
PHYSICAL REVIEW B 95, 075129 (2017)

Excitonic pairing and insulating transition in two-dimensional semi-Dirac semimetals
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A sufficiently strong long-range Coulomb interaction can induce excitonic pairing in gapless Dirac semimetals,
which generates a finite gap and drives the semimetal-insulator quantum phase transition. This phenomenon is in
close analogy to dynamical chiral symmetry breaking in high-energy physics. In most realistic Dirac semimetals,
including suspended graphene, the Coulomb interaction is too weak to open an excitonic gap. The Coulomb
interaction plays a more important role at low energies in a two-dimensional semi-Dirac semimetal, in which
the fermion spectrum is linear in one component of momenta and quadratic in the other, than a Dirac semimetal,
and indeed leads to breakdown of Fermi liquid theory. We study dynamical excitonic gap generation in a
two-dimensional semi-Dirac semimetal by solving the Dyson-Schwinger equation, and show that a moderately
strong Coulomb interaction suffices to induce excitonic pairing. Additional short-range four-fermion coupling
tends to promote excitonic pairing. Among the available semi-Dirac semimetals, we find that the TiO2/VO2

nanostructure provides a promising candidate for the realization of an excitonic insulator. We also apply the
renormalization group method to analyze the strong coupling between the massless semi-Dirac fermions and the
quantum critical fluctuation of the excitonic order parameter at the semimetal-insulator quantum critical point,
and reveal non-Fermi liquid behaviors of semi-Dirac fermions.
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I. INTRODUCTION

The past decade has witnessed the appearance of a huge
amount of experimental and theoretical work on the physical
properties of various semimetals, in which the valence and
conduction bands touch at isolated points [1–3]. The low-
energy elementary excitations in these semimetals are various
types of massless fermions. The fermion density of state
(DOS) vanishes at band-touching points, so the Coulomb
interaction remains long-ranged. This is in sharp contrast
to the ordinary metals featuring a finite Fermi surface,
where Coulomb interaction becomes short range due to static
screening.

Graphene is a two-dimensional (2D) Dirac semimetal with
massless Dirac fermions being its low-energy excitations [4,5].
The surface state of the three-dimensional (3D) topological
insulator (TI) is also a 2D Dirac semimetal [6,7]. Apart
from these two examples, there are also a number of other
systems that support low-energy bulk massless Dirac or Weyl
fermions. For instance, a 3D Dirac semimetal emerges at
the quantum critical point (QCP) between a trivial band
insulator and a topological insulator [8–11]. Moreover, stable
3D Dirac semimetal, protected by crystal symmetry, has been
found to exist in Na3Bi [12] and Cd3As2 [13–15]. A 3D
Weyl semimetal, which hosts fermions with linear dispersion
around pairs of Weyl points with opposite chirality, was
observed in TaAs [16–19], NbAs [20], TaP [21,22], and
NbP [23,24] by angle-resolved photoemission spectroscopy
(ARPES) experiments. Several other types of semimetals,
including 3D quadratic semimetals [25,26], 3D anisotropic
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Weyl semimetals [27], 3D double Weyl semimetals [28,29], 3D
nodal-line semimetals [30–33], and 2D semi-Dirac semimetals
[34,35], are also widely investigated.

The effects of the long-range Coulomb interaction have
been studied in various types of semimetals [5,34–52]. The role
of the Coulomb interaction depends crucially on the fermion
dispersion and the dimension. Extensive renormalization
group (RG) analysis [53] has revealed that the Coulomb
interaction is marginally irrelevant in 2D Dirac semimetals
[5,36,37], 3D Dirac/Weyl semimetals [38–41], and also 3D
double Weyl semimetals [49,50]. The Fermi liquid (FL) theory
is valid in 2D Dirac semimetals [5]. However, the Coulomb
interaction cannot be simply neglected as it results in fermion
velocity renormalization and logarithmic-like correction to
some of the observable quantities [5,54–59]. Indeed, the
predicted velocity renormalization has already been observed
in ultraclean suspended graphene [60], quasi-freestanding
graphene on silicon carbide (SiC) [61], and graphene on boron
nitride substrate [62]. There is also experimental evidence
for the renormalization of fermion dispersion in the TI-like
system of a Bi bilayer grown on Bi2Se3 [63], which seems
to be caused by the Coulomb interaction. In a 3D semimetal
with quadratic dispersion, the Coulomb interaction is found
to be relevant and to cause non-Fermi liquid (NFL) behaviors
[42]. It is interesting to notice that recent ARPES experiments
have discovered NFL behavior in the 3D quadratic semimetal
material Pr2Ir2O7 [64]. Moreover, in a 3D anisotropic Weyl
semimetal [48] and a 3D nodal-line semimetal [51], the
FL description is robust because the Coulomb interaction is
irrelevant.

In an interacting 2D Dirac fermion system, an intriguing
property is that the strong Coulomb interaction might bind a
gapless fermion and a gapless hole to form an excitonic pair,
which generates a finite energy gap at the Dirac points and turns
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the Dirac semimetal into an excitonic insulator [5,65,66]. This
picture is very similar to the nonperturbative phenomenon of
dynamical chiral symmetry breaking (DCSB) that has been
extensively investigated in high-energy physics [67] since the
pioneering work of Nambu and Jona-Lasino [68]. In QCD, the
current quarks are massless, but acquire a dynamical mass due
to the strong interaction mediated by gluons. The dynamical
quark mass breaks the chiral symmetry that is preserved by
massless quarks. In a 2D Dirac semimetal, the dynamical
fermion mass gap breaks the sublattice symmetry respected
by massless Dirac fermions.

According to theoretical analysis [5,65], an excitonic gap
can be dynamically generated in zero external magnetic field
only when the effective strength of the Coulomb interaction,
denoted by the parameter α, is larger than a certain critical
value. The critical value αc defines a QCP that separates
the semimetallic and excitonic insulating phases. This issue
has been most extensively studied in the context of undoped
graphene [5,65,66]. Physically, the excitonic insulating tran-
sition corresponds to the formation of a charge density wave
(CDW) order [5,65]. If the ground state of suspended graphene
is an excitonic insulator, there would be more practical
applications of graphene in the design of electronic devices
[5,66]. From a theoretic point of view, this provides an ideal
laboratory to test some important concepts of high-energy
physics [69], and also gives us a nice platform to study the
rich quantum critical phenomena.

In graphene and other Dirac semimetals, the effective
strength of the Coulomb interaction can be quantified by
the ratio between the Coulombic potential energy and kinetic
energy of fermions, defined as [5] α = e2/vε, where e is the
electric charge, v the fermion velocity, and ε the dielectric
constant. Experiments have determined that the fermion
velocity is v ≈ c/300 ≈ 106 m/s, where c is the speed of light
in vacuum [4,5]. For graphene on SiO2 substrate, α ≈ 0.78.
When graphene is suspended in vacuum, α takes its largest
value α ≈ 2.2 [66], which implies that excitonic pairing is
most possibly realized in suspended graphene. To specify
whether suspended graphene has a semimetallic or insulating
ground state, one needs to calculate the critical value αc and
then compare it with α ≈ 2.2. The value of αc has been
evaluated by means of several different methods, including the
Dyson-Schwinger (DS) equation [65,70–83], Bethe-Salpeter
(BS) equation [84–86], RG approach [86–89], Monte Carlo
simulations [90–97], and some other methods [98,99]. Drut
and Lähde claimed that αc ≈ 1.1 in a 2D Dirac fermion
system [90,91], which indicates that graphene placed on SiO2

substrate is semimetallic but suspended graphene is insulating
at zero temperature. Extensive studies based on the DS equa-
tion [71,72,74,77,78], BS equation [84,85], and RG approach
[87,89] all showed that αc < 2.2 and hence also predicted
an insulating ground state of suspended graphene. However,
experiments clearly revealed that suspended graphene remains
a semimetal down to very low temperatures, without any
sign of insulating behavior [60,100], which is apparently
inconsistent with earlier theoretical results. A number of
improved studies [79,80,82,83,96,97] have been accomplished
to reconcile this discrepancy. After taking into account the
influence of fermion velocity renormalization and fermion
damping, it was showed in a refined DS equation analysis

[79] that the critical value is αc ≈ 3.25, which is much larger
than α = 2.2. Thus it turns out that the Coulomb interaction
in suspended graphene is still not strong enough to generate
a dynamical gap. Subsequent DS equation studies [80,82,83]
reached the same qualitative conclusion. After considering
the screening of the Coulomb interaction due to the σ -band
electrons [101], recent Monte Carlo simulations also found that
αc is greater than 2.2 [96,97], which suggests a semimetallic
ground state of suspended graphene.

Since graphene cannot be an excitonic insulator, we turn
to consider other types of semimetals where the Coulomb
interaction plays a more important role. Among the existing
semimetal materials, we find that 2D semi-Dirac semimetals
provide a better candidate for the realization of excitonic
insulating transition than graphene. The dispersion for 2D
semi-Dirac fermions is

E = ±
√

ak4
x + v2k2

y, (1)

which is linear along one momentum component (ky) but
quadratic along the other one (kx). Such fermions can emerge
at the QCP between a 2D Dirac semimetal and a band
insulator upon merging two separate Dirac points into a
single one. Generating 2D semi-Dirac fermions by merging
pairs of Dirac points was predicted to take place in de-
formed graphene [102–106], the pressured organic compound
α-(BEDT-TTF)2I3 [104,106–108], few-layer black phospho-
rus subject to pressure or perpendicular electric field [109,110]
or doping [111], and some sorts of artificial optical lattices
[112,113]. Experimentally, the merging of distinct Dirac points
and the appearance of semi-Dirac fermions were recently
observed in an ultracold Fermi gas of 40K atoms in a hon-
eycomb lattice [114] and microwave cavities with graphene-
like structure [115]. Kim et al. [116] realized semi-Dirac
semimetals in few-layer black phosphorus at critical surface
doping with potassium. A robust semi-Dirac semimetal state
was also predicted to appear in the TiO2/VO2 nanostructure
under suitable conditions [117–119]. It was suggested by
first-principles calculations that semi-Dirac fermions may
emerge in strained puckered arsenene [120,121].

The influence of the long-range Coulomb interaction in
the 2D semi-Dirac fermion system was recently investigated
by the perturbative RG method to one-loop order [34,35],
which showed that Coulomb interaction becomes anisotropic
due to dynamical screening [34,35]. When the bare value of
interaction strength α is in the strong-coupling regime, the
Coulomb interaction induces an anomalous dimension for
fermions and produces NFL behaviors over a wide range
of intermediate energies [34]. This property is qualitatively
similar to graphene [56]. Regardless of the value of α, the
fermion kinetic energy gets enhanced as the renormalized
a and v increase with lowering energy. This then drives α

to flow to zero in the low-energy region very slowly, which
means the Coulomb interaction in 2D semi-Dirac semimetals
is marginally irrelevant. However, 2D semi-Dirac semimetal
differs from graphene in one important aspect. In graphene,
the quasiparticle residue Zf flows to a finite value and thus
the system is actually a normal FL despite the existence of
strong velocity renormalization [5,55,57]. In contrast, in a 2D
semi-Dirac semimetal, Zf flows to zero in the low-energy
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regime quite slowly, and the system displays a marginal
Fermi-liquid-like behavior in the lowest energy limit [34].
This difference indicates that the Coulomb interaction plays
a more important role in 2D semi-Dirac semimetals than in
graphene. It might be possible to form excitonic insulators in
some realistic 2D semi-Dirac semimetals.

