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The correlation functions related to topological phase transitions in inversion-symmetric lattice models
described by 2 x 2 Dirac Hamiltonians are discussed. In one dimension, the correlation function measures
the charge-polarization correlation between Wannier states at different positions, while in two dimensions it
measures the itinerant-circulation correlation between Wannier states. The correlation function is nonzero in
both the topologically trivial and nontrivial states, and allows us to extract a correlation length that diverges
at topological phase transitions. The correlation length and the curvature function that defines the topological
invariants are shown to have universal critical exponents, allowing the notion of universality classes to be
introduced. Particularly in two dimensions, the universality class is determined by the orbital symmetry of the
Dirac model. The scaling laws that constrain the critical exponents are revealed, and are predicted to be satisfied
even in interacting systems, as demonstrated in an interacting topological Kondo insulator.
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I. INTRODUCTION

A central issue in the study of topological insulator (TIs) and
topological superconductor (TSCs) is how to drive the system
into the topologically nontrivial state such that their intriguing
properties, for instance, the chiral edge currents [1-5] and
Majorana edge states [6-9], can be exploited. The topologi-
cally nontrivial state is characterized by a nonzero topological
invariant that is often calculated from the integration of certain
curvature function such as Berry connection [10] or Berry
curvature [11-13], while in the trivial state, the topological
invariant is zero. The transition from a topologically trivial to
anontrivial state necessarily involves inverting the bulk bands,
which is usually achieved by tuning an energy parameter that
may be the chemical potential [6-9], hopping amplitudes [14],
interface coupling [15-24], etc. In this paper, we will refer to
this parameter as the “tuning energy parameter.” Consequently,
topological phase transitions can be identified by calculating
the values of the tuning energy parameter at which the bulk
gap closes, provided that topologically nontrivial states can
exist according to the symmetry classification [25,26].

On the other hand, the concept of scaling and scale
invariance has recently emerged as an alternative way to
judge topological phase transitions [27,28]. Akin to stretching
a messy string to reveal the number of knots it contains, the
scaling procedure locally renormalizes a curvature function
without changing the topological invariant. In this scheme,
the renormalization-group (RG) flow uncovers the fix points
of the curvature function of the topologically trivial and
nontrivial phases.

In this paper, we further advance such an approach to
topological phase transitions by answering the following
fundamental questions, focusing on 1D and 2D inversion-
symmetric lattice models described by 2 x 2 Dirac Hamil-
tonians, where the bulk gap closes at high-symmetry point
(HSPs) [29]. (1) Since topological systems may or may not
possess an order parameter from which a correlation function
is usually defined, can there be a correlation function that
is ubiquitous in topological insulator (TIs)? (2) If such a
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correlation function exists, how is the correlation length related
to other fundamental length scales in the problem, especially
the edge-state decay length [30-35] and the length scale that
characterizes the scale invariance at the critical point [27,28]?
(3) As topological phase transitions can be driven by all
kinds of tuning energy parameters that invert the bulk bands,
can there be universal critical exponents and scaling laws
regardless of what the tuning energy parameter is? (4) Do
different sets of critical exponents correspond to different
universality classes and, if so, what is the underlying symmetry
that determines the universality class?

We show that these delicately intertwined issues can be
addressed in a unified manner using the Wannier-state rep-
resentation [36-38] in combination with 2 x 2 Dirac Hamil-
tonians. We identify the sought-after correlation function in
1D as the Fourier transform of the Berry connection, which
yields a filled-band contribution to the charge-polarization
correlation between Wannier states at different positions,
a quantity that has been discussed within the theory of
charge polarization [12,36-39]. The formalism extended to
2D renders a filled-band Wannier-state correlation function
calculated from the Fourier transform of the Berry curvature,
which is intimately related to the itinerant-circulation part
of the orbital magnetization [40-44]. Remarkably, we find
that these Wannier-state correlation functions are nonzero in
both topologically trivial and nontrivial states. Close to the
critical point, the correlation length essentially coincides with
the diverging length scale suggested by the scaling scheme,
and in the topologically nontrivial state it coincides with
the edge-state decay length. In addition, since the tuning
energy parameter is a scalar that must enter the even-parity
channel of the Dirac Hamiltonian, the curvature function and
the correlation length of noninteracting Dirac Hamiltonians
display universal critical exponents regardless of the tuning
energy parameter. Particularly, in 2D, the critical exponents
can be classified into different universality classes according
to the orbital symmetry of the Dirac Hamiltonian. The scaling
laws that constrain the critical exponents are identified, and
are predicted to be satisfied even in interacting systems.
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This is demonstrated by model calculations for an interacting
topological Kondo insulator (TKI) formulated within a slave-
boson-mean-field theory [45].

