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We have carried out a comprehensive study of the intrinsic anomalous Hall effect and spin Hall effect of
several chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh and Pt) by ab initio band structure
and Berry phase calculations. These studies reveal large and anisotropic values of both the intrinsic anomalous
Hall effect and spin Hall effect. The Mn3X materials exhibit a noncollinear antiferromagnetic order which, to
avoid geometrical frustration, forms planes of Mn moments that are arranged in a Kagome-type lattice. With
respect to these Kagome planes, we find that both the anomalous Hall conductivity (AHC) and the spin Hall
conductivity (SHC) are quite anisotropic for any of these materials. Based on our calculations, we propose how
to maximize AHC and SHC for different materials. The band structures and corresponding electron filling, that
we show are essential to determine the AHC and SHC, are compared for these different compounds. We point
out that Mn3Ga shows a large SHC of about 600 (h̄/e)(� cm)−1. Our work provides insights into the realization
of strong anomalous Hall effects and spin Hall effects in chiral antiferromagnetic materials.
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I. INTRODUCTION

The anomalous Hall effect (AHE) [1] and spin Hall
effect (SHE) [2] are very important members of the family
of Hall effects. The AHE is characterized by a transverse
voltage generated by a longitudinal charge current usually in
a ferromagnetic (FM) metal. The AHE can be generalized to
the case of the SHE in nonmagnetic materials in which Mott
scattering [3] leads to the deflection of spin-up and -down
charge carriers in opposite directions, owing to spin-orbit
coupling (SOC), as illustrated in Fig. 1. Thus, a longitudinal
charge current can generate opposite spin accumulations along
opposing edges in the transverse direction to the current. On
the contrary, a spin current can also induce a transverse voltage
drop, in an effect called the inverse SHE. Both the AHE
and SHE are of particular interest for spintronic applications
[4–6], and references therein] in which spin currents can be
used to manipulate magnetic moments, for example, switching
the state of magnetization of magnetic nanoelements, or for
inducing the very efficient motion of domain walls [7,8].
Thus, the SHE has recently attracted much attention by both
experimentalists and theorists, and there has been widespread
efforts to search for candidate materials that exhibit strong
AHE or SHE.

The AHE and SHE originate from the electronic and
magnetic structures of materials and have both extrinsic and
intrinsic origins. Extrinsic contributions depend sensitively on
impurity scattering while intrinsic effects are derived from
properties of the band structure. It is the intrinsic AHE and SHE
that are the subject of this paper. For the AHE of an ordinary
collinear ferromagnet, it has been established that the Berry
curvature, a quantity closely determined by the band structure,
acts as a fictitious magnetic field in momentum space, that
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is derived from the magnetization and SOC, and affects the
charge motion in the same way as a real magnetic field [9]. In a
collinear AFM, it is not surprising that the AHE vanishes due to
the spin-up and -down conduction electron symmetry, or rather
the existence of a symmetry by combining a time-reversal
symmetry operation and a lattice translation. In a chiral
ferromagnet where magnetic moments are tilted in a lattice, it
was recently found that the aforementioned fictitious magnetic
field can also be generated by the scalar spin chirality [10,11],
Si(Sj × Sk) (Si,j,k denote three noncoplanar spins), which
does not necessarily involve SOC. When an electron makes
a loop trajectory in a chiral FM lattice, the electron acquires
a real-space Berry phase due to double exchange interactions
with the chiral lattice spins. The corresponding AHE has been
referred to as a so-called real-space topological Hall effect in
the literature (e.g., Ref. [12]). In a chiral AFM in which the
magnetic moments are coplanar, the topological Hall effect
disappears because of the zero spin chirality. However, an AHE
can still exist due to a nonzero Berry curvature induced by the
SOC [13]. Indeed, a strong AHE was recently observed in the
chiral AFM compounds Mn3Sn and Mn3Ge [13–16]. In prin-
ciple, the SHE exists generically in systems with strong SOC.
It has been studied in nonmagnetic [17–20] as well as antifer-
romagnetic [20–24] metals. Very recently, a strong SHE was
experimentally discovered in another chiral AFM compound
Mn3Ir [25]. Therefore, chiral AFM materials are appealing
candidates for finding significant AHE and SHE. They have
also stimulated the search for Weyl points in the same family
of materials [26] and exotic magneto-optical Kerr effect [27].

In this work, we have performed a comprehensive study of
the intrinsic AHE and SHE of the compounds Mn3X (X = Ge,
Sn, Ga, Ir, Rh, and Pt), using ab initio Berry phase calculations.
These compounds exhibit a chiral AFM order well above room
temperature (see Table I). This paper is organized as follows.
We first introduce the ab initio method and the linear-response
method that we have used to compute the AHE and SHE in
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FIG. 1. Schematic illustrations of (a) the anomalous Hall effect
and (b) the spin Hall effect from the viewpoint of spin-dependent Mott
scattering. (c) The anomalous Hall effect in collinear FM, collinear
AFM, chiral FM, and chiral AFM systems. ρxy,M, λSOC, and
Si(Sj × Sk) represent the anomalous Hall resistivity, magnetization,
strength of SOC, and the scalar spin chirality, respectively.

