U′

FIG. 5. Band structure of a semimetal with Dirac point nodes
protected by C̃⊥

2z = {C2z| 1
2 x̂ + 1

2 ŷ} symmetry. (a) From four-band
lattice models with P , T , and C̃⊥

2z symmetries. Doublet pairs on the
k = (π,0,kz) and k = (0,π,kz) lines with kz ∈ [−π,π ], form Dirac
point nodes at every TRIM. A bold red dot on the left marks the points
where two bands stick together. (b) Similar plots from an eight-band
lattice model. Crossing points between two doublet pairs form four
Dirac points away from TRIM in both k = (π,0,kz) and k = (0,π,kz)
lines with kz ∈ [−π,π ], which correspond to those marked by red
circles in Fig. 1(c). In the figures, U ′ and S ′ indicate the momenta
equivalent to U and S, respectively.

VI. TIME-REVERSAL SYMMETRY BREAKING AND
FERMI SURFACE TOPOLOGY

Since the stability of a Dirac point/line node requires the
simultaneous presence of an off-centered symmetry (M̃⊥

x or
C̃⊥

2z) together with the T and P , it is interesting to examine
the influence of symmetry breaking on the band structure.
In particular, we find that the breaking of time reversal
symmetry, due to Zeeman effect from external magnetic field
(H) or exchange coupling from doped magnetic ions, can
create intriguing evolution in both the bulk and surface band
structures, as summarized in Table I.

In the case of the semimetal with Dirac point nodes
protected by C̃⊥

2z symmetry, a Dirac point with fourfold
degeneracy always splits into two Weyl points with twofold
degeneracy [35,36], which accompanies a Fermi arc connect-
ing the two Weyl points as shown in Fig. 6. More specifically,
when H ‖ ẑ, the system preserves C̃⊥

2z symmetry, and the two
Weyl points split from a Dirac point is shifted along the kz

direction. On the other hand, when H ⊥ ẑ, the split Weyl
points move in the plane normal to the kz direction.

In the case of the semimetal with Dirac line nodes protected
by M̃⊥

x symmetry, the application of the external magnetic
field causes more dramatic physical consequences. Firstly,
when H ‖ x̂, thus the system preserves M̃⊥

x symmetry, a Dirac
line node with fourfold degeneracy splits into two Weyl line
nodes with twofold degeneracy as shown in Fig. 7. Here both
the Dirac line node and the Weyl line nodes are located in
the kx = π plane. Interestingly, the splitting of a Dirac line
node is accompanied by emergent 2D surface states connecting
the split Weyl line nodes, which originate from the π Berry
phase around each Weyl line node [37–40]. The stability of the
Weyl line node can be understood in the following way. Since
M̃⊥

x symmetry is preserved in the whole kx = π plane even
in the presence of a magnetic field (H ‖ x̂), each eigenstate
still carries a quantized M̃⊥

x eigenvalues of ±i. Moreover,
due to the inversion symmetry P satisfying {P,M̃⊥

x } = 0, if
a state |�±(π,ky,kz)〉 at the momentum k = (π,ky,kz) has
the M̃⊥

x eigenvalues of ±i, the state |�±(π, − ky, − kz)〉 ≡
P |�±(π,ky,kz)〉 at the momentum k = (π, − ky, − kz) has
the M̃⊥

x eigenvalues of ∓i. Since the breaking of time-reversal
symmetry splits each twofold degenerate band of zero field into
two bands, the band structure has a configuration similar to the
one shown in Fig. 2(c). Let us note that a TRIM is invariant
under the inversion as well. Each state is nondegenerate at any
k except at TRIMs due to the broken time-reversal symmetry.
A stable Weyl line node with twofold degeneracy is formed
as long as the degenerate states at the crossing point have
different M̃⊥

x eigenvalues.
When H ⊥ x̂ breaks the M̃⊥

x symmetry, a Dirac line node
with fourfold degeneracy is lifted, and a band gap opens.
Figure 7(c) shows the band structure when H ‖ ẑ. One can
clearly see the opening of a band gap and the emergence of
chiral surface modes near the U -X-U ′ line. In this case, for any
2D kx-ky plane with fixed kz, the Chern number of the bands
below the gap is equal to 1, and the system can be viewed as a
3D quantum Hall insulator having 2D chiral metallic states on
the surface (provided that the Fermi energy is in the band gap).
Therefore by changing the direction of the external magnetic
field, one can introduce a transition from a semimetal with line
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TABLE I. Fermi surface topology of the semimetals protected by off-centered symmetries in the presence/absence of magnetic field. We
classify 3D topological semimetals with nodal point/lines protected by off-centered symmetries C̃⊥

2z, M̃⊥
x , M̃⊥

y as well as time-reversal T and
the inversion P symmetries in the presence/absence of external Zeeman fields. The “presence” or “absence” of each symmetry is indicated by
“Yes” or “No,” respectively, in the table. We note that the three off-centered symmetries are not independent due to the relation C̃⊥

2z = M̃⊥
y M̃⊥

x .
Here a Dirac (Weyl) point/line node indicates a point/line node with fourfold (twofold) degeneracy.