The remainder of the paper is arranged in the following way.
Section II discusses the quantities of interest in 1D noninter-
acting lattice models, including the correlation function, the
correlation length, and its correspondence to the edge-state
decay length, scaling laws, and the application to a generic
2 x 2 Dirac Hamiltonian. Section III generalizes the formalism
to 2D systems and elaborates on the relation between the
universality class and the orbital symmetry. The interacting
topological Kondo insulator (TKI) is formulated in Sec. IV.
In Sec. V, we summarize the results and discuss the common
features in all these models.

II. 1D NONINTERACTING SYSTEMS

A. Correlation length and scaling laws in 1D
noninteracting systems

Consider a D-dimensional inversion-symmetric lattice
model whose topology is described by the topological invariant

dk
C= 7
(27)
where F(k,M) is referred to as the curvature function at mo-
mentum k in D dimensions. For D = 1, the curvature function

is the Berry connection [10,12] summed over occupied bands
n,

Fk,M), 1)

F(k,M) = (0|t )

n

where |u,;) is the Bloch state at momentum k with band
index n. Throughout the paper, we use M as the tuning
energy parameter that controls the topology of the system.
The Berry connection is gauge dependent [12] and changes
under |u,;) — €"*|u,;). In the following discussion for 1D
inversion-symmetric lattice models, we choose the gauge that
gives a Berry connection that has a Lorentzian shape around
the gap-closing momentum k),

F(ko, M)
1+ &£25k2°

where £ is a characteristic length scale [27,28]. It is in this
gauge choice that the previously proposed scaling scheme is
applicable in 1D systems since it relies on the form of Eq. (3).
We will demonstrate explicitly this gauge choice for Dirac
models.

The length scale & in Eq. (3) has been suggested to
characterize the scale invariance at the critical point [27] since
it diverges there. As Eq. (3) clearly resembles the Ornstein-
Zernike form of a correlation function in momentum space, we
now demonstrate that £ indeed represents a correlation length
in 1D. Consider the Wannier states for D-dimensional lattice
models,

F(ko + 8k, M) = A3)

k) = Y e KR Rn), (4)
R

|Rn) = / dk e =Ry 0, (4b)
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and their wave functions (r|Rn) = W, (r — R). Particularly in
D = 1, the charge polarization

P =3 0nlrion) = [ dk Y wlitnlun) ()

is known to be equal to the topological invariant in Eq. (1), up
to an integer under gauge transformation [12,36-39], where
n sums over filled bands. Moreover, in the Wannier-state
representation, the contribution to the Berry connection from
the nth filled band is [46—48]

(k10 luni) =Y ** (On|r|Rn)
R
= e *®(Rn|r|On), (6)
R

from which it follows that the Fourier component of the
curvature function in Eq. (2) takes the form [46,49]

AR = /dkeikRF(k,M) - Z(Rn|r|0n)

n

= Z/rWn(r —R)*‘/Vn(r)dr’ (7)

which sums the diagonal matrix elements of the position
operator between Wannier states in the filled bands. Using [39]
(Uni |10k |unk) = (—=i0x (Uni|)|uni) and inversion symmetry, one
sees that Ay = A_g = Ag is a real function. We observe
that in the continuous limit, the Fourier transform of the
Ornstein-Zernike form of Eq. (3) yields