Sec. II. We then discuss the relationship of the symmetry of
the crystal lattice and magnetic lattice to the SHC and AHC in
Sec. III. In Sec. IV, we discuss the results of our calculations
with the assistance of symmetry analysis, where the Mn3X

compounds are classified into two groups according to their
crystal and magnetic structures. Finally, we summarize our
results in Sec. V.

II. METHODS

The anomalous Hall conductivity (AHC) and spin Hall
conductivity (SHC) characterize the AHE and SHE, re-
spectively. In addition, the spin lifetime and related spin
manipulation methods are important ingredients for the SHE
device applications, but these aspects are beyond the scope of
the current study. The AHC and SHC have been calculated
using the Berry phase that we have determined from ab initio
band structures. Density-functional theory (DFT) calculations
were performed for the Mn3X bulk crystals with the Vienna
ab-initio simulation package (VASP) [28] within the gener-
alized gradient approximation (GGA) [29]. The SOC was in-
cluded in our calculations. The material-specific Hamiltonians
were established by projecting the DFT Bloch wave functions
onto maximally localized Wannier functions (MLWFs) [30].
Based on these tight-binding Hamiltonians, that include
realistic material parameters, we have calculated the intrinsic
AHC and SHC by using the Kubo formula approach within the

TABLE I. Crystal structure, magnetic structure, and AFM
ordering temperature (TN ) for Mn3X compounds.

Crystal Magnetic
TN (K) space group space group

Mn3Gaa 470 P 63/mmc, no. 194 R3m′

Mn3Geb 365
Mn3Snc 420
Mn3Rhd 853 ± 10 Pm3̄m, no. 221 Am′m′m2
Mn3Ire 960 ± 10
Mn3Ptf 473 ± 10

aRef. [37]; bRef. [45]; cRef. [46]; dRef. [44]; eRef. [43]; fRefs. [42,44].

linear response [1,2,9,31]. The AHC (σαβ) is obtained from

σαβ =−e2

h̄

∑
n

∫
BZ

d3�k
(2π )3

fn(�k)�n(�k),

�n(�k)=2ih̄2
∑
m�=n

〈un(�k)|v̂α|um(�k)〉〈um(�k)|v̂β |un(�k)〉(
En(�k) − Em(�k)

)2 , (1)

where v̂α(β,γ ) = i
h̄

[Ĥ ,r̂α(β,γ )] is the velocity operator with

α,β,γ = x,y,z; r̂α is the position operator. fn(�k) is the Fermi-
Dirac distribution. |un(�k) > and En(�k) are the eigenvector and
eigenvalue of the Hamiltonian Ĥ (�k), respectively. �n(�k) is the
Berry curvature in momentum space, and the corresponding
AHC σαβ can be evaluated by summing the Berry curvature
over the Brillouin zone (BZ) for all the occupied bands. Here
σαβ corresponds to a 3 × 3 matrix and indicates a transverse
Hall current jα generated by a longitudinal electric field Eβ ,
which satisfies Jα = σαβEβ . For the evaluation of the velocity
operator we assume for simplicity that the position operator
is diagonal in the Wannier basis, as is commonly done in
tight-binding calculations.

The intrinsic SHC can be obtained by replacing the velocity
operator with the spin current operator Ĵ

γ
α = 1

2 {v̂α,ŝγ }, where
ŝγ is the spin operator. The SHC then has the form of

σ
γ

αβ = e

h̄

∑
n

∫
BZ

d3�k
(2π )3

fn(�k)�γ

n,αβ(�k),

�
γ

n,αβ (�k) = 2ih̄2
∑
m�=n

〈un(�k)
∣∣Ĵ γ

α

∣∣um(�k)〉〈um(�k)|v̂β |un(�k)〉(
En(�k) − Em(�k)

)2 .

(2)

�
γ

n,αβ (�k) is referred to as the spin Berry curvature in the
following, in order to distinguish it from the Berry curvature
��n(�k). The SHC (σγ

αβ ; α,β,γ = x,y,z) is a third-order tensor
(3 × 3 × 3) and represents the spin current J sγ

α generated by
an electric field �E via J sγ

α = σ
γ

αβEβ , where J sγ
α flows along

the α direction with the spin polarization along the γ direction
and Eβ is the β component of the electric field �E.