Magnetic field (H) C̃⊥
2z M̃⊥

x M̃⊥
y T P Fermi surface topology Figures

H = 0 No Yes No Yes Yes Dirac line node 4, 7(a)
H//[100] No Yes No No Yes Weyl line nodes 7(b)
H//[010] No No No No Yes Gapped
H//[001] No No No No Yes Gapped 7(c)

H = 0 Yes No No Yes Yes Dirac point nodes 5, 6(a)
H//[100] No No No No Yes Weyl point nodes
H//[010] No No No No Yes Weyl point nodes
H//[001] Yes No No No Yes Weyl point nodes 6(b)

H = 0 Yes Yes Yes Yes Yes Dirac line nodes 8(a)–8(c)
H//[100] No Yes No No Yes Weyl line nodes 8(d)–8(f)
H//[010] No No Yes No Yes Weyl line nodes
H//[001] Yes No No No Yes Gapped

nodes to a gapped phase, which can induce a dramatic change
in the magneto-transport properties. All these results can also
be confirmed by analyzing the low-energy k · p Hamiltonian
as shown in detail in Appendix D.

Finally, when two off-centered symmetries C̃⊥
2z and M̃⊥

x

exist at the same time, the system has an additional off-centered
mirror symmetry M̃⊥

y due to the relation C̃⊥
2z = M̃⊥

y M̃⊥
x . The

presence of multiple crystalline symmetries leads to three
Dirac line nodes at k = (π,0,kz), k = (π,π,kz), k = (0,π,kz)
with kz ∈ (−π,π ), each of which is an open line parallel to
the kz direction as shown in Fig. 8. When the magnetic field
H ‖ [100] or H ‖ [010] is applied to the system, one can find
a semimetal with Weyl line nodes since at least one of the
off-centered mirror symmetries is preserved in this case. One

U′ X U S X S′ U′ U′ X U S X S′ U′

FIG. 6. Magnetic field induced transition of Dirac points into Weyl points. The bulk band structure of the four-band lattice model with P ,
T , and C̃⊥

2z symmetries is shown in the lower panels after projection onto the surface BZ of a slab structure with a finite length Lx along the
x direction. The states localized on the x = 0 (x = Lx) surface are indicated by red (green) lines, respectively. (a) In the absence of magnetic
field. There are four Dirac points at TRIMs (X, U , Y , and T ) at k = (π,0,0), (π,0,π ), (0,π,0), (0,π,π ), respectively. There are nontopological
surface states on both surfaces which can be merged into bulk states through smooth deformation. (b) In the presence of magnetic field along
the z direction (hz = 0.2). A Dirac point with fourfold degeneracy splits into two Weyl points, each with twofold degeneracy. Splitting of a
Dirac point along the kz direction accompanies emergent surface states (Fermi arcs) connecting two split Weyl points, which are marked with
red dotted circles. In the figures, U ′ and S ′ indicate the momenta equivalent to U and S, respectively.
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U′ X U S X S′ U′

U′ X U S X S′ U′

U′ X U S X S′ U′

FIG. 7. Magnetic field induced transition of Dirac line nodes into Weyl line nodes and three-dimensional quantum Hall insulators. The
bulk band structure of the four-band lattice model with P , T , and M̃⊥

x symmetries is shown in the right panels after projection onto the surface
Brillouin zone of a slab structure with a finite length Lx along the x direction. The states localized on the x = 0 (x = Lx) surface are indicated
by red (green) lines, respectively. (a) In the absence of magnetic field. There are two Dirac line nodes on the kx = π plane. There are some
nontopological surface states which can be merged with bulk states through smooth deformation. (b) In the presence of magnetic field along
the x direction (hx = 0.3). A Dirac line node with fourfold degeneracy splits into two Weyl line nodes, each with twofold degeneracy. Splitting
of a Dirac line node accompanies emergent surface states connecting two split Weyl line nodes, which are marked with red dotted circles.
(c) In the presence of magnetic field along the z direction (hz = 0.7). A Dirac line node is fully gapped, and two-dimensional chiral surface
states emerge, which are marked with red dotted circles. In the figures, U ′ and S ′ indicate the momenta equivalent to U and S, respectively.

the other hand, when H ‖ [001], thus both of the off-centered
mirror symmetries are broken, a gapped insulator appears as
summarized in Table I.

VII. DISCUSSION

In centrosymmetric crystals, an off-centered twofold ro-
tation/mirror symmetry is obtained as a product of a glide
mirror/twofold rotation and inversion P . Namely, C̃⊥

2 = M̃‖P
and M̃⊥ = C̃

‖
2P . One can also ask about the role of other screw

rotation symmetries C̃
‖
n,p = {Cn|p

n
â‖} (n = 3,4,6 and p =

0,1, . . . ,n − 1) combined with inversion. Since the invariant
space of C̃n,pP is just TRIMs on the rotation axis of C̃n,p,

one can expect at most Dirac points on the rotation axis,
which has already been extensively studied [24,25]. On the
other hand, in the case of C̃

‖
4,p=1,3 (C̃‖

6,p=1,3,5) symmetry

which can generate twofold screw rotation (C̃‖
4,p)

2
((C̃‖

6,p)
3
)

and the associated off-centered mirror M̃⊥, one may consider
additional constraints on Dirac line nodes imposed by C̃

‖
4,p

(C̃‖
6,p). It is straightforward to show that C̃

‖
4,p=1,3 or C̃

‖
6,p=1,3,5

does not commute with M̃⊥ in the mirror plane on the
zone boundary where Dirac line nodes are expected, thus
the screw rotation does not affect the distribution of M̃⊥
eigenvalues. One exception is the case with C̃

‖
6,3 symmetry.