[1FE£%3% + f(@r)]Ar = Flko,M)3(R), ®)

where f(dg)is apolynomial of dg that represents the structures
other than the singularity at k. This suggests that A g to leading
order is a function of R/&,

Ar = A(R/E). 9

Since Ag can be viewed as a charge-polarization correla-
tion function between the Wannier states |On) and |Rn)
summing over filled bands, & unambiguously plays the role
of a correlation length. In addition, the on-site correlation
Ao coincides with the charge polarization in Eq. (5) and
hence the topological invariant. Notice that, however, if one
chooses a different gauge |u,;) — €”*|u,) in which the
Berry connection does not have the Ornstein-Zernike form in
Eq. (3), then the correlation function is modified accordingly,
Ar = Ar — Y, [ dk €*R 3;1,, and in general will not be a
function that simply decays with &. Thus our discussion in 1D
is limited to a specific gauge.

We proceed to discuss a scaling law in 1D. As M — M_, the
curvature function at the gap-closing momentum kg diverges,
yet its integration over the range of £ ! near ko converges to a
constant [see Fig. 2(a) for demonstration]:

1 dk 5 dk F(ko,M)

Caiv = —Fk,M) = —
—g-1 2 —g-1 2w 1:&52](2

_ F(ko.M)

: x O(1) = const. (10)
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Thus F(kyg,M) and & have the same critical exponent in 1D
systems:

|F(ko, M)| o< |[M — M|, (11a)
§ o |M— M|, (11b)
y = . (11c)

Note that since F(kg,M) is the correlation function inte-
grated over space, F'(ko,M) = ) Ag, it plays a role similar
to the susceptibility in the Landau-order-parameter paradigm.
For this reason, we denote its critical exponent by —y
following the usual convention for susceptibility. As we shall

see in the example below, as M — M., one may parametrize
F(ko, M) by

F(ko,M) ocsgn(M — M)IM — Mc|™7, 12)

since F(ky, M) changes sign between M < M. and M > M..

B. Critical exponents of 1D 2x2 Dirac Hamiltonians
of symmetry class AIIL

To further demonstrate that noninteracting 1D Dirac models
exhibit universal critical exponents, we consider a generic 1D
spinless inversion-symmetric model of symmetry class AIIl
described by a 2 x 2 Dirac Hamiltonian,

H(k) = di(k)o;, (13)

where the two degrees of freedom ¥ = (c4,c5)" come from
A and B sublattices. The chiral (sublattice) symmetry of class
Alll demands o,H (k) + H(k)o, = 0 and therefore d; = 0.
The gauge choice that gives Eq. (3) can be constructed
in the following way. The eigenstates with eigenenergies

Ey = £d = £~/ d? + d2 are chosen to be in the gauge

1 +d
V) = ﬁ(dl —i—idz)’

The Berry connection constructed from the filled band in this
gauge choice is

(14)

. dr0rd) — d 0y d
Ap = i(W_|3lvr_) = %

The Dirac Hamiltonian near the gap-closing momentum
k — ko = 8k — 0 and close to the critical point M — M is
generically parametrized by either (d;,d,) = (even,odd) in 8k
or (di,d) = (odd,even) in §k, depending on the model. For
a model described by the first case (d;,d>) = (even,odd), an
expansion to leading order yields

= F(k,M). (15)

di = (M — M,) + BSk?, (16a)
d> = ASk, (16b)
d; = 0. (16¢)

The band-inversion parameter M, which drives the topo-
logical phase transition, has to enter the parity-even d;
component because it is a scalar. For the second case, (d;,d») =
(odd,even), one swaps the functional form for d; and d in
Eq. (16), which merely gives an overall minus sign to the Berry
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FIG. 1. Correlation length & vs tuning energy parameter M — M.
in a generic Dirac Hamiltonian parametrized by the velocity A
and inverse effective mass B as in Eqgs. (16) and (31). Inside
the critical region |M — M| < |A%/B| the correlation length is
approximately & ~ |A/(M — M.)|, while outside the critical region
it is approximately £ ~ |B/(M — M.)|"/?.

connection in Eq. (15), so the analysis of critical exponents
below remains valid.