For the integrals of Eqs. (1) and (2), the BZ was sampled by
k grids from 50 × 50 × 50 to 200 × 200 × 200. Satisfactory
convergence was achieved for a k grid of size 150 × 150 ×
150. Increasing the grid size to 200 × 200 × 200 varied the
SHC and AHC by no more than 5%. Note that the unit of
SHC differs from that of the AHC by h̄

2e
, where h̄/2 is the spin

angular momentum and e is the electron charge. Thus, the unit
of SHC is (h̄/e)(� cm)−1.

Since AHC and SHC are determined directly by the band
structure, they are fully compatible with the symmetry of
the Hamiltonian. Therefore, we can use symmetry analysis
to simplify the shape of the AHC and SHC tensor matrices, by
forcing certain matrix elements to be zero and constraining
some to be the same. Here, we obtain the shape of the
intrinsic response tensor from the linear-response-symmetry
code [32,33], which analyzes the symmetry operations of the
corresponding crystal and magnetic space groups [34] and then
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TABLE II. Shape of the AHC and SHC tensors obtained from symmetry analysis and numerical calculations for Mn3X (X = Ga, Ge, and
Sn). The calculated SHC tensor elements are set to zero when they are smaller than 12 (h̄/e)(� cm)−1. The coordinates used here are x along
[100], y along [120], and z along [001], as presented in Figs. 1(a) and 1(b). The AHC is given in units of (� cm)−1 and the SHC in units of
(h̄/e)(� cm)−1.

AHC SHC

σ σ x σ y σ z

symmetry-imposed tensor shape

⎛
⎝ 0 0 −σzx

0 0 0
σzx 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 σ x
yz

0 σ x
zy 0

⎞
⎠

⎛
⎝ 0 0 σ y

xz

0 0 0
σ y

zx 0 0

⎞
⎠

⎛
⎝ 0 σ z

xy 0
σ z

yx 0 0
0 0 0

⎞
⎠

Mn3Ga

⎛
⎝ 0 0 −81

0 0 0
81 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 −14
0 12 0

⎞
⎠

⎛
⎝ 0 0 15

0 0 0
−7 0 0

⎞
⎠

⎛
⎝ 0 −597 0

626 0 0
0 0 0

⎞
⎠

Mn3Ge

⎛
⎝ 0 0 330

0 0 0
−330 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 −21
0 18 0

⎞
⎠

⎛
⎝ 0 0 21

0 0 0
−18 0 0

⎞
⎠

⎛
⎝ 0 112 0

−115 0 0
0 0 0

⎞
⎠

Mn3Sn

⎛
⎝ 0 0 133

0 0 0
−133 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 −36
0 96 0

⎞
⎠

⎛
⎝ 0 0 36

0 0 0
−96 0 0

⎞
⎠

⎛
⎝ 0 64 0

−68 0 0
0 0 0

⎞
⎠

determines the tensor shape by solving the linear equations.
We note that a similar study [35] also recently considered
how the shape of the tensor response varied according to the
magnetic Laue group. The shape of the AHC and SHC tensors
is shown in Table II. These are very helpful in checking the
validity and numerical convergence of our calculations by
comparing the symmetry of the calculated matrices and the
ideal symmetry-imposed matrices. Furthermore, the tensor
shape surely relies on the coordinate system that is specified in
the next section. The AHC and SHC tensors can be expressed in
different coordinate systems, which are physically equivalent,
and can be transformed into each other according to specific
rotation matrices [36].

III. CRYSTALLOGRAPHIC AND
MAGNETIC STRUCTURES

The compounds considered here can be classified into two
groups according to their crystallographic structure. Mn3Ga,
Mn3Ge, and Mn3Sn display a hexagonal lattice with the space
group P 63/mmc (No. 194). The primitive unit cell includes
two Mn3X planes that are stacked along the c axis according
to “–AB–AB–”. Each structure contains a plane of Mn atoms
that constitute a Kagome-type lattice with Ga, Ge, or Sn lying
at the center of a hexagon formed from the Mn atoms. In the
Kagome plane due to magnetogeometrical frustration, the Mn
magnetic moments exhibit a noncollinear AFM order, where
the neighboring moments are aligned at a 120◦ angle [37–39].
The energetically favored AFM configuration was revealed, as
illustrated in Fig. 2(a), in earlier DFT calculations [40]. The
magnetic ordering temperatures are above 365 K for all these
three compounds, as shown in Table I. Additionally, Mn3Ga
and Mn3Ge can also crystallize into a tetragonal phase with a
ferrimagnetic structure [37,38,41], which is not considered in
this work.