Since (C̃‖
6,3)

2 = {C3|0} commutes with M̃⊥, the distribution
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U′ X U S X S′ U′

U′ X U S X S′ U′

U′ X U S X S′ U′

U′ X U S X S′ U′

FIG. 8. Magnetic field induced transition of Dirac line nodes into Weyl line nodes in systems with both M̃⊥
x and C̃⊥

2z. (a) In the absence
of magnetic field. There are three open straight Dirac line nodes along k = (π,0,kz), (0,π,kz) and (π,π,kz) lines with kz ∈ [−π,π ] due to
the simultaneous presence of M̃⊥

x and M̃⊥
y . (b) The bulk band structure of the four-band lattice model with P , T , C̃⊥

2z, and M̃⊥
x symmetries.

(c) The band structure of the slab structure with a finite length along the x direction are shown. The states localized on the x = 0 (x = Lx)
surface are indicated by red (green) lines, respectively. (d)–(f) Similar plots in the presence of magnetic field along the x direction (hx = 0.3).
A Dirac line node with fourfold degeneracy splits into two Weyl line nodes, each with twofold degeneracy. Splitting of a Dirac line node
accompanies emergent surface states connecting two split Weyl line nodes, which are marked with dotted circles. In the figures, U ′ and S ′

indicate the momenta equivalent to U and S, respectively.

of M̃⊥ also satisfies threefold rotation symmetry, which
constrains the number of open line nodes to be a multiple
of 3.

It is worth to note that the presence of inversion symmetry
is not necessary to have off-centered symmetries. Off-centered
symmetries can exist, in general, as long as a nonsymmorphic
crystal with screw/glide symmetries contain an additional
point group symmetry such as mirror symmetry whose
reference point does not coincide with that of screw/glide
symmetries. In noncentrosymmetric systems, stable Weyl
point/line nodes with twofold degeneracy can be protected
by off-centered symmetry when two bands with different
eigenvalues cross in the relevant invariant space.

Up to now, we have considered t⊥ and t‖ separately.
However, in many nonsymmorphic crystals, t⊥ and t‖ coexist,
which gives rise to off-centered screw/glide symmetries.
Interestingly, the off-centered twofold screw/glide symmetry
can protect a single point/line node with fourfold degeneracy
in an invariant space. For instance, let us consider a system
corresponding to the space group No. 14 containing T , {P |0},
and an off-centered glide mirror M̃

‖,⊥
z = {Mz| 1

2 x̂ + 1
2 ẑ} with

t⊥ = 1
2 ẑ and t‖ = 1

2 x̂. On the kz = π plane, the Kramers

degenerate M̃
‖,⊥
z eigenstates at each momentum have the same

M̃
‖,⊥
z eigenvalues ±iei 1

2 kx . However, due to their momentum
dependence, when kx is shifted by 2π , two different M̃

‖,⊥
z

eigensectors should be interchanged. This naturally gives rise

to an open line node connecting two TRIMs at k = (0,0,π ) and
(0,π,π ) as shown in Figs. 9(d)–9(f). Contrary to the semimetal
protected by M̃⊥

x with an even number of nodal lines, the
semimetal protected by the off-centered glide mirror M̃

‖,⊥
z has

a single nodal line. This is because, due to the kx dependence
of M̃

‖,⊥
z eigenvalues, it is possible to get around the doubling

in the number of line nodes [25]. (See Appendix E.) Repeating
a similar analysis, one can easily see that an off-centered
twofold screw rotation, C̃‖,⊥

2z = M̃
‖,⊥
z P = {C2z| 1

2 x̂ + 1
2 ẑ}, has

momentum-dependent eigenvalues, which can give rise to a
semimetal with a single Dirac point on each rotation axis. [See
Figs. 9(a)–9(c).]

Let us note that a line node semimetal protected by an
off-centered glide mirror is already discussed in Ref. [41].
Although the key role of an off-centered glide mirror on
the protection of a nodal line with fourfold degeneracy is
correctly described in this work, a line node predicted in
Ref. [41] forms a closed loop, which is not consistent with
our theory. We believe that a nodal line protected by a single
off-centered glide mirror should have an open shape. Correct
description of the shape of nodal lines is important to resolve
the controversies related with the mechanism protecting the
circular Dirac line node in SrIrO3. To explain the origin
of the Dirac line node in SrIrO3, several different ideas are
proposed including off-centered glide mirror symmetry [41],
simultaneous presence of mirror and chiral symmetries [17],
the presence of multiple nonsymmorphic symmetries [42].

075135-9



YANG, BOJESEN, MORIMOTO, AND FURUSAKI PHYSICAL REVIEW B 95, 075135 (2017)

TABLE II. Properties of candidate systems having Dirac line nodes with four-fold degeneracy in the presence of strong spin-orbit coupling.
We show the shape/number of Dirac line nodes, and the associated symmetries in two candidate materials BaTaS [45], SrIrO3 [42], and the
model Hamiltonian Ĥ (0) in Eq. (20) with/without the distortion described by Ĥ (1) in Eq. (A2). These are the only examples proposed up to now
which can support stable Dirac line nodes with four-fold degeneracy even in the presence of strong spin-orbit coupling. Here the number of
line nodes indicates the minimal number of Dirac line nodes appearing near the Fermi level in each system when the nodal lines are assumed
to be almost dispersionless.