Dynamical excitonic gap generation is a genuine nonper-
turbative phenomenon, and cannot be obtained within the
framework of ordinary leading-order perturbative calculation
[34,35]. In this paper, we study the possibility of dynamical
gap generation in a 2D semi-Dirac semimetal by solving the
self-consistent DS integral equation of the excitonic gap. The
DS equation is formally very complicated, so it is usually
necessary to make some approximations. After solving the DS
equation by employing three frequently used approximations,
we show that a moderately strong Coulomb interaction suffices
to generate an excitonic gap, and that it is easier to realize an
excitonic insulating state in a 2D semi-Dirac semimetal than
in a 2D Dirac semimetal. Among the currently known semi-
Dirac semimetals, we find that the TiO2/VO2 nanostructure
is a particularly promising candidate to realize the excitonic
insulating state. One reason is that the such nanostructure is
an intrinsic semi-Dirac fermion system, without necessity of
fine tuning. The other reason is that the physical value of
α in this nanostructure is either smaller or very close to the
critical value αc obtained in our DS equation calculations.
Apart from the long-range Coulomb interaction, there may
be some additional short-range four-fermion couplings in real
materials. Adding such coupling to the system reduces the
critical value αc, and hence catalyzes dynamical excitonic gap
generation.

In the insulating phase, the fermions are massive and
the systems exhibits different properties than the semimetal
phase. We calculate DOS and specific heat of the insu-
lating phase, and compare them with those of semimetal
phase. Moreover, we perform a systematic RG analysis of
the Yukawa-type coupling between massless fermions and
the quantum fluctuation of excitonic order parameter at the
QCP of the semimetal-insulator transition, and find NFL
behaviors of massless fermions. We also study the inter-
play of this Yukawa coupling with the long-range Coulomb
interaction. In this case, the massless fermions still exhibit
NFL behaviors, but some model parameters behave quite
differently from those obtained in the case without Coulomb
interaction.

The rest of the paper will be organized as follows. We
present the Hamiltonians and the propagators in Sec. II.
In Sec. III, we derive the self-consistent gap equation,
and numerically solve the gap equation in several different
approximations which were employed in the studies of the
excitonic gap equation in graphene. We compare our results
for semi-Dirac semimetals and previous results for graphene
carefully in this section. In Sec. IV, we study the dynamical
gap generation including the long-range Coulomb interaction
and an additional four-fermion interaction. The impact of
the excitonic gap for several observable quantities and the
NFL behaviors of the fermions at the QCP between the
semi-Dirac semimetal phase and excitonic insulating phase
are shown in Sec. V. We summarize the main results in
Sec. VI.

II. MODEL HAMILTONIAN

The Hamiltonian for free 2D semi-Dirac fermions is

Hf =
N∑

σ=1

∫
d2xψ†

σ (x)
[−a∇2

x τ1 − iv∇yτ2
]
ψσ (x), (2)

where ψσ represents the two-component spinor field with
flavor index σ = 1,2,3, . . . ,N , and τ1,2,3 are standard Pauli
matrices. The spinor ψσ can be written as ψσ = (ψAσ ,ψBσ )T ,
where A and B are two sublattice indices [103,105,122].
Two model parameters a and v are introduced to characterize
the fermion energy spectrum. The fermions are subject to a
long-range Coulomb interaction, given by

HC = 1

4π

N∑
σ=1

∫
d2xd2x′ρσ (x)

e2

ε|x − x′|ρ
†
σ (x′), (3)

where the fermion density operator is defined as

ρσ (x) = ψ†
σ (x)ψσ (x).

The model will be treated by making a perturbative expansion
in powers of 1/N .

The free fermion propagator reads

G0(ω,k) = 1

−iω + ak2
xτ1 + vkyτ2

. (4)

The bare Coulomb interaction is written in the momentum
space as

V0(q) = 2πe2

ε|q| = 2παv

|q| , (5)

where α = e2/εv represents the effective interaction strength.
After including the dynamical screening, the dressed Coulomb
interaction function can be written as

V (
,q) = 1

V −1
0 (q) + �(
,q)

, (6)

in which the polarization function �(
,q) is given by

�(
,q) = −N

∫
dω

2π

d2k
(2π )2

Tr[G0(ω,k)

×G0(ω + 
,k + q)] (7)

to the leading order of the 1/N expansion. It is technically quite
difficult to obtain a complete analytical expression of �(
,q).
The recent work of Isobe et al. [34] found that �(
,q) can be
approximated by the expression

�(
,qx,qy) = N

v

dxa
1/2q2

x(

2 + c0a2q4

x + v2q2
y

)1/4

+N

v

dya
−1/2v2q2

y(

2 + c0a2q4

x + v2q2
y

)3/4 , (8)

which produces the precise analytical expressions of �(
,q)
in several different limits. In this expression, dx, dy , and c0 are
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three constants:

dx = 1

8
√

π

�(3/4)

�(9/4)
, dy = 1

8
√

π

�(5/4)

�(7/4)
,

c0 =
(

2√
π

�(3/4)

�(9/4)

)4

. (9)

If the fermions dynamically acquire a finite mass m due
to Coulomb interaction, a new term will be added to the total
Hamiltonian:

Hm = m

N∑
σ=1

∫
d2k

(2π )2
ψ†

σ τ3ψσ

= m

N∑
σ=1

∫
d2k

(2π )2
(ψ†

AσψAσ − ψ
†
BσψBσ ). (10)

It is easy to observe that the dynamically generated mass m

breaks the exchanging symmetry between sublattices A and
B. Therefore, the excitonic gap leads to the formation of the
CDW state.

III. DYSON-SCHWINGER EQUATION
OF EXCITONIC GAP

Since excitonic gap generation is a nonperturbative phe-
nomenon, it cannot be investigated by making ordinary pertur-
bative calculations. This issue will be studied by analyzing the
DS equation, which is nonperturbative in nature and provides
an ideal tool of describing various phase transitions. Since
Nambu and Jona-Lasinio [68], the DS equation approach has
been widely applied to study DCSB in QCD [123,124] and
QED3 [125–131]. It also has been used to examine whether an
excitonic gap can be dynamically generated by the Coulomb
interaction in graphene [65,69–83] and other closely related
materials [41,46,82]. The role played by the DS equation
in the studies of excitonic gap generation is similar to that
played by the gap equation in the studies of the formation
of superconductivity in BCS theory. In this section, we will
compute the critical interaction strength αc for the excitonic
insulating transition by solving the DS equation of the fermion
gap.

The full fermion propagator can be written as

GF (ω,k) = 1

−A0iω + A1ak2
xτ1 + A2vkyτ2 + mτ3

. (11)

Here, we introduce A0,1,2 ≡ A0,1,2(ω,kx,ky) to represent the
renormalized functions, and use m ≡ m(ω,kx,ky) to represent
the dynamically generated fermion mass. The full and free
fermion propagators are connected by the following DS
equation:

G−1
F (ε,p) = G−1

0 (ε,p) + �(ε,p), (12)

where the fermion self-energy function is

�(ε,p) =
∫

dω

2π

d2k
(2π )2

GF (ω,k)�ε,p,ω,kV (
,q) (13)

with 
 = ε − ω and q = p − k. The function �ε,p,ω,k ≡
�(ε,p; ω,k) is the vertex correction. In order to make the above
equation tractable, it is necessary to truncate the equation

in a proper way. As the first study in this field, here we
employ the lowest order truncation. Various higher order
corrections will be systematically examined in the subsequent
works. Currently, we assume that A0 ≡ 1, which is justified
at large N because the equation of A0 contains a factor
of 1/N . We also assume � ≡ 1, which naturally satisfies
the Ward identity. To further simplify the problem, we take
A1 = A2 ≡ 1. Such truncation scheme has previously been
adopted to study dynamical gap generation in 2D Dirac
semimetals [65,70,73,74], in the QED3 model [125,127], and
also in 3D quadratical semimetals [46]. These studies serve as
a very useful starting point for further, improved analysis.

After making these approximations, we obtain the follow-
ing nonlinear integral equation of fermion mass:

m(ε,px,py) =
∫

dω

2π

∫
d2k

(2π )2
m(ω,kx,ky)

× 1

ω2 + a2k4
x + v2k2

y + m2(ω,kx,ky)

×V (ε − ω,p − k). (14)

The integration ranges for kx and ky are chosen as kx ∈
(−�x,�x) and ky ∈ (−�y,�y), respectively. It is usually
sufficient to suppose that �x = �y = �, where � is the unit
of momenta, and v� is the unit of energy. The solution
is determined by three parameters: interaction strength α,
fermion flavor N , and a tuning parameter β = a�/v, where
� is a UV cutoff.

The above equation can be numerically solved by the
iterative method. Due to the explicit breaking of Lorentz
invariance by the Coulomb interaction and the anisotropic
fermion dispersion, the fermion mass gap m(ε,px,py) depends
on its three free variables separately. Therefore, the above
gap equation is formally much more complicated than that
in graphene, where the gap equation contains only two
independent variables, namely ε and |p|. To make sure that
our numerical iterations are under control, it is necessary to
introduce further approximations to the above gap equation.
In the DS equation studies of excitonic gap generation in
graphene, there are three frequently used approximations:
the instantaneous approximation [65,70–72], Khveshchenko
approximation [73], and Gamayun-Gorbar-Gusynin (GGG)
approximation [74]. We shall numerically solve the DS
equation (14) under these three approximations separately,
and then compare the results to those obtained in the context
of graphene [65,70,71,73,74].