Mn3Rh, Mn3Ir, and Mn3Pt crystallize in a face-centered
cubic (FCC) lattice (space group Pm3̄m, No. 221) with Ir
(Rh, Pt) and Mn located at the corner and face-center sites,

respectively, as shown in Fig. 2(b). Within the (111) plane,
the Mn sublattice also forms a Kagome lattice. In contrast
to that of Mn3Ge, the Kagome planes stack in an “–ABC–
ABC–” sequence. The noncollinear AFM structure has also
been observed by neutron diffraction measurements [42–44].
Distinct from Mn3Ge, here the magnetic moments all point
towards or away from the center of the Mn triangles. The
AFM order also persists to well above room temperature
(see Table I).

IV. RESULTS AND DISCUSSIONS

A. Anomalous Hall effect in Mn3Ga, Mn3Ge, and Mn3Sn

The AHC σαβ can be understood by a consideration of the
symmetry of the magnetic structure. As indicated in Fig. 1(a)
there is a mirror plane M̂y that is parallel to the zx plane. By
combining a mirror reflection about this plane and a translation
operation along the c direction τ̂ = (0,0,c/2), the system
is imaged back onto itself with the same crystallographic
and magnetic structures. Therefore, the magnetic structure in
Mn3Ga, Mn3Ge, and Mn3Sn is symmetric with respect to the
{M̂y |τ̂ } symmetry operator. The mirror operation M̂y changes
the signs of �yz(�k) and �xy(�k), but preserves �zx(�k), since
�αβ(�k) is a pseudovector, just like the spin. Accordingly, σyz

and σxy that are parallel to the mirror plane are transformed
to −σyz and −σxy , with respect to the M̂y reflection (the
translation operation does not affect the Berry curvature).
Thus, from symmetry considerations, σyz and σxy must be
zero, and only σzx can be nonzero. We therefore propose that
the preferred experimental setup for maximizing AHC is to
confine the electric field within the zx plane, for example, by
setting the electric current along z and detecting the transverse
voltage along x.

Our calculations are fully consistent with the above symme-
try analysis, as shown in Table II, where only σzx (σxz = −σzx)
is nonzero. The AHC of Mn3Ge is as large as 330 (� cm)−1.
Although Mn3Sn has a stronger SOC than Mn3Ge, its AHC
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FIG. 2. Crystal lattice and magnetic structure for Mn3X (X = Ga,
Ge, Sn, Rh, Ir, and Pt). (a) Mn3X (X = Ga, Ge, and Sn) display
a hexagon lattice with Mn forming a Kagome sublattice stacking
along the c axis. The gray plane indicates the My mirror plane of
the symmetry operation {My |τ = c/2}. The crystallographic a and
c axes align with the x and z directions, respectively, with the b

axis lying inside the xy plane. (b) Top view of the Mn Kagome-type
lattice showing triangular and hexagonal arrangements of the Mn
moments. Arrows represent the Mn magnetic moments, presenting
a noncollinear AFM configuration. The mirror plane position is
indicated by a black line. (c) The crystal structure of Mn3X (X = Rh,
Ir, and Pt) has an FCC lattice. Three mirror planes are shown in gray.
Here a mirror reflection combined with a time-reversal symmetry
operation preserves the magnetic lattice. (d) The Mn sublattice also
forms a Kagome-type configuration in Mn3X (X = Rh, Ir, and Pt),
thereby forming a noncollinear AFM phase, but which is slightly
different from the Mn3Ge family. The projections of three mirror
planes are indicated by black lines. To match the hexagonal lattice
conveniently, the Kagome plane is set as the xy plane and the plane
normal as the z axis. Here x is along the crystallographic [11̄0], y

along [112̄], and z along [111].

is less than half that of Mn3Ge. Mn3Ga exhibits the smallest
AHC and, moreover, the AHC has the opposite sign to those of
the Ge and Sn compounds. This is fully consistent with recent
experiments on the Ge and Sn compounds [15,16], where the
in-plane AHC (σxy) is negligible compared to the out-of-plane
AHC (σzx and σyz), and Mn3Sn displays a smaller AHC in
magnitude than Mn3Ge. We note that σzx and σyz may be both
nonzero if a different coordinate axis is chosen or the chiral
moments are rotated by an external magnetic field.

Since the intrinsic AHE originates from the electronic
band structure, we analyzed the band structure in detail to
understand the differences among these three compounds.
Their calculated band structures are shown in Fig. 3. Since
the valence electrons for Ga and Ge (Sn) are 4s24p1 and
4s24p2 (5s25p2), respectively, the band structure of Mn3Ga
looks very similar to that of Mn3Ge (Mn3Sn). The Fermi level
is shifted up by 0.34 eV (equivalent to adding one electron).
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FIG. 3. Electronic band structure for (a) Mn3Ga, (d) Mn3Ge, and
(g) Mn3Sn. Energy dependent AHC σzx for (b) Mn3Ga, (e) Mn3Ge,
and (h) Mn3Sn. Energy dependent SHC tensor elements of σ z

xy and
σ z

yx for (c) Mn3Ga, (f) Mn3Ge, and (i) Mn3Sn. Mn3Ga would have
the same number of valence electrons as does Mn3Ge and Mn3Sn if
the Fermi level is shifted up to the blue dashed line in (a)–(c).