Candidate system Space group Relevant symmetry Shape of line nodes Number of line nodes

Ĥ (0) 59 M̃⊥
x or M̃⊥

y open straight 2
Ĥ (0) + δH (1)(k) 11 M̃⊥

x open 1
BaTaS 194 M̃⊥

z open straight 3
SrIrO3 62 C̃

‖,⊥
2z and C̃

‖
2y closed loop 1

According to our theoretical analysis, the presence of a
single nonsymmorphic symmetry can protect only line nodes
with open shape. The presence of multiple nonsymmorphic
symmetries is necessary to describe the circular nodal line
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FIG. 9. Dirac points/lines protected by off-centered screw/glide
symmetries. (a)–(c) Dirac points protected by off-centered twofold
screw rotation C̃

‖,⊥
2z = {C2z| 1

2 x̂ + 1
2 ẑ}. (a) A schematic figure de-

scribing the distribution of 3D Dirac points in momentum space.
The location of two 3D Dirac points is marked in red dots. Here
high-symmetry momenta are labeled as in Ref. [33]. (b) The band
structure along the D-B-D line on which {P,C̃

‖,⊥
2z } = 0. A pair of

degenerate bands (a doublet pair) form a single 3D Dirac point at
the time-reversal invariant momentum (TRIM) with kz = 0. (c) The
band structure when two doublet pairs cross on the D-B-D line.
There are in total 2n (n is an integer) 3D Dirac points, which are all
away from TRIMs. (d)–(f) Dirac lines protected by off-centered glide
mirror M̃‖,⊥

z = {Mz| 1
2 x̂ + 1

2 ẑ}. (d) A schematic figure describing the
location of the nodal line in momentum space. The location of the
line node in the kz = π plane is marked in red color. (e) Shape of a
nodal line in the kz = π plane in which {P,M̃‖,⊥

z } = 0 is satisfied.
The corresponding band structure along the D-Z-D line is shown in
the bottom. The doublet pair are degenerate at two TRIMs (C and Z

points), which are a part of line nodes in the kz = π plane. (f) Shape
of nodal lines when two doublet pairs cross in the kz = π plane. The
corresponding band structure along the D-Z-D line is shown in the
bottom.

in SrIrO3 as proposed in Ref. [42]. More explicitly, in the
presence of both n-glide and b-glide symmetries, four bands,
each of which is doubly degenerate, should be coupled in the
Brilouin zone [42,43], and a circular Dirac line node appears
between the second and the third bands. This can be contrasted
to the case with a single off-centered symmetry in which only
two degenerate bands are coupled. In SrIrO3, the line node
is located in a 2D plane invariant under n-glide symmetry
between two bands having different n-glide eigenvalues. Thus
the band degeneracy along the line node can be maintained
as along as n-glide symmetry is preserved, even when b-glide
symmetry is broken as discussed in Ref. [44]. However, in the
absence of b-glide symmetry, since four doubly degenerate
bands are not necessarily entangled, they can be decoupled
into two groups of bands, which accompanies the degeneracy
lifting along the circular line node. Namely, the line node is
not topologically stable any more, thus it can be removed via
continuous deformation of the band structure.

BaTaS3 is another material, which has stable Dirac line
nodes with fourfold degeneracy in the presence of spin-orbit
coupling. Interestingly, according to a recent first-principles
calculation [45], it is found that the nodal lines in this
material have open shape, which is consistent with our model
calculation shown in Fig. 2(b). In this system, due to the addi-
tional mirror symmetry whose invariant plane is orthogonal to
that of the off-centered mirror symmetry, the nodal lines have
open shape similar to the case shown in Fig. 8(a). Though
the role of the additional mirror symmetry is emphasized in
Ref. [45], based on our theoretical consideration, we think that
the presence of P , T , and an off-centered mirror is sufficient
for the protection of the Dirac line node itself.

Table II summarizes the space group, relevant symmetry,
and the shape of line nodes for the above two candidate
materials and our model Hamiltonian. To sum up, we propose
a general theoretical framework to understand a class of
3D semimetals with Dirac line/point nodes with fourfold
degeneracy, which are stable in the presence of strong spin-
orbit coupling. We have identified the presence of off-centered
crystalline symmetries as a mechanism for the protection
of the point/line nodes. Interestingly, in a recent work, it
is found that off-centered crystalline symmetries can also
protect band degeneracy in 2D semimetals [46], which shows
that off-centered crystalline symmetries play a crucial role to
protect a wide class of semimetals both in 2D and 3D.

According to our theoretical study, if the crystalline
symmetries relevant to the protection of each nodal semimetal
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is partially lifted by applying external magnetic field or doping
magnetic ions, one can observe a significant change of Fermi
surface topology, involved with the emerging topological
semimetals with Weyl point nodes or Weyl line nodes, or
even a gapped insulator. Such a tunability of the Fermi surface
topology under magnetic field can provide a promising venue
for various intriguing topological magneto-transport phenom-
ena. Moreover, since both weak disorder (Coulomb potential)
is irrelevant (marginally irrelevant) perturbation, the prediction
based on noninteracting semimetals is perturbatively valid
even in disordered (interacting) systems [47,48]. To understand
the role of strong electron correlation and disorder, and, in
particular, the combined effect of them are important issues to
be studied in future research. For instance, a recent theoretical
proposal for a possible spin liquid state with a nodal line [49]
indicates that strong electron correlation can generate a variety
of exotic topological phases with point/line nodes which are
unexplored up to now.
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APPENDIX A: LATTICE MODEL