Putting Eq. (16) into Eq. (3) yields a Berry connection that
is symmetric around ky [this is the purpose of the gauge choice
in Eq. (14)], whose expansion gives

Aoy = ko 17
ko+8k = m, (17a)
Ako = —M X (M — Mc)_l, (17b)
6 3B(M — M)+ A2|'?
M= M2
MM M = M (17¢)

One sees that as M — M., & is always real and positive
regardless of the precise values of (B, A). The critical exponent
of Ay, and of & are y = v = 1, in accordance with the scaling
law described by Eq. (11c).

Two distinct features of the correlation length should be em-
phasized. Firstly, out of the general parametrization in Eq. (16),
there are three fundamental length scales A/(M — M.), B/A,
and |B/(M — M,)|'/> embedded in the Hamiltonian. As shown
in Fig. 1, as the tuning energy parameter approaches the critical
point M — M. = 0, there exists a critical region |M — M.| <
|A%/B], inside of which the correlation length is dominated by
& ~|A/(M — M.)|; outside of the critical region, |M — M.| >
|A%/B]|, the dominating length scale is & ~ |B/(M — M.)|'/>.
Near the boundary of the critical region, the correlation length
and the three length scales are all of the same order of
magnitude. Secondly, in Appendix, we explicitly elaborate
on the correspondence between the correlation length within
this gauge choice and another fundamental length scale in the
problem, namely the decay length of the edge state in the
topologically nontrivial phase. Despite this correspondence,
we emphasize that the Wannier-state correlation function is
finite in both the topologically trivial and nontrivial state,
while the edge state only manifests at the interface between
topologically distinct states.

C. Su-Schrieffer-Heeger model

We proceed by discussing the Su-Schrieffer-Heeger (SSH)
model [14] as a specific example to demonstrate these
statements. The class-AlIll model describes spinless fermions
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on a closed ring with unequal hopping amplitudes on the even
and odd bonds,

H = (t+8nclcg + (t — 80!y, e +He,  (18)

l

where A and B are sublattice indices and i is the site index.
The model has a spectral gap that closes at kg = 7, near which
the Hamiltonian takes the form of Eq. (16) with

t — 6t
M—M.=25t, B= 5

A=6t—t. (19)

The topological phase transition is driven by the difference
in hopping amplitude §7.

Following the gauge choice of Eq. (14), we obtain the Berry
connection for the SSH model as, with an additional factor of
—2 for the sake of normalization,

F(k,8t) = =2i(y_ [ |yr—)
_ (t* — 8t%) cosk + (r — 81)?
Tt 4802+ 212 — 812)cosk + (t — 81)2

The topological invariant C can be calculated by a contour
integration

C= ! /hdkF(k(St)—l 1 £ot
T2 ) ) |7 8¢

|0 for
11 for

(20)

tét > 0,

tét <0, 2y

so the critical point is located at 67z, = 0. At the gap-closing
point kg = 1, Eq. (20) gives

1 t
F(ko,8t) = E(l - E)

— 8t St
s —sgn(?>|8t — st (22)
The length scale & defined from Eq. (3) is [27]
172
t t 8t—6t,
=|—(14+— |8t — 81| 23
§ 4&( +8t)‘ x| el (23)

The Wannier-state charge-polarization correlation function is,
using a contour integration for the Fourier component with the
gap-closing momentum ko = 7 as the origin,

dk 4
g = / — F(k,81)e'*—™R
27

T | ot
5to(5t _isgn<?>eR/$’ (24)

which satisfies Eqgs. (9) and (12), with & playing the role of
a correlation length. Equations (22) and (23) confirm that the
Su-Schrieffer-Heeger (SSH) model indeed satisfies the scaling
law in Eq. (11c) and the critical exponents in Eq. (17). Using
Appendix, the edge-state decay length is