Correspondingly, the shapes of the energy-dependent AHC
curves for Mn3Ga and Mn3Ge (Mn3Sn) are also very similar.
The value of σzx in Mn3Ga changes sign from negative to
positive after tuning up the Fermi level.

Atomic Ge and Sn have similar valence electron configu-
rations while Sn has a larger atomic radius and stronger SOC
compared to Ge. Although the consequent changes in the band
structures are subtle (see Fig. 3), the effect on the resultant
AHC can be significant. To better understand the AHE in
Mn3Ge and Mn3Sn, we considered the distributions of the
Berry curvature in the reciprocal space. We have projected the
Berry curvature components of �zx onto the k3-k1 (kz-kx) plane
by integrating them along k2, where k1,2,3 are the reciprocal
lattice vectors, and k3 and k1 are aligned with the kz and kx

axes, respectively. The projected Berry curvatures of Mn3Ge
and Mn3Sn with the Fermi level lying at the charge neutral
point are shown in Figs. 4(a) and 4(b), respectively. One can
easily identify the origin of the significant differences of the
Berry curvature between Mn3Ge and Mn3Sn. The large AHC
mainly arises from the positive hot spots located around (0.127,
0.428) (the coordinates are in units of the reciprocal lattice
vectors k1 and k2) and its three partners in the k3-k1 plane,
while these four hot spots are not seen in Mn3Sn. Taking the
hotspot at (0.127, 0.428) as an example, we have checked the
band structure and corresponding Berry curvature evolution
with k2 varying from 0 to 1. From the band structure of
Mn3Ge in Fig. 4(c) we can see that the Fermi level crosses two
small gaps around k2 = 0 and 0.5. According to Eq. (1), the
entanglement between occupied and unoccupied states must be
very strong around these two points and contributes to a large

075128-4



STRONG ANISOTROPIC ANOMALOUS HALL EFFECT AND . . . PHYSICAL REVIEW B 95, 075128 (2017)

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

k

6030

0

-30-60

En
er
gy
(e
V
) 0.4

0.2
0.0
-0.2
-0.4
0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

�
(a
.u
)

1600

1200

800
400

0

0.0 0.2 0.4 0.6 0.8 1.0

-12 -6 0 6

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

3 k3

k 1

k2 k2

k2 k2

zx

(a) (b)

(c) (d)

(e) (f)

Mn Ge Mn Sn3 3

FIG. 4. (a),(b) Berry curvature projected onto the k3-k1 plane for
Mn3Ge and Mn3Sn, respectively. The Berry curvature in Mn3Ge is
dominated by the four areas that are highlighted in yellow in (a).
(c) Energy dispersion of Mn3Ge along k2 with (k3, k1) fixed at the
Berry curvature dominated point (0.127, 0.428), identified as the
black dashed circle marked in (a). The band gaps are very small near
k2 = 0.5 and 1, which are noted by the small black dashed circles.
(d) Band structure of Mn3Sn for the same reciprocal space cut as
in (c). The band gaps are much larger in Mn3Sn, as denoted by the
larger black dashed circles. (e) The evolution of the Berry curvature
�y of Mn3Ge corresponding to the band structure given in (c). The
small band gaps around k2 = 0.5 and 1 make larger contributions to
the Berry curvature. (f) The magnitude of Berry curvature along the
same path in Mn3Sn is negligibly small compared to that in Mn3Ge.

Berry curvature, as indicated by the two peaks in Fig. 4(e). This
is fully consistent with previous calculations on Mn3Ge [16].
Mn3Sn has a similar band structure along the same k path,
as can be seen by comparing Figs. 4(c) and 4(d), whereas the
band gaps around k2 = 0 and 0.5 are much larger compared to
that in Mn3Ge. Consequently, the two Berry curvature peaks
disappear in Mn3Sn, as shown in Fig. 4(f). Thus, a tiny change
in band structure can result in significant changes in the Berry
curvature and AHC in this class of compounds.