In the momentum space, the tight-binding Hamiltonian
in Eq. (20) can be written as Ĥ (0) = ∑

k ĉ†(k)H (0)(k)ĉ(k)
with

H (0)(k) = − [(t1 + t2 cos kz)τx + t2 sin kzτy] cos
kx

2
cos

ky

2

− t3(cos kx + cos ky) − t4 cos kz

+ (λ1 − λ2 cos kz)(sin kxσy − sin kyσx)τz, (A1)

where the Pauli matrices τx,y,z denote the sublattice degrees
of freedom. Ĥ (0) is invariant not only under the time-reversal
symmetry T and the inversion symmetry P but also under
the off-centered symmetries C̃⊥

2z = {C2z| 1
2 x̂ + 1

2 ŷ}, M̃⊥
x =

{Mx | 1
2 x̂}, and M̃⊥

y = {My | 1
2 ŷ}. At the 	 point, the symmetry

operators are written as T = iσyK, P = τx , C̃⊥
2z = iσz, M̃⊥

x =
iσx , and M̃⊥

y = iσy , whereK is complex conjugation operator.
To understand the role of each off-centered symmetry, we

distort the lattice in two different ways. First, we shift the
position of the B site in a unit cell in the y direction, which
makes rAB = ( 1

2 ,δy �= 1
2 ,δz). This distortion breaks C̃⊥

2z and
M̃⊥

y symmetries, and generates the following additional terms
in the Hamiltonian:

δH (1)(k) = [(t ′1 + t ′2 cos kz)τy − t ′2 sin kzτx] cos
kx

2
sin

ky

2

+ (λ′
1 − λ′

2 cos kz) sin kxσzτz

− [λ′
2(cos kx + cos ky) + λ3] sin kzσxτz. (A2)

The full Hamiltonian H (0)(k) + δH (1)(k) supports nodal lines
in the kx = π plane protected by the M̃⊥

x symmetry. The 8 × 8
Hamiltonian with the band structure shown in Fig. 4(b) is given
by [H (0)(k) + δH (1)(k)]υ0 + λ4σxυy , where υ0 is a 2 × 2 unit
matrix and υx,y,z are Pauli matrices in the new grading.

The second distortion is achieved by deforming the lattice
along the [110] direction, which breaks M̃⊥

x , M̃⊥
y symmetries

and generates the following term,

δH (2)(k) = − [(t ′1 + t ′2 cos kz)τx + t ′2 sin kzτy] sin
kx

2
sin

ky

2

− (λ′
1 + λ′

2 cos kz)(sin kxσx − sin kyσy)τz

+ λ′
2 sin kz(cos kx − cos ky)σzτz. (A3)

The full Hamiltonian H (0)(k) + δH (2)(k) supports nodal points
protected by the C̃⊥

2z symmetry. The 8 × 8 Hamiltonian with
the band structure shown in Fig. 5(b) is given by [H (0)(k) +
δH (2)(k)]υ0 + λ5σzυy + ευz. We have used the following
parameters in the numerical calculations: t1 = 1, t2 = 0.15,
t3 = 0.3, t4 = 0.1, λ1 = 1.5, λ2 = 0.4, t ′1 = 0.5, t ′2 = 0.15,
λ′

1 = 0.7, λ′
2 = 0.2, λ3 = 0.2, λ4 = 0.12, λ5 = 0.05, and ε =

0.05.

APPENDIX B: TOPOLOGICAL CHARGE

The topological charges of a point node protected by C̃⊥
2z

and a line node protected by M̃⊥
x can be determined as follows.

First, for a point node, a zero-dimensional topological invariant
Q is defined as

Q = 1

8
[N (kN ) − N (kS)] ≡ 1

8
�N ∈ Z, (B1)

where kN (kS) is the kz momentum on the C̃⊥
2z invariant axis

slightly above (below) the Dirac point, and N (kz) is given by

N (kz) = N+(kz) − N−(kz),

N±(kz) = Nc
±(kz) − Nv

±(kz), (B2)

where Nc
±(kz) and Nv

±(kz) denote the numbers of the con-
duction and valence bands with the C̃⊥

2z eigenvalues of ±i at
the momentum kz. Let us note that the sum N+(kz) + N−(kz)
is constant on the C̃⊥

2z invariant axis whereas the difference
N (kz) = N+(kz) − N−(kz) can take an integer value, thus
provides a topological index characterizing a Dirac point,
which jumps across a Dirac point. The explicit form of the
topological charge Q can be written as

Q = 1

8
[(�Nc

+ − �Nc
−) − (�Nv

+ − �Nv
−)],

= 1

4
(�Nc

+ − �Nc
−),

= −1

4
(�Nv

+ − �Nv
−), (B3)

which results from �Nc
+ − �Nc

− = −(�Nv
+ − �Nv

−). Thus,
to determine the topological charge Q, one can use either the
change in the number of conduction bands �Nc

± or the change
in the number of valence bands �Nv

±.
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There are several constraints on N (kz) imposed by the
time-reversal and the inversion symmetries. Firstly, the an-
tiunitary time-reversal symmetry, which commutes with the
C̃⊥

2z requires

N±(kz) = N∓(−kz), (B4)

thus

N (kz) = −N (−kz). (B5)

On the other hand, the inversion symmetry anticommuting
with C̃⊥

2z requires

N±(kz) = N∓(−kz), (B6)

thus again

N (kz) = −N (−kz). (B7)

The constraint in Eq. (B5) and Eq. (B7) naturally leads to
the band structure and the corresponding distribution of N (kz)
shown in Fig. 1.