£~ =3t
- 28t
Therefore, in the topologically nontrivial state and close to

the critical point 8¢/t < 0, the correlation length coincides
with the decay length of edge states. Note, however, that the

£. (25)
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FIG. 2. (a) The curvature function (Berry connection within the
described gauge choice) F(k,dt) of the SSH model at §7/t = —0.2,
which peaks at the gap-closing momentum ko = 7. The half width at
half maximum extracts a length scale £ that is the correlation length
in Eq. (9). The area under the singular peak converges to a constant as
8t — §t., as described by Cy;, in Eq. (10). (b) The Fourier component
2ig of F(k,ét) described by Eq. (24), which also represents the
Wannier-state charge-polarization correlation function described in
Eq. (7). It exponentially decays in both R and 6¢ — 6¢. and changes
sign at 8f.. (¢) Schematics for the topologically trivial phase §¢ > 0
(left) which dimerizes between A; and B; and has no edge state when
the ring is cut at the dashed line, and the topologically nontrivial
phase 8t < O (right) that dimerizes between 5; and A;;; and has
edge state when the ring is cut at the dashed line. The Wannier-state
charge-polarization correlation for the two cases is, however, the same
since it only depends on the relative distance between two Wannier
home cells.

Wannier-state correlation is nonzero in both the topologically
trivial and nontrivial state, as explained schematically in
Fig. 2(c).

II1. 2D NONINTERACTING SYSTEMS
A. Correlation length and scaling laws in 2D
noninteracting systems

For 2D systems with rectangular symmetry, we start from
the curvature function that has the following form [27,28] near
the gap-closing momentum ky:

F(ko, M)

Flko + 8k.M) =~ (1 +528k2) (1 £ £26k2)°

(26)

Depending on the scheme one chooses to calculate the topolog-
ical invariant, F(k,M) can be either the Berry curvature [27],
the phase gradient of the Pfaffian of the time-reversal operator,
or the second derivative of the Pfaffian [28]. A significant
difference from the 1D case described in Sec. II is that these
quantities are gauge-invariant in 2D, so there is no need to
choose a particular gauge.
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In the scheme that uses the filled-band Berry curvature as
the curvature function,

Anky, = (Uni |10k, [tnk), (27a)

F(e,M) =" 0, Ak, — Ok, Auk, (27b)

the length scale &, in Eq. (26) again represents a correlation
length. This can be seen by noticing that the n™ band
contribution to the Berry curvature can be expressed in terms
of the Wannier states in Eq. (4) as [47-49]

Ok, Ank, — O, Auk, =1y _ e*®(0n|(R x r),|Rn)
R

— _ize—ik'R<Rn|(R x r).|0n), (28)
R

and consequently the Fourier component of the Berry curvature
is

AR = /dkeik'RF(k,M) = —iZ(Rn|(R x r),|0n)

=—iy_ f(ery — Ryr)W,(r — Ry*W,(r)dr, (29)

provided R # (0,0) [50]. The Fourier component clearly
measures the correlation between occupied Wannier states
|Rn) and |On), and the (R x r) factor indicates that it is
intimately related to the “itinerant-circulation” part of the
orbital magnetization contributed from the edge current but
expressed in terms of bulk Wannier states [40,42,47]. The
correlation function is gauge-invariant since it is the Fourier
transform of the gauge-invariant Berry curvature [12], and a
real function since Ag* = A_gp = Ag in inversion-symmetric
systems. Analogous to Egs. (8) and (9), the Ornstein-Zernike
form of Eq. (26) implies

AR = )\'(RX/S)C7R}’/§}’)5

i.e., &, and &, represent the correlation lengths in the two spatial
directions.