B. Spin Hall effect in Mn3Ga, Mn3Ge, and Mn3Sn

By adding the spin degree of freedom, the SHC becomes
a third-order tensor. Similar to the AHC, some SHC tensor
elements will be exactly zero or will be identical based on the
corresponding lattice and magnetic symmetries. The magnetic
space group for Mn3X (X = Ga, Ge, and Sn) is identified to be
R3m′, and the corresponding Laue group is m′m′m′ [34]. The

FIG. 5. (a) Angle-dependent spin current J s arising from a charge
current J along the x axis (the crystallographic a lattice vector)
in Mn3Ge. J s rotates inside the yz plane. The largest spin Hall
conductivity is when J s is along the y axis (θ = 0◦). The blue arrows
represent the spin polarization directions of J s. (b) Schematic of J s

and J with respect to the lattice orientation.

calculated shape of the intrinsic SHC tensor and corresponding
numerical results are presented in Table II. Furthermore, the
SHC of Mn3X (X = Ga, Ge and Sn) is strongly anisotropic
with dominant components of σ z

xy and σ z
yx . These results will

provides helpful information for the experimental detection of
the SHE. To illustrate the anisotropy of the SHC, we show
the angle-dependent SHC for Mn3Ge in Fig. 5. When the
charge current J is fixed along the x axis (a direction) and by
considering the spin current J s perpendicular to J and rotating
it, the corresponding magnitude of SHC is maximal for J s||y
while being zero for J s||z. Therefore, to observe large SHC,
one should set the charge current and spin current inside the
Kagome (xy) plane, for example with the electron current set
along x and by measuring the transverse spin current along
y with its spin polarization along z. Therefore, we stress that
for optimizing the efficiency of devices that rely on SHE and
AHE, the direction of the charge current and the resulting spin
current will depend on the respective compound.

As shown in Table II, the largest SHCs σ z
xy and σ z

yx are of the
order of 120 (h̄/e)(� cm)−1 in magnitude for Mn3Ge. With the
relatively small electrical conductivity [about 3300 (� cm)−1],
we would have a spin Hall angle up to 3%. Also the σ z

yx ele-
ments in Mn3Ga is around 600 (h̄/e)(� cm)−1. Additionally, it
is not surprising that σ z

xy and σ z
yx are not equal in magnitude, for

the x and y directions are not equivalent in a Kagome structure.
Since the SHC is strongly related to the location of the

Fermi level, the SHC varies quickly as the Fermi energy is
shifted, especially for the metallic band structures shown in
Fig. 3. The energy-dependent SHC of the most prominent
tensor elements σ z

xy and σ z
yx for the three compounds are shown

in Figs. 3(e), 3(f), and 3(i). Owing to the similar crystal lattice
constant and the same magnetic order, the shapes of the SHC
curves are very similar, if we ignore the fact that Ga has one
electron less than either Ge or Sn. For Mn3Ga, the SHC exhibits
a minimum at the Fermi level, the charge neutral point, and
increases quickly if the Fermi level moves up or down. Hence
an even larger SHC is expected for Mn3Ga with small electron
or hole doping. One can see that the SHC remains relatively
stable with respect to varying the Fermi level in the energy
window of ±0.1 eV for Mn3Ge and Mn3Sn. This indicates
that the SHC in the Ge and Sn compounds is robust.
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FIG. 6. (a),(b) Spin Berry curvature projected onto the k3-k1

plane for Mn3Ge and Mn3Sn, respectively. The two compounds have
similar distributions of the projected spin Berry curvature. (c),(d)
Band structures of Mn3Ge and Mn3Sn, respectively, along k2. The
coordinates of k3 and k1 are fixed at (0.31, 0.15) and (0.29, 0.24)
for Mn3Ge and Mn3Sn, respectively, as noted by the black dashed
circles in (a) and (b). Small band gaps exist around the k2 = 1 point
for both Mn3Ge and Mn3Sn, as marked by the black dashed circles.
(e),(f) Corresponding spin Berry curvature evolutions along k2 for
Mn3Ge and Mn3Sn, respectively. The large spin Berry curvature
mainly originates from the small band gaps in the band structures.

Since the spin Berry curvature is distinct from the Berry
curvature, the SHC and AHC can have dominant contributions
from different electronic bands. Although Mn3Ge and Mn3Sn
display very different AHCs in magnitude, their SHCs are very
close. Therefore, we expect a similar spin Berry curvature
distribution in k space for both compounds. Taking the
components of �z

xy as an example, we compare the spin Berry
curvature distributions for Mn3Ge and Mn3Sn with the Fermi
energy lying at the charge neutral point. Similar to the above
analysis for the AHE, we also project the spin Berry curvature
onto the k3-k1 plane by integrating �z

xy along k2. As shown
in Fig. 6, Mn3Ge and Mn3Sn display similar features in their
respective spin Berry curvature distributions. The shapes of the
dominant areas are very similar in both compounds, with just
a little shift within the k3-k1 plane. The dominant contribution
forms thick arcs with a transition point between positive and
negative amplitudes, where the integrated spin Berry curvature

transfers from positive to negative. Since the size of the positive
dominant area is much larger than that of the negative part, the
integral of the spin Berry curvature in the whole BZ gives a
positive SHC σ z

xy , as is listed in Table II.
The above positive-negative spin Berry curvature distribu-

tion is reminiscent of the similar feature of the SHE around the
Weyl point, where positive and negative spin Berry curvature
appear with the Weyl point as the transition point [26]. In fact
Weyl points also exist in Mn3Ge and Mn3Sn, however, the
spin Berry curvature transition point in Fig. 6 does not exactly
overlap with the Weyl point. A careful inspection of the band
dispersions along k2 through these hot spots reveals tiny band
gaps that contribute to the peaks of the spin Berry curvature,
as shown in Figs. 6(e) and 6(f). Therefore, the intrinsic SHC
mainly arises from the small band gaps lying very close to the
Fermi level.