A. Instantaneous approximation

The instantaneous approximation is widely employed to
simplify the self-consistent DS equation of the dynamical
fermion gap. It has been used in such 2D Dirac semimetals as
graphene [65,69–71,76,77,81], 3D semimetals with quadratic
touching points [46], and finite temperature QED3 [131]. A
universal feature shared by these systems is that the fermion
mass gap depends on energy and momentum separately due
to the explicit breaking of Lorentz invariance, which makes
it very difficult to solve the self-consistent gap equation
numerically. In the instantaneous approximation, the energy
dependence of the fermion gap is dropped, but the momentum
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FIG. 1. Dependence of fermion mass m(0) on β obtained under
instantaneous approximation at different values of α. (a) N = 2;
(b) N = 4.

dependence is maintained. Under this approximation, the
interaction function becomes

V (
,q) → V (q) = 1

V −1
0 (q) + �(q)

=
[

|q|
2παv

+ N

v

dxa
1/2q2

x(
c0a2q4

x + v2q2
y

)1/4

+N

v

dya
−1/2v2q2

y(
c0a2q4

x + v2q2
y

)3/4

]−1

. (15)

Accordingly, the gap equation (14) is simplified to

m(px,py) = 1

2

∫
d2k

(2π )2

m(kx,ky)√
a2k4

x + v2k2
y + m2(kx,ky)

×V (p − k). (16)

We show the dependence of m(0) ≡ m(px = 0,py = 0)
on β obtained for N = 2 and N = 4 in Figs. 1(a) and 1(b),
respectively. It is apparent that m(0) exhibits a nonmonotonic
dependence on β. As β grows, m(0) increases initially, but
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FIG. 2. Dependence of fermion mass m(0) on α obtained under
instantaneous approximation at different values of β. (a) N = 2;
(b) N = 4.

begins to decrease once β is greater than some critical value.
The dependence of m(0) on parameter α in the cases of N = 2
and N = 4 is presented in Fig. 2. We can clearly observe that
m(0) decreases as α is lowered, and eventually vanishes once
α is smaller than a critical value αc. According to the results
given in Fig. 2, it turns out that the critical value αc is not very
sensitive to the change in β. For a series of different values of
β, ranging from 0.2 to 8, αc ≈ 0.6 in the case of N = 4. In a
2D Dirac semimetal, the critical interaction strength obtained
under the instantaneous approximation is αc ≈ 2.33 for N = 4
[65,70]. An immediate indication is that the excitonic gap can
be much more easily generated in a 2D semi-Dirac semimetal
than in a 2D Dirac semimetal.

For fixed values of α and β, there exists a critical
fermion flavor Nc that separates the semimetallic and excitonic
insulating phases. As shown in Fig. 3, m(0) decreases with
growing N and vanishes once N exceeds Nc. Specifically, Nc

takes a finite value even in the infinitely strong coupling limit
α → ∞. Thus, the flavor N must be sufficiently small for an
excitonic gap to be opened. Moreover, Fig. 3 tells us that Nc

always falls in the range of (6,7) in the α → ∞ limit, which is
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FIG. 3. Dependence of fermion mass m(0) on N obtained under
instantaneous approximation at different values of α. (a) β = 1; (b)
β = 0.1; (c) β = 10.

valid for three representative values of β. As a comparison, we
recall that Nc = 8/π ≈ 2.55 in the limit α → ∞ in a 2D Dirac
semimetal, which was obtained under the same approximation
[65,70]. This result provides further evidence that it is much
easier to induce an excitonic gap in a 2D semi-Dirac semimetal
than a 2D Dirac semimetal.

FIG. 4. Dependence of m(px,py) on px and py obtained under
instantaneous approximation at α = 1 and N = 2. (a) β = 0.1; (b)
β = 1; (c) β = 10.

To acquire a more quantitative knowledge of the fermion
gap, we present the function m(px,py) in Fig. 4. In the limit
px,y → 0,m(px,py) approaches a finite value m(0,0). As px

or py grows, m(px,py) drops rapidly when ap2
x or vpy is

larger than the energy scale given by m(0,0). It appears that
m(px,py) exhibits a weak nonmonotonic dependence on px in
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the intermediate range of energies, but m(px,py) decreases
monotonically with growing py . The strongly anisotropic
behavior of m(px,py) clearly comes from the anisotropy in
fermion dispersion.

B. Khveshchenko approximation

The instantaneous approximation entirely neglects the
energy dependence of the Coulomb interaction. In a 2D Dirac
semimetal, after including one-loop polarization, the dressed
Coulomb interaction becomes

VDirac = 1
|q|

2παv
+ N |q|2

16
√


2+|q|2
. (17)

Khveshchenko [73] proposed an improved approximation

VDirac → 1
|q|

2παv
+ N |q|

16
√

2

, (18)

and then applied it to study dynamical gap generation in
graphene [73]. It was shown by Khveshchenko [73] that
αc ≈ 1.13 for N = 4, which is much smaller than αc ≈ 2.33
obtained by using the instantaneous approximation. It was
also found [73] that Nc ≈ 7.18 in the strong-coupling limit
α → ∞, which is much larger than Nc ≈ 2.55 obtained under
instantaneous approximation. It is therefore clear that the
energy dependence of Coulomb interaction plays an important
role and needs to be seriously incorporated in the DS equation.

We now adopt the Khveshchenko approximation to study
the DS gap equation in 2D semi-Dirac semimetals. The
dressed Coulomb interaction function given by Eq. (6) can
be approximated as

V (q) →
[

|q|
2παv

+ N

v

dxa
1/2q2

x(
2
(
c0a2q4

x + v2q2
y

))1/4

+N

v

dya
−1/2v2q2

y[
2
(
c0a2q4

x + v2q2
y

)]3/4

]−1

. (19)

Under the Khveshchenko approximation, the DS gap equation
has the same form as Eq. (16) with V (p − k) being given
by Eq. (19). We then solve this DS equation numerically. At
N = 4, the dependence of m(0,0) on α is shown in Fig. 5
for several values of β in (a), (b), and (c), respectively,
represented by the red line with square marks. We can see that
m(0,0) obtained by using Eq. (19) is larger than that obtained
by using the instantaneous approximation, which shows that
including the energy dependence of Coulomb interaction tends
to favor the generation of excitonic gaps in 2D semi-Dirac
semimetals. According to Fig. 5, within a wide range of values
β = 1,0.1,10, we find that αc ≈ 0.3 ∼ 0.4, which is much
smaller than αc ≈ 1.13 obtained in 2D Dirac semimetals under
the same approximation [73]. We thus see once again that it is
easier for the Coulomb interaction to open an excitonic gap in
a 2D semi-Dirac semimetal. The relation between m(0) and N

is presented in Figs. 6(a) and 6(b) with α = 0.1 and α = ∞,
respectively. By using the Khveshchenko approximation, it is
found that m(0) vanishes once N is greater than some critical
value, even in the strong-coupling limit α → ∞. As shown in

FIG. 5. Dependence of m(0) on α with β = 1 in (a), β = 0.1
in (b), and β = 10 in (c). Method 1: Instantaneous approximation.
Method 2: Khveshchenko approximation. Method 3: GGG approxi-
mation. This convention is also used in Fig. 6. Here, N = 4.

Fig. 6(a), Nc ≈ 9 with β = 1 in the limit α → ∞ under the
Khveshchenko approximation, which is larger than Nc ≈ 7.18
obtained in the limit α → ∞ under the same approximation
in a 2D Dirac semimetal [73].
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FIG. 6. Dependence of m(0) as a function of flavor N . (a) α = 1;
(b) α = ∞. Here, β = 1.

C. Gamayun-Gorbar-Gusynin approximation

In order to include the influence of energy dependence of
the Coulomb interaction on dynamical gap generation in 2D
Dirac semimetals, Gamayun et al. [74] introduced another
approximation, which assumes the mass gap to be energy
independent, namely

m(ε,p) → m(p), (20)

but retains the energy dependence of the Coulomb interaction.
Under the GGG approximation, they solved the DS equation
and found that αc ≈ 0.92 for flavor N = 4, which is clearly
smaller than αc ≈ 2.33 obtained under the instantaneous
approximation [65,70]. This result provides another signature
that the energy dependence of Coulomb interaction is in favor
of dynamical excitonic gap generation. They also found that,
in the strong-coupling limit α → ∞, the critical fermion flavor
Nc → ∞, which is quite different from the results obtained
under the instantaneous and Khveshchenko approximations.

In this subsection, we employ the GGG approximation
to study the dynamical excitonic gap in 2D semi-Dirac
semimetals. By applying this approximation, the DS gap

equation (14) becomes

m(px,py) =
∫

dω

2π

d2k
(2π )2

m(kx,ky)

× 1

ω2 + a2k4
x + v2k2

y + m2(kx,ky)

×V (ω,p − k). (21)

In principle, the integration range of energy should be ω ∈
(−∞,∞). In practical numerical computations, it is necessary
to introduce a cutoff. We choose to integrate over energy within
the range (−�ω,�ω), where �ω is taken to be sufficiently
large so that the magnitude of the dynamical gap is nearly
independent of varying �ω. The relation between m(0) and
α with N = 4 is shown in Fig. 5 by the green line with the
triangular marks. In Figs. 5(a), 5(b), and 5(c), β is equal to
1, 0.1, and 10, respectively. As shown in Fig. 5, m(0) calculated
through Eq. (21) is clearly larger than the one obtained under
instantaneous and Khveshchenko approximations, which indi-
cates that energy dependence of Coulomb interaction enhances
dynamical gap generation. For β = 1,0.1,10, we find that
αc < 0.2, which is also much smaller than αc ≈ 0.92 obtained
in a 2D Dirac semimetal [74]. It is also clear that an excitonic
gap can be more easily opened by Coulomb interaction in a
2D semi-Dirac semimetal.

The dependence of the fermion gap on N obtained at
α = 1 is shown in Fig. 6(a), represented by the green line
with triangular marks. The critical flavor Nc is much larger
than that obtained under the instantaneous and Khveshchenko
approximations. In the infinitely strong coupling limit α →
∞, we find that Nc goes to infinity. This stems from an infrared
divergence that is owing to the singular contribution appearing
in the regions of aq2

x � 
 and vqy � 
. These results point
towards the fact that the energy dependence of the Coulomb
interaction is in favor of dynamical gap generation.

As shown in Eq. (6), the first term of the denominator of
the dressed Coulomb interaction is the contribution from the
bare Coulomb interaction, and depends only on momentum
|q|. The second term arises from the dynamical screening
due to collective particle-hole excitations, and is a function
of energy 
 and momenta qx,y . According to Eq. (8), it is easy
to find that �(
,q) is smaller than �(0,q). Therefore, the
dressed Coulomb interaction becomes stronger after including
the energy dependence, which tends to promote dynamical gap
generation. Since �(
,q) is proportional to N , the difference
between the fermion gaps obtained with and without the energy
dependence of the Coulomb interaction is more significant at
larger N . This property can be seen from the numerical results
depicted in Fig. 6(a). Therefore, it is usually more important to
incorporate the energy dependence of the Coulomb interaction
for larger values of N .

It seems necessary to give a short summary here. We have
numerically solved the DS equation under three widely used
approximations. Although the precise value of αc is approxi-
mation dependent, we can infer from the extensive numerical
solutions that αc obtained in a 2D semi-Dirac semimetal
is much smaller than that of a 2D Dirac semimetal. We
thus conclude that a moderately strong Coulomb interaction
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suffices to open a finite excitonic gap in a 2D semi-Dirac
semimetal.