The correlation function introduced in Eq. (9) for 1D
and Eq. (30) for 2D have the following general trend as
the system approaches a topological phase transition. Since
the Berry connection (at a specific gauge) in 1D and Berry
curvature in 2D must diverge at an HSP and change sign
at a topological phase transition (such that their integration,
the topological invariant, can jump discretely [27,28]), the
correlation functions as their Fourier transform must have (i)
a diverging correlation length and (ii) a sign change at large
distance, as can be seen evidently in Fig. 2(b) for the SSH
model and Fig. 3(b) in Sec. III B for the 2D Chern insulator.
Thus whether a phase transition is topological or not can
be identified solely from the correlation function, simply by
checking whether (i) and (ii) occur simultaneously or not at
the phase transition.

(30)

B. Berry curvature of 2D 2x2 Dirac Hamiltonians

In this and the following section, we demonstrate that
noninteracting Dirac models in 2D exhibit universal critical ex-
ponents regardless the details of the system. First, we consider
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FIG. 3. (a) The Curvature function (Berry curvature) F(k,M) at
M = 0.25 in the simple model of a 2D Chern insulator described by
Eq. (38), which diverges at the gap-closing momentum k, = (0,0)
with a Lorentzian form of Eq. (26) when the system approaches
the critical point M, = 0. (b) The Fourier component A, of F(k,M)
along the direction x = y, which is also the Wannier-state correlation
function defined in Eq. (29). The correlation function at large
distances changes sign between M < M, and M < M., and decays
with a correlation length that diverges at M.. The inverse of the
correlation length coincides with the width of the peak in (a).

2 x 2 Dirac Hamiltonians in 2D of the form given in Eq. (13)
with the replacement k — k = (k,k,). The eigenenergies

are EL = ++d} +d; +d? = +d. Because we focus here
on inversion-symmetric systems, the two degrees of freedom
of the Dirac Hamiltonian must have opposite eigenvalues
under parity operation (for instance, one represents a d orbital
and the other an f orbital, as in the topological Kondo
insulator (TKI) described in Sec. IV). Choosing a basis that
is diagonal under parity operation P = o3, the inversion
symmetry P H(k)P~' = H(—k)implies that d; and d are odd
while d5 is even in k, leading to the lowest-order expansion

d] = A]x(gkx + A]y(Sky, (313)
dy = Ay ks + A8k, (31b)
d3y = (M — Mc) + BySk; + BySk; + ByySkSky, (31c)

where 6k = k — ko denotes the distance away from the
high-symmetry point (HSP). The velocity and effective mass
parameters (A;x, Ajy, By, By, By,) depend on the details of
the model, and the tuning parameter M again has to enter the
parity-even channel since it is a scalar. The component dyoy is
unimportant for the argument below and hence is ignored for
simplicity. The topological invariant of the Dirac Hamiltonian
can be calculated from the Berry curvature [39]

1 abc
= ﬁf daaidbajdc,
where 9; = d/d8k;. The expansion of the Berry curvature at
ko along i € {x,y} yields Eq. (26) with

F(,M) = F, (32)

AIXAZ_V - AlyA2x

F(ko,M) =
KoM= 20— vt — 1)
o sgn(M — M)|M — M|, (33a)
[8B{(M — M) +3A3, + 343, |2
e 2AM — M,)?
MM M= m (33b)
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Thus the critical exponents of the Ilength scale
& ~|M—M,|™" and F(ko,M)~ |M — M2 are al-
ways the same regardless of the microscopic details
(Aix,Aiy, By, By, Byy) of the model. One also sees that in
general §; # &,if A;x # A;y or By # B,, yetthe scaling law in
Eq. (36) is always satisfied. As the system is driven towards the
critical point, similar to the 1D systems demonstrated in Fig. 1,
there exists a critical region (|[M — M.| < |Al-2/B,-|) inside
of which the correlation length follows & ~ |A; /(M — M.)|,
and outside of which the correlation length is dominated by
a different length scale & ~ |B; /(M — M.)|'/?, where A% =
A}, + A3, The correspondence between & and the edge-state
decay length is demonstrated in Appendix, which suggest that
the experiments that directly measure £ by fitting the Berry
curvature near the gap-closing momentum, for instance cold-
atom experiments [51-53], can extract the edge-state decay
length even in a system with closed boundary condition, and
without directly investigating the edge-state wave function.