C. Anomalous Hall effect and spin Hall effect
in Mn3Rh, Mn3Ir, and Mn3Pt

In the cubic lattice of Mn3Rh, Mn3Ir, and Mn3Pt, there are
three mirror planes that intersect the crystallographic [111]
axis and which are related to each other by a threefold rotation.
The mirror reflection M̂ preserves the lattice symmetry but
reverses all spins in the Kagome plane. Since time-reversal
symmetry T̂ can also reverse spins, the combined symmetry of
time-reversal and mirror symmetry, T̂ M̂ is the symmetry of the
system. T̂ M̂ forces the out-of-mirror-plane AHC components
to be zero, since the out-of-plane Berry curvature is odd with
respect to T̂ but even with respect to M̂ . Given the existence of
the three mirror planes, the only nonzero AHC component is
along the co-axis of these three planes, i.e. the [111] axis. For
the convenience of the symmetry analysis, we used coordinates
with z along the [111] direction and x, y within the Kagome
plane (see Fig. 1).

Our numerical calculations are again consistent with the
symmetry analysis. The AHC for Mn3Ir can reach σxy =
312(� cm)−1 with the electric field lying in the (111) plane,
as presented in Table III, which agrees with previous cal-
culations [13]. Compared to Mn3Ir, Mn3Rh exhibits similar
AHC in magnitude while Mn3Pt shows a much smaller
AHC. Mn3Rh and Mn3Ir show very similar trends in the
Fermi-energy-dependent AHC, as shown in Figs. 7(b) and 7(e).
The peak values appear around 50 meV above the charge
neutral point for both Mn3Rh and Mn3Ir. Therefore, in order
to get strong AHE, one simply needs weak electron doping,
and the AHC in the (111) plane can then reach 450 and 500
(� cm)−1 for Mn3Rh and Mn3Ir, respectively. Compared to Rh
and Ir, Pt has one more valence electron. Hence the Mn3Pt can
be viewed as a strongly doped version of Mn3Ir, which shifts
the Fermi level a little further beyond the peak values, leading
to a small AHC of 98 (� cm)−1, as shown in Fig. 7(h).

The magnetic space group for Rh, Ir, and Pt compounds
is Am′m′m2, from which we can obtain the symmetry of
the SHC tensor. As shown in Table III, there are only four
independent nonzero elements. Our numerical calculations fit
the symmetry-imposed tensor shape very well, as shown in
Table III. The largest SHC tensor elements are σx

yz (σy
xz = σx

yz)
and σ

y
xy (σy

xy = σ
y
yx = −σx

xx = σx
yy) for Mn3Rh and Mn3Ir.

Therefore, the optimal experimental arrangement for large
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TABLE III. The intrinsic AHC and SHC tensors obtained from symmetry analysis and numerical calculations for Mn3X (X= Rh, Ir, and Pt).
The calculated SHC tensor elements are set to zero when they are smaller than 5 (h̄/e)(� cm)−1. The coordinate axes correspond to z oriented
in the [111] direction, x along [110], and y along [112]. The AHC is in units of (� cm)−1 and the SHC is in units of (h̄/e)(� cm)−1.