As mentioned in Sec. I, there are indeed several possible
ways to obtain a realistic 2D semi-Dirac semimetal. For
instance, it can be created by merging two Dirac fermions at
the QCP between a 2D Dirac semimetal and a trivial band
insulator. Massless 2D semi-Dirac fermions also naturally
emerge in a black phosphorus placed in a perpendicular electric
field. However, in these cases the semi-Dirac semimetal is
realized either by making a delicate tuning of some special
parameter or by introducing an external field. It is therefore
technically difficult to prepare a robust and intrinsic semi-Dirac
semimetal in these materials. In contrast, an intrinsic 2D
semi-Dirac semimetal can be more readily achieved in a
TiO2/VO2 nanostructure, which was proposed by Pardo and
his collaborators [117–119].

We now estimate the actual value of the interaction
parameter α. In VO2, the fermion velocity is roughly vF ≈
1.5 × 105 m/s [117], and the fermion flavor is N = 4 [119].
The value of α relies crucially on the dielectric constant ε. In
VO2, the constant ε ≈ 36 at room temperature, and increases
with growing temperature [132]. It was predicted [117] that
α ≈ 0.41 in VO2 at room temperature. At lower temperatures,
the value of ε can be made even smaller than 36, which then
gives rise to a value of α that is larger than α ≈ 0.41. The
value of ε can also be further tuned by other nonthermal
scenarios, such as substrate. Our DS equation calculations have
shown that the critical parameter αc ≈ 0.6, αc ≈ 0.3 ∼ 0.4,
and αc < 0.2 under the instantaneous, Khveshchenko, and
GGG approximations, respectively. We can see that the actual
value of α at room temperature is already smaller or close to
the critical value αc. At nearly zero temperatures, the physical
value of α might become much larger than 0.41. We thus
predict that the TiO2/VO2 nanostructure is an ideal candidate
to realize excitonic insulators, which can be probed by ARPES
[133] or other experiments [60,134].

IV. ADDITIONAL SHORT-RANGE
FOUR-FERMION COUPLING

Besides the long-range Coulomb interaction, there may be
additional short-range four-fermion couplings [5,72,74]. In
this section, we study the impact of such short-range couplings
on dynamical excitonic gap generation. In principle, there are
a number of possible four-fermion couplings. Their roles can
be classified by the symmetry and also the (ir)relevance of
these coupling terms. Here, we shall not consider all of the
possible coupling terms, but focus on the most simple one:

HFF = g

N

N∑
σ=1

∫
d2x[ψ†

σ (x)τ3ψσ (x)]2, (22)

where g is the quartic coupling constant. A simple power
counting shows that the four-fermion interaction is irrelevant in
the low-energy regime, which results from the vanishing of the
fermion DOS at Fermi level. After performing RG calculations
at the one-loop level, we find that the four-fermion coupling
is irrelevant if its initial value is small. However, it becomes
relevant when its initial value is sufficiently large, which is
usually interpreted as the generation of an excitonic order

parameter 〈ψ†τ3ψ〉 �= 0. Comparing to Eq. (10), we see that
the four-fermion coupling shown in Eq. (22) generates the
same order parameter as the one induced by the Coulomb
interaction. This is the reason why we consider the additional
four-fermion coupling given by Eq. (22). This strategy was
previously utilized in the studies of excitonic gap generation
in graphene [74].

If we ignore the Coulomb interaction and retain the above
four-fermion coupling solely, the gap equation takes the form

1

2g
=

∫
dω

(2π )

d2k
(2π )2

1

ω2 + a2k4
x + v2k2

y + m2
, (23)

where m is supposed to be a constant. Integrating over ω, the
gap equation can be further written as

1

g
=

∫
d2k

(2π )2

1√
a2k4

x + v2k2
y + m2

. (24)

By setting m = 0, we find a critical strength gc that is
determined by the equation

1

gc

=
∫

d2k
(2π )2

1√
a2k4

x + v2k2
y

. (25)

The fermions remain massless if g < gc, but become massive
once g exceeds gc. The critical value gc is a function of the
parameter β, and the dependence of gc on β is shown in
Fig. 7(a). It is clear that gc is an increasing function of β, with
gc → 0 when β → 0. As shown in Fig. 7(b), the fermion mass
m increases as g grows from a critical value gc.

We then incorporate both the long-range Coulomb interac-
tion and short-range four-fermion interaction, and obtain the
following gap equation:

m(px,py) = 1

2

∫
d2k

(2π )2

m(kx,ky)√
a2k4

x + v2k2
y + m2(kx,ky)

×V (p − k)

+g

∫
d2k

(2π )2

m(kx,ky)√
a2k4

x + v2k2
y + m2(kx,ky)

,

where the instantaneous approximation has been adopted
to simplify numerical calculations. The momentum cutoff
is chosen in the same way as described below Eq. (14).
The dependence gap including both the long-range Coulomb
interaction and four-fermion interaction is shown in Fig. 8.
We observe that in the presence of additional four-fermion
coupling, the magnitude of the excitonic gap is enhanced and
the critical value αc is lowered. If the system contains only
four-fermion coupling, there is a critical value gc(β). When
both Coulomb and four-fermion interactions are present, αc

takes a finite value smaller than that obtained in the absence
of four-fermion coupling, provided that g < gc(β). In the
special case of g > gc(β), we find that αc = 0, so an arbitrary
weak Coulomb interaction makes an important contribution to
excitonic pairing.

In this section, we have utilized the instantaneous ap-
proximation to solve the DS equation. The conclusion that

075129-9



JING-RONG WANG, GUO-ZHU LIU, AND CHANG-JIN ZHANG PHYSICAL REVIEW B 95, 075129 (2017)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

β

g c
/
(v

/
Λ

)

(a)

0 5 10 15
0

0.5

1

1.5

g/(v/Λ)

m
/
v
Λ

(b)

β=0.1
β=0.5
β=1
β=5
β=10

FIG. 7. (a) Dependence of gc on β. (b) Dependence of m(0)
on g at different values of β. Only the four-fermion interaction is
considered in this case.

dynamical gap generation is enhanced by additional four-
fermion coupling is still valid when the energy dependence of
the Coulomb interaction is taken into account. This conclusion
is confirmed by the pertinent numerical results presented in
Table I.

V. QUANTUM CRITICAL PHENOMENA EMERGENT
AT INSULATING TRANSITION

Once an excitonic gap is opened at the Fermi level, the
semi-Dirac semimetal is converted to an insulator. In order
to explicitly see the difference between semimetallic and
insulating phases, we shall compute two important quantities,

TABLE I. Dynamical gap m(0) evaluated by adopting the GGG
approximation in the presence of both Coulomb interaction and four-
fermion coupling. Here, N = 4 and β = 1.

m(0)
v�

g

(v/�) = 0 g

(v/�) = 1 g

(v/�) = 2 g

(v/�) = 3

α = 1 1.19 × 10−2 4.54 × 10−2 1.31 × 10−1 2.55 × 10−1

α = 2 8.43 × 10−2 1.84 × 10−1 3.2 × 10−1 4.68 × 10−1

FIG. 8. Dependence of m(0) on α at different values of g. Both
the Coulomb and four-fermion interactions are present. It is clear that
larger g leads to larger gap.

namely the fermion DOS and specific heat, in this section. At
a given flavor N and fixed β, the insulating quantum phase
transition happens at the QCP αc. A bosonic order parameter
φ develops a nonzero mean value continuously as α becomes
larger than αc. At such QCP, the semi-Dirac fermions and
the excitonic order parameter are gapless, and can strongly
affect each other. In this case, one cannot simply integrate
out the fermionic degrees of freedom [135,136]. Instead, one
should maintain gapless fermions and the gapless bosonic
order parameter in an effective action, and study the Yukawa
coupling between them [137–142]. In this section, we perform
a RG analysis of this coupling, and examine whether the
system exhibits NFL behaviors at the QCP.

A. DOS and specific heat in insulating phase

The dynamically generated fermion gap m manifests itself
in several observable quantities, among which we are mainly
interested in the fermion DOS and specific heat. In order to
make analytic computation simpler, we assume a constant
gap m. After including m, the retarded fermion propagator
is written in the form

GR(ω,k) = −1

ω − ak2
xτ1 − vkyτ2 − mτ3 + iη

. (26)

The spectral function is given by

A(ω,k) = 1

π
Tr[Im[GR(ω,k)]]

= 2|ω|δ(ω2 − (
a2k4

x + v2k2
y + m2)). (27)

The DOS can be computed from the spectral function

ν(ω) = N

∫
d2k

(2π )2
A(ω,k)

= K
(

1
2

)
N√

2π2
√

av

|ω|
(ω2 − m2)

1
4

θ (|ω| − m), (28)

where K(x) is complete elliptic integrals of the first kind. It
is easy to see that the DOS is significantly suppressed by the
finite gap in the low-energy regime.
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To compute specific heat, we find it convenient to work
in the Matsubara Green’s function formalism. The Matsubara
propagator of massive semi-Dirac fermions is

G(ωn,k) = 1

−iωn + ak2
xτ1 + vkyτ2 + mτ3

= iωn + ak2
xτ1 + vkyτ2 + mτ3(

ω2
n + a2k4

x + v2k2
y + m2

) , (29)

where ωn = (2n + 1)πT with n being integers. Accordingly,
the free energy takes the form

F (T ) = 2NT
∑
ωn

∫
d2k

(2π )2
ln

[(
ω2

n + E2
k + m2

) 1
2
]

(30)

with Ek =
√

a2k4
x + v2k2

y . After carrying out the summation

over imaginary frequency ωn, we obtain

F (T ) = −4NT

∫
d2k

(2π )2
ln

[
1 + e−

√
E2

k
+m2

T

]
, (31)

where a temperature-independent term has been dropped. The
specific heat is connected to the free energy through the relation

CV (T ) = −T
∂2

∂T 2
F (T ). (32)

In the gapless semimetallic phase with m = 0, CV (T ) depends
on temperature as

CV (T ) = 15
√

2(4 − √
2)K

(
1
2

)
ζ
(

5
2

)
16π

3
2

N√
av

T
3
2 , (33)

where ζ (x) is the Riemann zeta function. In the insulating
phase with m �= 0, CV (T ) is strongly suppressed by the
fermion gap comparing to the semimetallic phase. In particular,
in the limit m � T ,CV (T ) is given by

CV (T ) ≈ 4
√

2K
(

1
2

)
3π2

N√
av

m
7
2

T 2
e− m

T , (34)

which decreases rapidly with lowering T .
From Eq. (28) and Eq. (34), we observe that both DOS and

specific heat are significantly suppressed in the low-energy
region in the insulating phase.