We proceed to discuss a scaling law that is expected to
be satisfied also in interacting systems. Denoting the critical
exponents by

(34a)
(34b)

F(ko,M) o sgn(M — M)IM — M|,
& o [M — M| ™,

the argument in Eq. (10) generalized to 2D dictates that the
curvature function integrated over a small region around k¢ of
area ~ £'& 7! converges to a constant:

8 dk, (5 dk,
Can = f : f 9 b, m)
_E;l 27'[ _3‘:;1 27'[

&' dk 1 5 dk 1
= F(ko,M>f —/ = TIen
e 2w 122 g 2 1 E2K2
F(ko,M
_ Flko. M) x O(1) = const. (35)
Ex&y

Thus the critical exponent of F(ky, M) is the sum of those of
& and &,

Y =V + vy, (36)

which is indeed satisfied by the result for noninteracting
systems in Eq. (33b). This also suggests that as M — M.,
one can parametrize F(ko, M) by

F(ko,M) o< sgn(M — M)|M — M|™". 37

To see the Wannier-state correlation function, i.e., the
Fourier component Ag of the Berry curvature, we need d(k)
not only near k( but in the entire Brillouin zone (BZ). For
this purpose, we choose the simple model of a 2 x 2 Chern
insulator for demonstration, described by [39]

dy = sink,, (38a)
d> = sink,, (38b)
dy =M —2B(2 — cosk, —cosky). (38¢c)

The model has three critical points at M. € {0, 4B, 8B},
corresponding to gap-closing at kg € {(0,0), (0,7), (;r,7)}.
Focusing on the behavior near the M, = 0 critical point,
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the low-energy sector is described by Eq. (31) with
(Aiy,Azy,By,By) = (1,1, — 1, — 1) after setting the energy
unit B = 1. According to the calculation in Appendix A, the
edge state appears when B,(M — M.) = —BM = —-M < 0;
therefore M > 0 is the topologically nontrivial state [39]. The
Fourier component of F(k,M) calculated from Eq. (32) is
shown in Fig. 3 for the direction x = y; the decaying behavior
at large distance is evident, with a correlation length that
diverges at the critical point, in agreement with Eq. (33b).
However, the anomalies at short distance—originating from
the Fourier transform of F(k,M) at momenta far away from
ko = (0,0)—hinder a precise extraction of the correlation
length and its critical exponent from this real-space analysis.

C. Universality classes of 2D 2x2 Dirac Hamiltonians

The formalism in Sec. IIIB can be readily generalized
to Dirac models with different orbital symmetries, which
have been intensively discussed recently as suitable mod-
els for the multi-Weyl semimetals that manifest quadratic,
cubic, or higher-order band-touching points [54—65]. Here
we demonstrate that the universality class of a 2D 2 x 2
Dirac Hamiltonian is determined by its orbital symmetry. In
Sec. III B, we learned that the momentum-dependent correc-
tions to the tuning energy parameters, i.e., the (B, By, B,,)
terms in Eq. (31), are unimportant as the system approaches
the critical point and are therefore ignored for simplicity. This
leads us to discuss the following 2 x 2 Dirac Hamiltonian
expressed in polar coordinates, as a low-energy effective model
for the topological phase transition that takes place when bulk
bands invert at kg,

H(k,¢) = n,k” cos(pp)ay + n,k” sin(pg)a, + Mo,
= e (kyd(k,9) -0, (39)

where momentum k is the distance from ky. The posi-
tive integer p € {1,2,3, ...} represents the orbital symmetry
{p.d,f,...} of the Hamiltonian and n, > 0 is a positive
quantity that keeps track of the dimension. The formalism in
Sec. III B with parameters A, = Ay, = B, = B, = B, , =0
is equivalent to p = 1 (p-wave) in this section, where 1, =
Ay = Ay, = vg is the Fermi velocity. The energy dispersion
for a general p is given by

ex(k) = £,/ M? + k2. (40)