In the case of a line node protected by M̃⊥
x , a zero-

dimensional topological invariant Q′ can be defined as follows.
For a given gapless point k on a line node in the kx = π plane,
one can find two points kN and kS in a way that the line
connecting them is normal to the tangential vector at k. Then
the topological charge of a line node can be defined in the
exactly the same way as in the case of the point node. Namely,
a zero-dimensional topological invariant is defined as

Q′ = 1

8
[N (kN ) − N (kS)] ≡ 1

8
�N ∈ Z, (B8)

where the definition of N (π,ky,kz) is exactly the same as
Eq. (B2). Namely,

N (π,ky,kz) = N+(π,ky,kz) − N−(π,ky,kz),

N±(π,ky,kz) = Nc
±(π,ky,kz) − Nv

±(π,ky,kz), (B9)

where Nc
±(π,ky,kz) and Nv

±(π,ky,kz) denote the numbers of
the conduction and valence bands with the M̃⊥

x eigenvalues of
±i at the momentum (π,ky,kz). The topological invariant Q′
measures the change in N (k) across a line node in the kx = π

plane.
There are several constraints on N (π,ky,kz) imposed by

the time-reversal and the inversion symmetries. Firstly, the
antiunitary time-reversal symmetry, which commutes with the
M̃⊥

x requires

N±(π,ky,kz) = N∓(π, − ky, − kz), (B10)

thus

N (π,ky,kz) = −N (π, − ky, − kz). (B11)

On the other hand, the inversion symmetry anticommuting
with M̃⊥

x requires

N±(π,ky,kz) = N∓(π, − ky, − kz), (B12)

thus again

N (π,ky,kz) = −N (π, − ky − kz). (B13)

The constraint in Eqs. (B11) and (B13) naturally leads to
the band structure and the corresponding distribution of
N (π,ky,kz) shown in Fig. 2.

It is worth to note that both time-reversal symmetry and
inversion symmetry put the same constraint on the topological
invariants as shown in Eqs. (B5) and (B7), and also in
Eqs. (B11) and (B13). This means that as long as either P

or T is preserved, the eigenstates always form pairs carrying
quantized eigenvalues of C̃⊥

2z or M̃⊥
x in the relevant invariant

space. Since an eigenstate at a generic momentum is nonde-
generate when either T or P is broken, a pair is composed
of nondegenerate states in this case. Hence whenever there is
crossing of states having different eigenvalues of the relevant
off-centered symmetries, Weyl point/line nodes with twofold
degeneracy can be created.

APPENDIX C: CLIFFORD ALGEBRAS AND STABILITY
OF NODAL POINTS AND NODAL LINES

Here we use Clifford algebras [50–56] to show the existence
of stable Dirac points under C̃⊥

2z and stable Dirac line nodes
under M̃⊥

x , and determine the relevant topological charges.
First, we show that stable Dirac points protected by C̃⊥

2z can
exist at the four TRIMs at k = (π,0,0), (π,0,π ), (0,π,0), and
(0,π,π ), where {P,C̃⊥

2z} = 0 and (C̃⊥
2z)

2 = −1. Suppose that
the effective Dirac Hamiltonian around a TRIM has a Dirac
mass term γ0,

H = qxγx + qyγy + qzγz + mγ0, (C1)

where q is the momentum measured from the TRIM, m is the
Dirac mass, and the gamma matrices mutually anticommute.
The velocity is set equal to unity. We are going to see that the
Dirac mass term mγ0 is not allowed by symmetries.

Since T and P changes q → −q, the invariance of the
Dirac Hamiltonian requires the gamma matrices to obey

{T ,γx} = {T ,γy} = {T ,γz} = [T ,γ0] = 0, (C2)

{P,γx} = {P,γy} = {P,γz} = [P,γ0] = 0. (C3)

The symmetry operators T , P , and C̃⊥
2z satisfy the following

relations:

T 2 = −1, P 2 = 1, (C̃⊥
2z)

2 = −1, (C4)

[T ,P ] = [T ,C̃⊥
2z] = {P,C̃⊥

2z} = 0. (C5)

Since C̃⊥
2z changes qx,y → −qx,y , the invariance of the Hamil-

tonian under C̃⊥
2z leads to the relations

{C̃⊥
2z,γx} = {C̃⊥

2z,γy} = [C̃⊥
2z,γz] = [C̃⊥

2z,γ0] = 0. (C6)

The Clifford algebra is constructed from the gamma
matrices and the symmetry operators,

Cl4,4 = {T ,JT ,Jγ0,C̃
⊥
2zP γz; γx,γy,γz,P γxγyγz}, (C7)

where J represents the imaginary unit “i” satisfying J 2 = −1
and {T ,J } = 0. Here we have used the notation for the
Clifford algebra Clp,q = {e1, . . . ,ep; ep+1, . . . ,ep+q}, where
the generators ej mutually anticommute and satisfy e2

j =
−1 for j = 1, . . . ,p and e2

j = +1 for j = p + 1, . . . ,p + q.
The existence/absence condition of the Dirac mass mγ0 is
determined by the extension problem [52]

Cl2,4 → Cl3,4. (C8)
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The relevant classifying space is R2−4+2 = R0, and π0(R0) =
Z. This implies that no Dirac mass is available, and a Dirac
point has a Z topological charge.