B. Non-Fermi liquid behaviors at semimetal-insulator QCP

In this subsection, we analyze the interaction between the
quantum fluctuation of bosonic order parameter φ and the
gapless semi-Dirac fermions, which is described by a Yukawa-
type coupling:

Sf b = λ0

N∑
σ=1

∫
dτd2xφψ†

σ τ3ψσ , (35)

where λ0 is the coupling coefficient. The free action of φ takes
the standard form

Sφ =
∫

dτd2x
[

1

2
(∂τφ)2 + κ

2
(∇φ)2 + r

2
φ2 + u0

24
φ4

]
, (36)

where the varying parameter r tunes the excitonic insulating
transition with r = 0 being QCP. The free propagator of φ is

given by

D0(ω,q) = 1

ω2 + κq2 + r
. (37)

Following the treatment of Ref. [141], we now make the
replacements φ → φ/λ0 and r → rλ2

0. Performing such a
rescaling manipulation leads to

Sf b =
N∑

σ=1

∫
dτd2xφψ†

σ τ3ψσ . (38)

It is important to remember that both φ and ψ particles are
gapless at QCP. The quantum critical behaviors cannot be stud-
ied within the Hertz-Millis theory [135,136]. Alternatively,
we need to treat φ and ψ on an equal footing and carefully
study their coupling [137–142]. We now perform a detailed
RG analysis of this coupling by employing a 1/N expansion,
and examine whether the fermions exhibit NFL behaviors.

At the QCP with r = 0, including the polarization function
contributed from fermions leads to the following propagator
for the φ field:

D(
,q) = 1

ω2 + κq2 + �33(
,q)
, (39)

where the polarization �33 is given by

�33(
,q) = N

∫
dω

2π

∫
d2k

(2π )2
Tr[τ3G0(ω,k)τ3

×G0(ω + 
,k + q)] (40)

to the leading order of 1/N expansion. After straightforward
calculations, which are presented in Appendix A, we find that
�33 can be approximated by

�33(
,q) = N√
av

[
b1

(

2 + v2q2

y

) + b2a
2q4

x

] 1
4 , (41)

where b1 and b2 are two constants. In the low-energy regime,
�33 dominates over the free term of φ. We then drop the free
term, and write the propagator as

D(
,q) = 1

�33(
,q)
. (42)

The leading-order fermion self-energy induced by the Yukawa
coupling is

�f b(ω,k) =
∫ ′ d


2π

d2q
(2π )2

τ3G0(ω + 
,k + q)

×τ3D(
,q). (43)

Here, the integration
∫ ′ d


2π

d2q
(2π)2 is made by choosing a suitable

momentum shell for some related parameter. To be specific,
we now employ the following RG scheme:

− ∞ < 
 < ∞, b� < Eq < �, (44)

where Eq =
√

a2q4
x + v2q2

y , and b = e−l with l being a

running length scale. According to Appendix B, the fermion
self-energy takes the approximate form

�f b(ω,k)≈ [−iωC1+ak2
xC2τ1+vkyC3τ2

]
ln(b−1). (45)
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The expressions of constants C1,2,3 are presented in
Eqs. (B14)–(B16). Numerical calculation leads us to

C1 ≈ −0.0434929

N
, (46)

C2 ≈ −0.00149482

N
, (47)

C3 ≈ −0.0434929

N
. (48)

Here notice that C1 = C3.
We now proceed to derive the RG equations. The action of

free semi-Dirac fermions is

Sψ =
∫

dω

2π

dkx

(2π )

dky

(2π )
ψ†(ω,k)

(−iω + ak2
xτ1

+vkyτ2
)
ψ(ω,k). (49)

After including the self-energy corrections, this action be-
comes

Sψ =
∫

dω

2π

dkx

(2π )

dky

(2π )
ψ†(ω,k)

[−iω + ak2
xτ1

+vkyτ2 − �f b(iω,k)
]
ψ(ω,k) (50)

≈
∫

dω

2π

dkx

(2π )

dky

(2π )
ψ†(ω,k)

(−iωe−C1l

+ak2
xτ1e

−C2l + vkyτ2e
−C3l

)
ψ(ω,k). (51)

We then make the following scaling transformations:

kx = k′
xe

− l
2 , (52)

ky = k′
ye

−l , (53)

ω = ω′e−l , (54)

ψ = ψ ′e( 7
4 + C1

2 )l , (55)

a = a′e(C2−C1)l , (56)

v = v′e(C3−C1)l . (57)

Now the action is recast in the form

Sψ ′ =
∫

dω′

2π

dk′
x

(2π )

dk′
y

(2π )
ψ ′†(ω′,k′)

(−iω′ + a′k′2
x τ1

+v′k′
yτ2

)
ψ ′(ω′,k′), (58)

which is formally the same as the action of free fermions.
According to Eq. (55), the RG equation for wave function
renormalization Zf satisfies

dZf

dl
= C1Zf . (59)

Based on Eqs. (56) and (57), we derive the RG equations for
a and v:

da

dl
= (C1 − C2)a, (60)

dv

dl
= (C1 − C3)v. (61)

FIG. 9. Schematic phase diagram of semi-Dirac fermion system
on plane (α,T ) with fixed values of N and β. Here, SM, EI, and
NFL stand for semimetal, excitonic insulating, and non-Fermi liquid
phases, respectively. The zero-temperature QCP is broadened by
thermal fluctuation to a finite quantum critical region on the phase
diagram at finite temperatures.

Solving the above three RG equations, we obtain

Zf = Zf 0e
C1l , (62)

a = a0e
(C1−C2)l , (63)

v = v0, (64)

where Zf 0 = 1. In the long-wavelength limit l → ∞, it is easy
to find that Zf and a both flow to zero, whereas v does not
flow and remains a constant. The behavior liml→∞ Zf → 0
clearly indicates the breakdown of FL theory. The wave
function renormalization Zf can also be obtained from the
identity

Zf (ω) = 1∣∣1 − ∂
∂ω

Re�R(ω)
∣∣ , (65)

where �R(ω) is the retarded fermion self-energy function.
Combining Eqs. (62) and (65), and then using the scaling
relationship ω = ω0e

−l , one can find that

Re�R(ω) ∼ ω1−ηf , (66)

where ηf = −C1 is a positive quantity. By virtue of the
Kramers-Kronig (KK) relation, it is easy to obtain

Im�R(ω) ∼ ω1−ηf , (67)

which is apparently typical NFL behavior.
We present a schematic phase diagram in Fig. 9 for a 2D

interacting semi-Dirac fermion system on the plane spanned
by α and T , with αc defining the semimetal-insulator QCP.
The system stays in the gapless semimetal phase for α < αc,
and becomes an excitonic insulator for α > αc. The fermions
exhibit NFL behaviors at zero-temperature QCP αc, which
becomes a finite quantum critical region at finite temperature.

The RG method has recently been applied to study
the influence of Coulomb interaction in several semimetals
which are distinguished mainly by the fermion dispersions
[34,35,48–51]. In a 3D anisotropic Weyl semimetal where
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the spectrum displays quadratic dependence on momentum
in one direction but linear dependence on other components
of momenta, Yang et al. supposed a shell of (b�,�) for the
integration over the quadratic component of momenta [48].
Lai [49] used the similar RG scheme to examine the impact of
Coulomb interaction in a 3D double Weyl semimetal, in which
the dispersion is quadratic in two components of momenta but
linear in the third component. Different from Lai [49], Jian
and Yao [50] considered the same model but made use of a
different RG scheme which defines the momentum shell by

b� < Ek < � with Ek =
√

1
4m2 (k2

x + k2
y)2 + v2k2

z . There are
some differences between the results obtained by Lai [49]
and Jian and Yao [50]. When studying the role of Coulomb
interaction in a 2D semi-Dirac semimetal, Isobe et al. [34]
introduced a shell for energy b� < 
 < �, whereas Cho
and Moon [35] defined a shell for the linearly dependent
momentum component.

Since recent studies showed that different RG schemes may
result in quantitative differences [49,50], it is important to
carry out RG calculations by employing several possible RG
schemes and test the reliability of our RG results. In the present
problem, we also consider the following three RG schemes:

∫ ′

ω,q
=

∫ +∞

−∞
d


(∫ −√
b�

−�

+
∫ �

√
b�

)
dqx

∫ +∞

−∞
dqy, (68)

∫ ′

ω,q
=

∫ +∞

−∞
d


∫ +∞

−∞
dqx

(∫ −b�

−�

+
∫ �

b�

)
dqy, (69)∫ ′

ω,q
=

(∫ −b�

−�

+
∫ �

b�

)
d


∫ +∞

−∞
dqx

∫ +∞

−∞
dqy, (70)

where
∫ ′
ω,q ≡ ∫ ′

dωd2q. For convenience, we hereinafter use
RG schemes 1, 2, 3, and 4 to represent Eqs. (44), (68), (69),
and (70), respectively. In the RG schemes 2, 3, and 4, the
fermion self-energy can still be written as Eq. (45), with the
expressions of C1,2,3 being given in Appendix C. Numerical
calculations show that the values of C1,2,3 computed using RG
schemes 2, 3, and 4 are precisely the same as those given by
Eqs. (46)–(48). Thus, these four different RG schemes lead to
exactly the same results.

C. Interplay of Yukawa coupling and Coulomb interaction

At semimetal-insulator QCP, semi-Dirac fermions not
only couple to the quantum fluctuation of excitonic order
parameter φ, but interact with each other through the Coulomb
interaction. For completeness, it is necessary to consider both
the Yukawa coupling and the Coulomb interaction and treat
them equally. From the above analysis, we know that Yukawa
coupling tends to drive parameter a to decrease upon lowering
the energy scale. In contrast, the Coulomb interaction can
increase a in the low-energy regime. When both Yukawa
coupling and the Coulomb interaction are present, these two
opposite tendencies might give rise to interesting low-energy
behaviors of semi-Dirac fermions. This issue will be addressed
in this subsection.

In a previous work, Isobe et al. studied the influence of the
Coulomb interaction on semi-Dirac fermions by utilizing the
RG scheme Eq. (70). Because different RG schemes might
give rise to unidentical results [49,50], we feel it helpful to

revisit the effect of the Coulomb interaction by employing the
four RG schemes defined by Eqs. (44), (68), (69), and (70),
respectively. Detailed analytic calculations lead us to

dZf

dl
= C ′

1Zf , (71)

da

dl
= (C ′

1 − C ′
2)a, (72)

dv

dl
= (C ′

1 − C ′
3)v, (73)

dα

dl
= (C ′

3 − C ′
1)α. (74)

For RG schemes 1 and 4, β is defined as β = a�
v2 , and the RG

equation of β can be written as

dβ

dl
= (2C ′

3 − C ′
1 − C ′

2 − 1)β. (75)

For RG scheme 2, β is defined as β = a�
v

, whose RG equation
is

dβ

dl
=

(
C ′

3 − C ′
2 − 1

2

)
β. (76)

For RG scheme 3, β is defined as β = a�
v

, and the correspond-
ing RG equation is

dβ

dl
= (

C ′
3 − C ′

2 − 1
)
β. (77)

The expressions of C ′
1, C

′
2, and C ′

3 obtained by employing
different RG schemes are given in Appendix D. The RG flows
of Zf , a, v are shown in Fig. 10. According to Fig. 10(a), Zf

obtained by employing four RG schemes all flow to zero at
large l; thus the normal FL description becomes invalid. The
l dependence of Zf for RG scheme 1 is close to that for RG
scheme 3 over a wide range of energies, but different from
those obtained by means of RG schemes 2 and 4. Based on
Figs. 10(b) and 10(c), it is easy to verify that

lim
l→∞

ln(1/Zf )

l
→ 0, (78)

but that

lim
l→∞

ln(1/Zf )

ln(l)
→ constant. (79)

We see from the above two expressions that the Coulomb
interaction gives rise to NFL-like behaviors in the lowest
energy limit. This result is qualitatively the same within the
four different RG schemes, and agrees with the conclusion
reached in Ref. [34]. As can be seen from Figs. 10(d) and 10(e),
both a and v increase with growing length scale l. In particular,
the numerical results for a are almost identical for RG schemes
1, 3, and 4, but quantitatively larger than the result obtained by
RG scheme 2. The numerical results for v in the four different
RG schemes are all very close to each other.