AHC SHC
σ σx σ y σ z

symmetry-imposed tensor shape

⎛
⎝ 0 σxy 0

−σxy 0 0
0 0 0

⎞
⎠

⎛
⎝σ x

xx 0 0
0 −σ x

xx σ x
yz

0 σ x
zy 0

⎞
⎠

⎛
⎝ 0 −σ x

xx −σ x
yz

−σ x
xx 0 0

−σ x
zy 0 0

⎞
⎠

⎛
⎝ 0 σ z

xy 0
−σ z

xy 0 0
0 0 0

⎞
⎠

Mn3Rh

⎛
⎝ 0 −284 0

284 0 0
0 0 0

⎞
⎠

⎛
⎝−276 0 0

0 276 220
0 70 0

⎞
⎠

⎛
⎝ 0 276 −220

276 0 0
−70 0 0

⎞
⎠

⎛
⎝ 0 145 0

−145 0 0
0 0 0

⎞
⎠

Mn3Ir

⎛
⎝ 0 −312 0

312 0 0
0 0 0

⎞
⎠

⎛
⎝−210 0 0

0 210 299
0 −7 0

⎞
⎠

⎛
⎝ 0 210 −299

210 0 0
7 0 0

⎞
⎠

⎛
⎝ 0 163 0

−163 0 0
0 0 0

⎞
⎠

Mn3Pt

⎛
⎝ 0 98 0

−98 0 0
0 0 0

⎞
⎠

⎛
⎝−66 0 0

0 66 108
0 7 0

⎞
⎠

⎛
⎝ 0 66 −108

66 0 0
−7 0 0

⎞
⎠

⎛
⎝ 0 32 0

−32 0 0
0 0 0

⎞
⎠

SHC is to align J s within the xy plane [the (111) Kagome
plane]. It is interesting that J, J s, and the spin polarization of
J s are not necessarily perpendicular to each other and even can
be parallel, as indicated by the nonzero σx

xx . The large value of
σx

xx shows a longitudinal spin current J s induced by a charge
current J along the same direction. Such a longitudinal spin
current is common in FM metals where conduction electrons
are naturally spin polarized. However, it is interesting that these
three AFM compounds can generate a similar spin current,
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FIG. 7. Electronic band structure for (a) Mn3Rh, (d) Mn3Ir, and
(g) Mn3Pt. Energy dependent AHC element of σ z for (b) Mn3Rh,
(e) Mn3Ir, and (h) Mn3Pt. Energy dependent SHC tensor elements
σ x

xx, σ
x
yz, and σ z

xy for (c) Mn3Rh, (f) Mn3Ir, and (i) Mn3Pt. Mn3Pt
would have the same number of valence electrons as Mn3Rh and
Mn3Ir if the Fermi level shifts down to the blue dashed line in (g)–(i).

which may promise novel spintronic applications. In previous
experiments on Mn3Ir [25], the spin current was measured
in two cases where the charge current was fixed along the
[1̄10] crystallographic direction (i.e., x axis of the current
work), J s along the [111] (i.e., z axis) direction and the
[001] direction. The former case was found to exhibit a much
smaller SHE than the latter one. Therefore, we calculate the
angle-dependent SHC by fixing J ||x and rotating J s in the yz

plane for Mn3Ir, as shown in Fig. 8. One clearly sees that the
SHC is only 7 (h̄/e)(� cm)−1 for the former case (θ = 0◦) and
215 (h̄/e)(� cm)−1 for the latter case (θ = 144.7◦).

Similar to the AHC, the peak values of σx
xx and σx

yz also
appear around 50 meV above the charge neutral point for
Mn3Rh and Mn3Ir, while their σ z

xy is quite small. In contrast,
the Fermi-energy-dependent AHC of Mn3Pt shows a similar
shape to that of the Rh and Ir compounds, but the corresponding
Fermi energy should be upshifted by one additional electron,
as shown in Fig. 7(i). Thus, it is not surprising that σ z

xy shows
a large magnitude at the charge neutral point for Mn3Pt.

FIG. 8. (a) Angle-dependent spin Hall conductivity for Mn3Ir.
The charge current J flows along x (i.e., [11̄0]) and the resulting
spin current J s is shown in the yz plane. The SHC is largest when
J s||[001] and smallest when J s||[111]. (b) Schematic of J and J s

within the crystal structure.
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TABLE IV. Summary of the optimal experimental arrangements
to realize large AHE and SHE. The xy plane refers to the Kagome
AFM plane and the z direction is perpendicular to this plane. For
AHE, the preferred plane to set the current and detect the Hall voltage
is specified. For SHE, the charge current J and spin current J s

directions, which are supposed to be orthogonal, are indicated.

AHE SHE

Mn3Ga xz plane xy plane
Mn3Ge
Mn3Sn

Mn3Rh xy plane J s inside the xy plane
Mn3Ir
Mn3Pt

V. SUMMARY

In summary, we have studied the intrinsic AHE and SHE
in the noncollinear AFM compounds Mn3X (X = Ge, Sn,
Ga, Rh, Ir, and Pt) by ab initio calculations. Large AHC
and large SHC are found for these materials, which are also

highly anisotropic and in agreement with recent experimental
measurements. Such an anisotropy is closely related to the
symmetry of the AFM Kagome lattice, which can be helpful in
rationalizing the numerical results. Based on our calculations,
we have proposed the optimal experimental setups to maximize
the AHE and SHE for different systems, as shown in Table IV.
Although the SOC magnitude increases from Rh, to Ir, and
to Pt, the magnitude of the corresponding AHC and SHC do
not follow the same trend. This is also true for the Ga, Ge,
and Sn compounds. This indicates that the electron filling and
the detailed band structures are essential in determining the
magnitude of the AHE and SHE. We point out that the largest
SHC attains a value of around 600 (h̄/e)(� cm)−1 in Mn3Ga.
Our work provides insights in the interpretation and realization
of a strong AHE and SHE in chiral AFM materials.
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