We have seen in Fig. 5(b) that Dirac point nodes are shifted
from TRIMs in the eight-band model. Their stability can be
understood with Clifford algebra as follows. We consider the
Dirac Hamiltonian in Eq. (C1) with (qx,qy,qz) measured from
a Dirac point away from TRIMs. In this case T and P are not
independent symmetries, and the product T P is the symmetry
operator to be considered. It satisfies the relations

(T P )2 = −1,

[T P,γx] = [T P,γy] = [T P,γz] = [T P,γ0] = 0,

{T P,C̃⊥
2z} = 0. (C9)

From he gamma matrices γμ and the symmetry operators, we
can construct the Clifford algebra

Cl0,4 ⊗ Cl2,1 = {; γx,γy,γz,γ0} ⊗ {T P,JT P ; γxγyC̃
⊥
2z}.
(C10)

The existence condition of the Dirac mass term mγ0 is
determined from the extension problem

Cl0,2 ⊗ Cl2,1 → Cl0,3 ⊗ Cl2,1, (C11)

which is equivalent to the extension of complex Clifford
algebra Cl4 → Cl5, for which the relevant classifying space is
C4 = C0. Since π0(C0) = Z, no Dirac mass term is available,
and a Dirac point has an integer topological index.

Next, we prove the stability of the line nodes protected by
M̃⊥

x in the kx = π plane where {P,M̃⊥
x } = 0 and (M̃⊥

x )2 = −1.
We prove the stability of line nodes in two steps. First, we show
that two bands touch at TRIMs with kx = π . We consider the
Dirac Hamiltonian

H = qxγx + qyγy + mγ0, (C12)

where (qx,qy) is a momentum measured from a TRIM with
kz = 0 or π . The gamma matrices satisfy the relations in
Eqs. (C2) and (C3). The symmetry operators satisfy

T 2 = −1,P 2 = 1,(M̃⊥
x )2 = −1,

[T ,P ] = [T ,M̃⊥
x ] = {P,M̃⊥

x } = 0. (C13)

Since M̃⊥
x changes the momentum q = (qx,qy,qz) →

(−qx,qy,qz), the commutation relations between gamma ma-
trices and M̃⊥

x are given by

{M̃⊥
x ,γx} = [M̃⊥

x ,γy] = [M̃⊥
x ,γ0] = 0. (C14)

Around TRIMs, T and P can be treated as symmetry operators.
We can construct the Clifford algebra

Cl4,2 ⊗ Cl1,0 = {T ,T J,Jγ0,M̃
⊥
x P γy ; γx,γy} ⊗ {Pγxγy ; }.

(C15)

The existence condition of the Dirac mass term mγ0 is
determined by the extension problem

Cl2,2 ⊗ Cl1,0 → Cl3,2 ⊗ Cl1,0, (C16)

or equivalently, Cl4 → Cl5. The relevant classifying space
is C4 = C0, and π0(C0) = Z. Thus, no Dirac mass term is

available. This means that the energy levels at these TRIMs
are fourfold degenerate.

Next, we fix kz to be constant different from 0 and π . We
consider the Dirac Hamiltonian (C12), where qx and qy are
now understood to be momentum measured from a line node
on the constant kz plane. Away from TRIMs, T and P are not
independent symmetries, and instead the product T P is the
symmetry operator to be considered. It obeys the relations

(T P )2 = −1,

[T P,γx] = [T P,γy] = [T P,γ0] = 0,

{T P,M̃⊥
x } = 0. (C17)

Let us consider if the Dirac mass term mγ0 is allowed in
the Dirac Hamiltonian (C12) under the symmetries T P and
M̃⊥

x . The Clifford algebra is constructed from the symmetry
operators and the gamma matrices:

Cl1,3 ⊗ Cl2,0 = {JγxM̃
⊥
x ; γx,γy,γ0} ⊗ {T P,JT P ; }. (C18)

The extension problem Cl1,1 ⊗ Cl2,0 → Cl1,2 ⊗ Cl2,0 is
equivalent to Cl3,1 → Cl4,1, which leads to the classifying
space R3+2−1 = R4; π0(R4) = Z. This means that a line node
is topologically stable on the kx = π plane.

APPENDIX D: LOW-ENERGY k · p
HAMILTONIAN ANALYSIS

Here we construct the low-energy effective 4 × 4 Hamilto-
nian near the momentum k = (π,0,0) to understand the nature
of nodal points/lines depending on the symmetry of the system.
We take the following representation of symmetry operators:

T = iσyτzK,P = −τy,C̃
⊥
2z = iσzτz,

M̃⊥
x = iσxτz,M̃

⊥
y = iσy. (D1)

The effective Hamiltonian can be obtained by collecting all
symmetry-allowed operators up to linear order in q = k −
(π,0,0). In the following analysis we omit terms proportional
to the unit 4 × 4 matrix for simplicity.