We then incorporate both the Yukawa coupling and
Coulomb interaction, and study their interplay by means of
the RG method combined with 1/N expansion. We will not
give the calculational details here, but only list the final RG
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FIG. 10. Flows of Zf ,a, and v considering long-range Coulomb interaction in semimetal phase in different RG schemes. The initial
conditions α0 = 1 and β0 = 1 are taken.

equations:

dZf

dl
= (C1 + C ′

1)Zf , (80)

da

dl
= (C1 + C ′

1 − C2 − C ′
2)a, (81)

dv

dl
= (C ′

1 − C ′
3)v, (82)

dα

dl
= (C ′

3 − C ′
1)α. (83)

The RG equation of β is found to be

dβ

dl
= (C3 − C2 + 2C ′

3 − C ′
1 − C ′

2 − 1)β (84)

for RG schemes 1 and 4,

dβ

dl
= (

C3 + C ′
3 − C2 − C ′

2 − 1
2

)
β (85)

for RG scheme 2, and

dβ

dl
= (C3 + C ′

3 − C2 − C ′
2 − 1)β (86)

for RG scheme 3.

We present the low-energy behaviors of parameters Zf , a,
and v in Fig. 11 by adopting RG scheme 1 as an example. As
shown by Fig. 11(a), Zf flows monotonically to zero in the
lowest energy limit. Using the results displayed in Figs. 11(b)
and 11(c), we find that Zf manifests the following asymptotic
behavior:

lim
l→∞

ln(1/Zf )

l
→ constant, (87)

and

lim
l→∞

ln(1/Zf )

ln(l)
→ ∞. (88)

Obviously, the semi-Dirac fermions exhibit NFL behaviors at
the semimetal-insulator QCP, so the schematic phase diagram
depicted in Fig. 11 is still applicable. We observe from
Fig. 11(d) that the parameter a displays a nonmonotonic
dependence on the length scale l: as l grows, a first increases
and then decreases. However, Fig. 11(e) shows that parameter
v increases monotonically with growing l. Since v does
not flow at all in the case in which there is only Yukawa
coupling, the low-energy behavior of v is indeed determined
by the Coulomb interaction. The numerical results obtained by
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FIG. 11. Flows of Zf ,a, and v considering both quantum fluctuation of insulating phase and long-range Coulomb interaction at QCP in
RG scheme 1. The initial condition β0 = 1 is taken.

applying the RG schemes 2, 3, and 4, which are not presented
here, are qualitatively the same as those obtained based on RG
scheme 1.

VI. SUMMARY AND DISCUSSION

In summary, we have studied dynamical excitonic gap
generation induced by the long-range Coulomb interaction in
a 2D semi-Dirac semimetal. The critical Coulomb interaction
strength αc has been calculated by solving the self-consistent
DS equation of the dynamical excitonic gap. By adopting
three frequently used approximations, we have shown that a
moderately strong Coulomb interaction suffices to generate a
finite excitonic gap. It is therefore much easier for the Coulomb
interaction to trigger excitonic pairing in a 2D semi-Dirac
semimetal than in a 2D Dirac semimetal. We also have found
that an additional short-range interaction reduces the critical
value αc and hence catalyzes excitonic gap generation.

Among all the currently known 2D semi-Dirac semimetals,
we find that the TiO2/VO2 nanostructure is the most promising
candidate for the realization of the anticipated excitonic
insulating state. There are two reasons. First, 2D semi-Dirac
fermions naturally emerge in such a nanostructure, and it is
not necessary to elaborately adjust some model parameters.

Second, the physical value of α in this material is smaller
or at least very close to the critical value αc obtained in
our DS equation analysis. It is certainly also possible to
open an excitonic gap in other 2D semi-Dirac semimetal
materials, which deserves a systematic investigation. We hope
that experiments, including but not restricted to ARPES, will
be performed in the future to search the predicted excitonic
insulating state in various 2D semi-Dirac materials, with the
TiO2/VO2 nanostructure being the most probable candidate.

We also have shown that 2D semi-Dirac fermions exhibit
distinct behaviors in the massless semimetal phase, excitonic
insulating phase, and at the semimetal-insulator QCP. Specifi-
cally, the massless semi-Dirac fermions couple strongly to the
quantum fluctuation of excitonic order parameter by a Yukawa-
type coupling at the QCP. We have examined the impact of
this coupling on the low-energy properties of fermions by
carrying out a detailed RG analysis, and revealed unusual NFL
behaviors of massless fermions and other interesting quantum
critical phenomena.

In our present DS equation studies, we have neglected a
number of physical effects to simplify numerical computation,
including the fermion velocity renormalization [75,79,80],
strong fermion damping [79,82,83], and vertex corrections
[79,83]. These effects are formally embodied in the functions
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TABLE II. The critical value αc obtained by adopting various approximations in the cases of 2D Dirac semimetals and 2D semi-Dirac
semimetals, where N = 4. For semi-Dirac semimetals, we choose β = 0.1,1,10. We use Instan., Khv., and GGG to stand for instantaneous,
Khveshchenko, and GGG approximations.

Lowest order truncation

Instan. Khv. GGG Higher order corrections

Dirac SM αc ≈ 2.33 αc ≈ 1.13 αc ≈ 0.92 3.2 < αc < 3.3 αc ≈ 3.1 αc,min ≈ 2.889, αc,max ≈ 3.19
[65,70] [73] [74] [79] [82] [83]

semi-Dirac SM αc ≈ 0.6 αc ≈ 0.3 ∼ 0.4 αc < 0.2 in progress

A0,1,2(ω,kx,ky) appearing in Eq. (11) and in the function
�(ε,p; ω,k) appearing in Eq. (13). To the leading order of 1/N

expansion, it is safe to set A0,1,2(ω,kx,ky) = �(ε,p; ω,k) = 1.
However, because the physical flavor N is usually not large, the
higher order corrections may be important. The impact of these
corrections can be examined by solving the self-consistent
equations of A0,1,2(ω,kx,ky) and m(ω,kx,ky). In order not
to spoil the Ward identity, the vertex corrections need to
be properly included by introducing an appropriate ansatz
[79,83,129]. The polarization function may also be self-
consistently computed by using the full fermion propagator
that contains A0,1,2 and m [82,129]. While it is formally
straightforward to write down the full set of self-consistent
equations, it is highly nontrivial to solve them with high
precision. The renormalized functions A0,1,2(ω,kx,ky) and the
dynamically generated gap m(ω,kx,ky) depend on energy and
two components of momenta separately, as a consequence of
explicit Lorentz symmetry breaking and strong anisotropy in
fermion dispersion. This makes it technically much harder to
solve the coupled integral equations of A0,1,2 and m.

To estimate the importance of higher order corrections, we
now compare with the cases of QED3 and 2D Dirac semimet-
als. In the case of QED3, the critical flavor for dynamical
fermion mass generation is Nc ≈ 3.24 at the leading order of
1/N expansion [125] and becomes Nc ≈ 4.0 after including
higher order corrections [129]. In 2D Dirac semimetals, we
present in Table II the values of αc computed previously under
three different approximations at the leading order of 1/N

expansion [65,70,73,74] and those obtained in the presence
of higher order corrections [79,82,83]. For convenience, the
values of αc obtained in our current work are also listed in
Table II. According to the research experience accumulated in
these studies, we find that higher order corrections do lead to
quantitative change of the critical condition for dynamical gap
generation. However, the analysis performed with truncation
to the lowest order is still scientifically significant for two
reasons. First, it suffices to capture many important qualitative
properties of dynamical gap generation, which are not changed
by higher order corrections. Moreover, even the quantitative
result, such as the critical parameter αc, obtained at the
lowest order truncation is usually only moderately altered by
higher order corrections. In the case of QED3, Nc increases by
only about one-fourth due to non-leading-order corrections.
In a 2D Dirac semimetal, αc obtained in the instantaneous
approximation increases by about one-third comparing to the
value obtained in the presence of higher order corrections. The
value αc evaluated in the GGG approximation is much smaller
than the ones evaluated by using other approximations, but
it still gives us a lower bound for the real critical point αc.

Therefore, although the critical values of αc obtained at the
leading order of 1/N expansion are quantitatively not accurate,
they already gave us valuable information about the possibility
of dynamical gap generation and laid the foundation for
subsequent, more in-depth studies. In view of the quantitative
difference between the values of αc obtained under different
approximations in the case of 2D Dirac semimetals, as
presented in Table II, we would naively expect the critical
parameter αc for 2D semi-Dirac semimetals to fall in the
rage 0.7 ∼ 1.0 when higher order corrections are considered.
Getting a precise value of αc requires a more elaborative
numerical computation of the coupled DS equations, which is
now in progress and will be reported later. Moreover, in order
to realize interaction-induced excitonic insulators, one could
design certain new 2D semi-Dirac semimetal materials and
endeavor to make the physical value of α as large as possible.
Our theoretic analysis presented in this paper provides a
helpful guide for such an interesting exploration.

Apart from the DS equation approach, one can study dy-
namical excitonic gap generation by employing other powerful
tools, such as the RG approach [43,47,87,143–146] and Monte
Carlo simulation [90–97]. To examine whether a dynamical
gap is opened, one could consider all the possible four-fermion
couplings, allowed by the lattice symmetry, and study their
interplay with the Coulomb interaction. In the absence of
Coulomb interaction, weak four-fermion couplings are usually
irrelevant perturbations to the system. However, some of these
couplings might be driven by the Coulomb interaction to
become relevant under certain conditions. In that case, even an
infinitely weak coupling flows to the strong-coupling regime
at low energies, leading to the excitonic pairing instability
of the system. This is an efficient way to study dynamical
gap generation and has wide applications in QED3 [143–146]
and 3D quadratic semimetals [43,47]. Moreover, the RG
approach also proves to be very powerful in the studies
of the impact of short-range interaction on various phase-
transition instabilities in a number of semimetal materials,
including 2D Dirac semimetals [147,148], 3D Dirac/Weyl
semimetals [149], 3D nodal-line semimetals [150,151], and
3D double/triple Weyl semimetals [152]. A comprehensive
RG analysis of the role played by short-range interactions
in 2D semi-Dirac semimetals is still lacking. We are now
working on this problem and will present the work in a separate
paper.
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APPENDIX A: CALCULATION OF POLARIZATION �33

We now compute the polarization for the coupling between semi-Dirac fermions ψ and quantum fluctuation of the insulating
order parameter φ, which is defined as

�33(
,q) = N

∫
dω

2π

∫
d2k

(2π )2
Tr[τ3G0(ω,k)τ3G0(ω + 
,k + q)]. (A1)

Substituting the fermion propagator Eq. (4) into Eq. (A1), we obtain

�33(
,qx,qy) = −2N

∫
dω

2π

∫
d2k

(2π )2

ω(ω + 
) + a2k2
x(kx + qx)2 + v2ky

(
ky + qy

)
[
ω2 + a2k4

x + v2k2
y

][
(ω + 
)2 + a2(kx + qx)4 + v

(
ky + qy

)2] . (A2)

Using the Feynman parametrization

1

AB
=

∫ 1

0
dx

1

[xA + (1 − x)B]2 , (A3)

we further write the polarization as

�33

(

,

qx√
a
,
qy

v

)
= − 2N√

av

∫ 1

0
dx

∫
dkx

2π

∫
dω

2π

∫
dky

2π

×
{

ω2 + k2
y − x(1 − x)

(

2 + q2

y

) + k2
x(kx + qx)2[

ω2 + k2
y + x(1 − x)

(

2 + q2

y

) + x(kx + qx)4 + (1 − x)k4
x

]2 − 1

ω2 + k2
y + k4

x

}
, (A4)

where we have made the rescaling manipulations

qx → qx√
a
, kx → kx√

a
, qy → qy

v
, ky → ky

v
. (A5)

Moreover, we have used �33(
,
qx√
a
,
qy

v
) − �33(0,0,0) to replace �33(
,

qx√
a
,
qy

v
) to regularize the polarization function. We then

define a new variable K = (ω,ky) and carry out the integration over K, which yields

�33

(

,

qx√
a
,
qy

v

)

= − N

π
√

av

∫
dkx

2π

{
1

2
ln

[
�2 + (kx + qx)4

(kx + qx)4

]
+ 1

2

∫ 1

0
dx

[
x
(

2 + q2

y

) + k4
x − k2

x(kx + qx)2

�2 + x(1 − x)
(

2 + q2

y

) + x(kx + qx)4 + (1 − x)k4
x

− x
(

2 + q2

y

) + k4
x − k2

x(kx + qx)2

x(1 − x)
(

2 + q2

y

) + x(kx + qx)4 + (1 − x)k4
x

]
− 1

2
ln

(
�2 + k4

x

k4
x

)}
, (A6)

where � is a UV cutoff. In the following, we calculate �33 in several different limits.

1. qx = 0

In the limit qx = 0, we have

�33

(

,0,

qy

v

)
= − N

2π
√

av

∫
dkx

2π

∫ 1

0
dx

[
x
(

2 + q2

y

)
�2 + x(1 − x)

(

2 + q2

y

) + k4
x

− x
(

2 + q2

y

)
x(1 − x)

(

2 + q2

y

) + k4
x

]
. (A7)

After integrating over kx and retaining the leading term, we get

�33

(

,0,

qy

v

)
= 3N

(

2 + q2

y

) 1
4

2
√

2π
√

av

∫ 1

0
dx[x(1 − x)]

1
4 = c1

N√
av

(

2 + q2

y

) 1
4 , (A8)

where c1 = �( 1
4 )

8
√

π�( 3
4 )

≈ 0.208657.
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2. � = 0 and qy = 0

In the case 
 = 0 and qy = 0, the polarization is given by

�33

(
0,

qx√
a
,0

)
= − N

π
√

av

∫
dkx

2π

{
1

2
ln

[
�2 + (kx + qx)4

(kx + qx)4

]
+ 1

2

∫ 1

0
dx

[
k4
x − k2

x(kx + qx)2

�2 + x(kx + qx)4 + (1 − x)k4
x

− k4
x − k2

x(kx + qx)2

x(kx + qx)4 + (1 − x)k4
x

]
− 1

2
ln

(
�2 + k4

x

k4
x

)}
. (A9)

Integrating over x and retaining the leading term gives rise to

�33

(
0,

qx√
a
,0

)
= N

4π2
√

av

∫ +∞

−∞
dkx

(kx + qx)4 − k2
x(kx + qx)2

(kx + qx)4 − k4
x

ln

[
(kx + qx)4

k4
x

]
. (A10)

We then assume kx = |qx |y, valid for both positive and negative qx , and convert �33 to

�33

(
0,

qx√
a
,0

)
= N

4π2

{∫ 1

0
dy

y2

y2 + (y − 1)2
ln

[
y4

(y − 1)4

]
+

∫ ∞

0
dy

2y + 1

(y + 1)2 + y2
ln

[
(y + 1)4

y4

]} |qx |√
av

, (A11)

which leads

�33

(
0,

qx√
a
,0

)
= c2

N√
av

|qx |, (A12)

where c2 = 1
4 .

3. qy = 0 and � � aq2
x

In the limit qy = 0, we can expand the polarization in powers of aq2
x



and retain the leading and subleading terms, which

simplifies �33 to the following form:

�33

(

,

qx√
a
,0

)
= c1

N√
av



1
2 + 1

4π2

N√
av

q2
x



1
2

I1, (A13)

where

I1 =
∫ +∞

−∞
dy

∫ 1

0
dx

[ −y2

[x(1 − x) + y4]
+ −6x2y2 + 8xy6

[x(1 − x) + y4]2
+ 16x3y6

[x(1 − x) + y4]3

]
= 5π

3
2 �

(
3
4

)
8�

(
5
4

) . (A14)

Now �33 can be approximately written as

�33

(

,

qx√
a
,0

)
≈ c1

N√
av



1
2 + c3

N√
av

q2
x



1
2

≈ c1
N√
av



1
2 , (A15)

where c3 = 5�( 3
4 )

32
√

π�( 5
4 )

.

4. Ansatz for �33

According to the polarization calculated in different limits, as shown in Eqs. (A8), (A12), and (A15), we find it appropriate
to express �33 by the following ansatz:

�33

(

,

qx√
a
,
qy

v

)
= N√

av

[
b1

(

2 + q2

y

) + b2q
4
x

] 1
4 , (A16)

where b1 = c4
1 and b2 = c4

2. Using the rescaling relations qx√
a

→ qx and qy

v
→ qy , we eventually write �33 in the form

�33(
,qx,qy) = N√
av

[
b1

(

2 + v2q2

y

) + b2a
2q4

x

] 1
4 . (A17)

APPENDIX B: SELF-ENERGY OF SEMI-DIRAC FERMIONS

The self-energy of semi-Dirac fermions induced by the quantum fluctuation of the excitonic insulating order parameter is
defined as

�f b(ω,k) =
∫ ′ d


2π

d2q
(2π )2

τ3G0(ω + 
,k + q)τ3D(
,q) (B1)
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to the leading order of perturbative expansion, where

D(
,q) = 1

�33(
,q)
. (B2)

Substituting Eq. (4) into Eq. (B1), we obtain

�f b(ω,k) =
∫ ′ d


2π

d2q
(2π )2

i(ω + 
) − a(kx + qx)2τ1 − v(ky + qy)τ2

(ω + 
)2 + a2(kx + qx)4 + v2(ky + qy)2
D(
,q). (B3)

It is easy to verify that

�f b(0,0) = −
∫ ′ d


2π

d2q
(2π )2

aq2
x τ1


2 + a2q4
x + v2q2

y

D(
,q), (B4)

which is not divergent in the lowest energy limit. This constant contribution plays no role in the low-energy region, and thus can
be safely dropped in the RG analysis. Expanding �f b(ω,k) in powers of small values of iω, kx , and ky , and retaining the leading
term, we find that

�f b(ω,k) ≈ (−iω)�1 + ak2
x�2τ1 + vky�3τ2, (B5)

where

�1 =
∫ ′ d


2π

d2q
(2π )2


2 − a2q4
x − v2q2

y(

2 + a2q4

x + v2q2
y

)2 D(
,q), (B6)

�2 =
∫ ′ d


2π

d2q
(2π )2

−
4 − 3a4q8
x + 12
2a2q4

x + 12a2q4
xv

2q2
y − 2
2v2q2

y − v4q4
y(


2 + a2q4
x + v2q2

y

)3 D(
,q), (B7)

�3 =
∫ ′ d


2π

d2q
(2π )2

−
2 − a2q4
x + v2q2

y(

2 + a2q4

x + v2q2
y

)2 D(
,q). (B8)

We now need to perform RG rescaling manipulations. First, we adopt a RG scheme which integrates over 
 and momenta in
the following way:

− ∞ < 
 < ∞, b� < Eq < �, with Eq =
√

a2q4
x + v2q2

y , (B9)

where b = e−l . If we define

Eq =
√

a2q4
x + v2q2

y , δ = aq2
x

v
∣∣qy

∣∣ , (B10)

the two components of momenta are given by

|qx | =
√

δ
√

Eq√
a(1 + δ2)

1
4

, |qy | = Eq

v
√

1 + δ2
. (B11)

Therefore, the integration over qx and qy can be converted to the integration of over Eq and δ, through the relation

d|qx |d|qy | =
∣∣∣∣∣
∣∣∣∣∣
∂|qx |
∂Eq

∂|qx |
∂δ

∂|qy |
∂Eq

∂|qy |
∂δ

∣∣∣∣∣
∣∣∣∣∣dEqdδ =

∣∣∣∣∂|qx |
∂Eq

∂|qy |
∂δ

− ∂|qx |
∂δ

∂|qy |
∂Eq

∣∣∣∣dEqdδ =
√

Eq

2v
√

a
√

δ(1 + δ2)
3
4

dEqdδ. (B12)

We now can calculate Eqs. (B6)–(B8) by using the transformations given by Eq. (B11) and Eq. (B12) along with the RG scheme
(B9), and obtain

�1 = C1 ln(b−1), �2 = C2 ln(b−1), �3 = C3 ln(b−1), (B13)

where

C1 = 1

4Nπ3

∫ +∞

−∞
dx

∫ +∞

0
dδ

1

δ
1
2 (1 + δ2)

1
2

x2 − 1

(x2 + 1)2
G(x,δ), (B14)

C2 = 1

4Nπ3

∫ +∞

−∞
dx

∫ +∞

0
dδ

1

δ
1
2 (1 + δ2)

5
2

−x4(1 + δ2)2 − 3δ4 + 12x2δ2(1 + δ2) + 12δ2 − 2x2(1 + δ2) − 1

(x2 + 1)3
G(x,δ), (B15)
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C3 = 1

4Nπ3

∫ +∞

−∞
dx

∫ +∞

0
dδ

1

δ
1
2 (1 + δ2)

3
2

−x2(1 + δ2) − δ2 + 1

(x2 + 1)2
G(x,δ), (B16)

G−1 = [b1x
2(1 + δ2) + b2δ

2 + b1]
1
4 . (B17)

APPENDIX C: CALCULATION OF C1,2,3 USING DIFFERENT RG SCHEMES

As discussed in Sec. V B, there are a number of different RG schemes, which are distinguished by the different manners to
integrate over energy and momenta. Here, we provide the expressions for C1,2,3 obtained separately by employing these RG
schemes.