Firstly, the effective Hamiltonian invariant under T , P , and
C̃⊥

2z has the form

H0 = qx(v1xτx + v2xσxτz + v3xσyτz)

+ qy(v1yτx + v2yσxτz + v3yσyτz)

+ vzqzσzτz (D2)

with energy eigenvalues ±E where

E2 = [(v1xqx + v1yqy)2 + (v2xqx + v2yqy)2

+ (v3xqx + v3yqy)2 + (vzqz)
2]. (D3)

There is a Dirac point at q = 0.
Secondly, the effective Hamiltonian invariant under T , P ,

and M̃⊥
x has the form

H0 = qx(v1xτx + v2xσyτz + v3xσzτz) + (vyqy + vzqz)σxτz,

(D4)

whose energy eigenvalues are

E = ±[(
v2

1x + v2
2x + v2

3x

)
q2

x + (vyqy + vzqz)
2
]1/2

. (D5)
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There is a Dirac line node located at qx = 0 and vyqy + vzqz =
0.

Finally, the effective Hamiltonian invariant under T , P ,
C̃⊥

2z, and M̃⊥
x has the form

H0 = qx(v1xτx + v2xσyτz) + vyqyσxτz, (D6)

whose energy eigenvalues are

E = ±[(
v2

1x + v2
2x

)
q2

x + (vyqy)2
]1/2

. (D7)

There is a Dirac line located at qx = qy = 0. In all three cases,
the influence of external magnetic field can be examined by
adding a Zeeman term H · σ = hxσx + hyσy + hzσz to H0,
and the results of the analysis are summarized in Table I.

APPENDIX E: SINGLE DIRAC POINT/LINE NODE
PROTECTED BY OFF-CENTERED SCREW/GLIDE

SYMMETRIES

Let us first consider an off-centered screw rotation C̃
‖,⊥
2z =

{C2z| 1
2 x̂ + 1

2 ẑ} which transforms the spatial coordinate as

C̃
‖,⊥
2z : (x,y,z) →

(
−x + 1

2
, − y,z + 1

2

)
. (E1)

Let us note that the partial translation in C̃
‖,⊥
2z has both

the parallel and perpendicular components relative to the
rotation axis. The eigenvalues of C̃

‖,⊥
2z are given by c±(kz) =

±iei 1
2 kz , which is momentum dependent. After straightforward

calculation, one can find the following commutation relations:

C̃
‖,⊥
2z PT = e−ikx+ikzP T C̃

‖,⊥
2z ,

C̃
‖,⊥
2z P = eikx−ikzP C̃

‖,⊥
2z . (E2)

Thus, along the C̃
‖,⊥
2z invariant lines with kx = π , we find

C̃
‖,⊥
2z [PT |c±(kz)〉] = c±(kz)[PT |c±(kz)〉], (E3)

where C̃
‖,⊥
2z |c±(kz)〉 = c±(kz)|c±(kz)〉. Namely, the Kramers

degenerate states related by PT at a momentum k have
the same C̃

‖,⊥
2z eigenvalues c±(kz) = ±iei 1

2 kz . From c±(kz +
2π ) = c∓(kz), one can see that two sets of degenerate bands
having different C̃

‖,⊥
2z eigenvalues should be interchanged

when kz is shifted by 2π . Also, the fact that c±(kz) is pure
imaginary (real) when kz = 0 (kz = π ) indicates that the two

bands should be degenerate at kz = 0 to satisfy time-reversal
symmetry. This consideration naturally leads to the band
structure shown in Figs. 9(a)–9(c) where two sets of degenerate
bands having different C̃

‖,⊥
2z eigenvalues form a doublet pair

with a single Dirac-type crossing at kz = 0. This doublet with a
single Dirac point provides a basic building block to construct
the band structure along the C̃

‖,⊥
2z invariant lines with kx = π .

Now we consider an off-centered glide mirror M̃
‖,⊥
z =

{Mz| 1
2 x̂ + 1

2 ẑ}, which transforms the spatial coordinate as

M̃‖,⊥
z : (x,y,z) →

(
x + 1

2
,y, − z + 1

2

)
. (E4)

Let us note that the partial translation in M̃
‖,⊥
z has both the

parallel and perpendicular components relative to the mirror
plane. The eigenvalues of M̃

‖,⊥
z are given by m±(kx,ky) =

±iei 1
2 kx , which is momentum dependent. After straightforward

calculation, one can find the following commutation relations

M̃‖,⊥
z PT = e−ikz+ikx P T M̃‖,⊥

z ,

M̃‖,⊥
z P = eikz−ikx P M̃‖,⊥

z . (E5)

Thus, in the kz = π plane, we find

M̃‖,⊥
z [PT |m±(kx,ky)〉] = m±(kx,ky)[PT |m±(kx,ky)〉],

(E6)

where M̃
‖,⊥
z |m±(kx,ky)〉 = m±(kx,ky)|m±(kx,ky)〉. Namely,

the degenerate states related by PT at a momentum k
have the same M̃

‖,⊥
z eigenvalues m±(kx,ky) = ±iei 1

2 kx . From
m±(kx + 2π,ky) = m∓(kx,ky), one can see that two sets of
degenerate bands having different M̃

‖,⊥
z eigenvalues should

be interchanged when kx is shifted by 2π . Also, the fact
that m±(kx,ky) is pure imaginary when (kx,ky) = (0,0), (0,π )
indicates that the two bands should be degenerate at these two
points to satisfy time-reversal symmetry. This consideration
naturally leads to the band structure shown in Figs. 9(d)–9(f)
where two sets of degenerate bands having different M̃

‖,⊥
z

eigenvalues form a doublet pair in the whole kz = π plane with
a single open-shaped Dirac line node passing (kx,ky) = (0,0)
and (0,π ). This doublet with a single Dirac line node provides
a basic building block to construct the band structure in the
kz = π plane.
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