For the RG scheme

∫ ′
d
d2q =

∫ +∞

−∞
d


(∫ −√
b�

−�

+
∫ �

√
b�

)
dqx

∫ +∞

−∞
dqy, (C1)

the expressions of Ci with (i = 1,2,3) are given by

C1 = 1

8Nπ3

∫ +∞

−∞
dx

∫ +∞

−∞
dy

x2 − 1 − y2

(x2 + 1 + y2)2
G(x,y), (C2)

C2 = 1

8Nπ3

∫ +∞

−∞
dx

∫ +∞

−∞
dy

−x4 − 3 + 12x2 + 12y2 − 2x2y2 − y4

(x2 + 1 + y2)3
G(x,y), (C3)

C3 = 1

8Nπ3

∫ +∞

−∞
dx

∫ +∞

−∞

−x2 − 1 + y2

(x2 + 1 + y2)2
G(x,y), (C4)

G−1 = [b1(x2 + y2) + b2]
1
4 . (C5)

By virtue of the exchange symmetry between variables x and y, it is easy to find that

C1 = C3 = 1

4Nπ3

∫ +∞

−∞
dx

∫ +∞

−∞
dy

−1

(x2 + 1 + y2)2

1

[b1(x2 + y2) + b2]
1
4

. (C6)

For the RG scheme given by

∫ ′
d
d2q =

∫ +∞

−∞
d


∫ +∞

−∞
dqx

(∫ −b�

−�

+
∫ �

b�

)
dqy, (C7)

we accordingly find that

C1 = 1

4Nπ3

∫ +∞

−∞
dx

∫ +∞

−∞
dy

x2 − y4 − 1

(x2 + y4 + 1)2
G(x,y), (C8)

C2 = 1

4Nπ3

∫ +∞

−∞
dx

∫ +∞

−∞
dy

−x4 − 3y8 + 12x2y4 + 12y4 − 2x2 − 1

(x2 + y4 + 1)3

1

[b1(x2 + 1) + b2y4]
1
4

G(x,y), (C9)

C3 = 1

4Nπ3

∫ +∞

−∞
dx

∫ +∞

−∞
dy

−x2 − y4 + 1

(x2 + y4 + 1)2

1

[b1(x2 + 1) + b2y4]
1
4

G(x,y), (C10)

G−1 = [b1(x2 + 1) + b2y
4]

1
4 . (C11)

For the RG scheme

∫ ′
d
d2q =

(∫ −b�

−�

+
∫ �

b�

)
d


∫ +∞

−∞
dqx

∫ +∞

−∞
dqy, (C12)
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we obtain

C1 = 1

4Nπ3

∫ +∞

−∞
dx

∫ +∞

−∞
dy

1 − x4 − y2

(1 + x4 + y2)2
G(x,y), (C13)

C2 = 1

4Nπ3

∫ +∞

−∞
dx

∫ +∞

−∞
dy

−1 − 3x8 + 12x4 + 12x4y2 − 2y2 − y4

(1 + x4 + y2)3
G(x,y), (C14)

C3 = 1

4Nπ3

∫ +∞

−∞
dx

∫ +∞

−∞
dy

−1 − x4 + y2

(1 + x4 + y2)2
G(x,y), (C15)

G−1 = [b1(1 + y2) + b2x
4]

1
4 . (C16)

All the above expressions for C1,2,3 are used in Sec. V B to investigate the Yukawa coupling between the semi-Dirac fermions
and the quantum fluctuation of excitonic order parameter at the semimetal-insulator QCP. We find that these different RG schemes
lead to essentially the same conclusion.

APPENDIX D: EXPRESSIONS OF C ′
1,2,3 IN FOUR DIFFERENT RG SCHEMES

In RG scheme 1 shown in Eq. (B9), C ′
1 can be computed through C1 shown in Eq. (B14) by replacing G(x,δ) with −G ′(x,δ),

and C ′
2,3 can be computed through C2,3 shown in Eqs. (B15) and (B16) by replacing G(x,δ) with G ′(x,δ), where G ′(x,δ) is given

by

G ′−1(x,δ) =

√
δ + β

(1+δ2)
1
2

2πNα
+

[
dxδ

[x2(1 + δ2) + c0δ2 + 1]
1
4

+ dy

[x2(1 + δ2) + c0δ2 + 1]
3
4

]
, (D1)

in which β = a�
v2 .

In RG scheme 2 shown in Eq. (C1), C ′
1 can be computed through C1 given by Eq. (C2) by replacing G(x,y) with −G ′(x,y),

and C ′
2,3 can be computed through C2,3 given by Eqs. (C3) and (C4) by replacing G(x,y) with G ′(x,y), where G ′(x,y) can be

written as

G ′−1(x,y) =
√

1 + β2y2

2πNα
+

[
dx

(x2 + c0 + y2)
1
4

+ dyy
2

(x2 + c0 + y2)
3
4

]
, (D2)

in which β = av
�

.
In RG scheme 3 shown in Eq. (C7), C ′

1 can be computed through C1 given by Eq. (C8) by replacing G(x,y) with −G ′(x,y),
and C ′

2,3 can be computed through C2,3 given by Eqs. (C9) and (C10) by replacing G(x,y) with G ′(x,y), where G ′(x,y) takes the
form

G ′−1(x,y) =
√

y2 + β

2πNα
+

[
dxy

2

(x2 + c0y4 + 1)
1
4

+ dy

(x2 + c0y4 + 1)
3
4

]
, (D3)

in which β = a�
v

.
In RG scheme 4 shown in Eq. (C12), C ′

1 can be computed through C1 shown in Eq. (C13) by replacing G(x,y) with −G ′(x,y),
and C2,3 can be computed through C2,3 given by Eqs. (C14) and (C15) by replacing G(x,y) with G ′(x,y), where G ′(x,y) has the
expression

G ′−1(x,y) =
√

x2 + βy2

2Nπα
+

[
dxx

2

(1 + c0x4 + y2)
1
4

+ dyy
2

(1 + c0x4 + y2)3/4

]
, (D4)

in which β = a�
v2 .
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[54] J. González, F. Guinea, and M. A. H. Vozmediano, Nucl. Phys.

B 424, 595 (1994).
[55] J. González, F. Guinea, and M. A. H. Vozmediano, Phys. Rev.

B 59, R2474(R) (1999).
[56] D. T. Son, Phys. Rev. B 75, 235423 (2007).
[57] J. Hofmann, E. Barnes, and S. Das Sarma, Phys. Rev. Lett. 113,

105502 (2014).
[58] C. Bauer, A. Rückriegel, A. Sharma, and P. Kopietz, Phys. Rev.

B 92, 121409(R) (2015).
[59] A. Sharma and P. Kopietz, Phys. Rev. B 93, 235425 (2016).
[60] D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov,

A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V. Grigorieva,
K. S. Novoselov, F. Guinea, and A. K. Geim, Nat. Phys. 7, 701
(2011).

[61] D. A. Siegel, C.-H. Park, C. Hwang, J. Deslippe, A. V. Fedorov,
S. G. Louie, and A. Lanzara, Proc. Natl. Acad. Sci. USA 108,
11365 (2011).

[62] G. L. Yu, R. Jalil, B. Belle, A. S. Mayorov, P. Blake, F.
Schedin, S. V. Morozov, L. A. Ponomarenko, F. Chiappini,
S. Wiedmann, U. Zeitler, M. I. Katsnelson, A. K. Geim, K. S.
Novoselov, and D. C. Elias, Proc. Natl. Acad. Sci. USA 110,
3282 (2013).

[63] L. Miao, Z. F. Wang, W. Ming, M.-Y. Yao, M. Wang, F. Yang,
Y. R. Song, F. Zhu, A. V. Fedorov, Z. Sun, C. L. Gao, C. Liu,
Q.-X. Xue, C.-X. Liu, F. Liu, D. Qian, and J.-F. Jia, Proc. Natl.
Acad. Sci. USA 110, 2758 (2013).

[64] T. Kondo, M. Nakayama, R. Chen, J. J. Ishikawa, E.-G. Moon,
T. Yamamoto, Y. Ota, W. Malaeb, H. Kanai, Y. Nakashima, Y.
Ishida, R. Yoshida, H. Yamamoto, M. Matsunami, S. Kimura,
N. Inami, K. Ono, H. Kumigashira, S. Nakatsuji, L. Baltents,
and S. Shin, Nat. Commun. 6, 10042 (2015).

[65] D. V. Khveshchenko, Phys. Rev. Lett. 87, 246802 (2001).
[66] A. H. Castro Neto, Physics 2, 30 (2009).
[67] V. A. Miransky, Dynamical Symmetry Breaking in Quantum

Field Theories (World Scientific, 1994).
[68] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).
[69] C.-X. Zhang, G.-Z. Liu, and M.-Q. Huang, Phys. Rev. B 83,

115438 (2011).
[70] E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A.

Shovkovy, Phys. Rev. B 66, 045108 (2002).
[71] D. V. Khveshchenko and H. Leal, Nucl. Phys. B 687, 323

(2004).
[72] G.-Z. Liu, W. Li, and G. Cheng, Phys. Rev. B 79, 205429

(2009).
[73] D. V. Khveshchenko, J. Phys.: Condens. Matter 21, 075303

(2009).
[74] O. V. Gamayun, E. V. Gorbar, and V. P. Gusynin, Phys. Rev. B

81, 075429 (2010).
[75] J. Sabio, F. Sols, and F. Guinea, Phys. Rev. B 82, 121413(R)

(2010).
[76] G.-Z. Liu and J.-R. Wang, New J. Phys. 13, 033022 (2011).
[77] J.-R. Wang and G.-Z. Liu, J. Phys.: Condens. Matter 23, 155602

(2011).
[78] J.-R. Wang and G.-Z. Liu, J. Phys.: Condens. Matter 23, 345601

(2011).
[79] J.-R. Wang and G.-Z. Liu, New J. Phys. 14, 043036 (2012).
[80] C. Popovici, C. S. Fischer, and L. von Smekal, Phys. Rev. B

88, 205429 (2013).
[81] J.-R. Wang and G.-Z. Liu, Phys. Rev. B 89, 195404 (2014).
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