The d vector in Eq. (39) together with Eq. (32) yields the Berry

curvature
k) =3 ad  ad
X = : X =
PR ok, ~ Ok,

k_2+2’7Mp2172
=———— L =k, @D
(ks o0

which does not depend on the polar angle ¢ as shown in
Fig. 4(a). The topological invariant is given by

1 2 oo p
C —/ dd)/ kdk f,(k) = Esgn(M), 42)
0 0

=47t
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A(R)

FIG. 4. (a) Berry curvature f,(k) and (b) correlation function
A(R) = A(R) of a 2D 2 x 2 Dirac model at different orbital symme-
tries p € {1,2,3,4}, at M = 0.1. The inset of (a) shows schematically
that the maximum of f,(k) at p # 1 forms a ring surrounding the
HSP, giving the two momentum scales k.« and ky;q in Eq. (45).

normalized in such a way that the change of the topological
invariant across the topological phase transition is AC =
C(M > 0) — C(M < 0) = p. This normalization is in accor-
dance with the low-energy description of 2D Chern insulators,
in which the topological invariant changes by AC = p = 1 at
a topological phase transition when bulk bands invert at one
high-symmetry point (HSP) [39].

In certain models, the bulk bands can be inverted simulta-
neously at multiple high-symmetry point (HSPs) when going
through a topological phase transition. In such a case, the total
change of the topological invariant is given by the sum of
the AC at each HSP. For instance, in 2D Chern insulators,
the bulk band can be inverted simultaneously at ko = (0,7)
and ko = (,r,0) at a particular critical point, and hence the
topological invariant of the whole system changes by 2 since
each high-symmetry point (HSP) contributes 1 [39].

Systems with different orbital symmetries p belong to
different universality classes, as can be seen by comparing the
critical exponents at different p. For the sake of introducing the
critical exponents, we consider our continuous Hamiltonian,
Eq. (39), as a low-energy effective model of a 2D lattice model
in which the Wannier states |R) can be introduced via Eq. (4)
(for simplicity, we drop the band index n by assuming only
one filled band), and consequently the correlation function in
Eq. (29) can be introduced as

AR) = —i(R|(R x 1);|0)

/ dky dky e*® f, (k. k)

(2m)?

~ L / ” dk kJo(Rk) f»(k), (43)
2 0

where Jy(x) is the zeroth-order Bessel function. In the last
line of Eq. (43), we approximate the 2D integral within the
Brillouin zone (BZ) by an integral over the infinite polar plane,
and use the Berry curvature in Eq. (41). This approximation
yields a closed expression of A(R) for a given p, which is a
function of R/&, with the correlation length given by

E=<n_p>1/17
Pe\my)

indicating that the critical exponent for the correlation length is
1/ p. Figure 4 shows the correlation function at several values
of p.

(44)

PHYSICAL REVIEW B 95, 075116 (2017)

TABLE I. Summary of the critical behavior of various quantities
for a 2D 2 x 2 Dirac model with orbital symmetry p, where i €
{x,y,0,1} labels the correlation lengths defined in Eqs. (34) and (45).

Dispersion near HSP 12

Berry curvature maximum

er(k) = £(M?* + nf,kzﬂ)
fp,max ~ |M - Mcliy,y = %
&~ M — M|, v =1

Correlation length ”

Scaling law for p =1 y=v,+v,
Scaling law for p # 1 y =V +
Change of invariant AC=p

The Berry curvature f,(k) at p =1 has a maximum at
k =0, or equivalently a maximum at the high-symmetry
point (HSP) ko as shown in Fig. 3(a), hence the scaling
law deduced in Eq. (36) is expected to be satisfied. At
p # 1, however, the maximum of f,(k) occurs at finite k,
meaning that the maximum of f,(k) forms a ring around
the high-symmetry point (HSP) in momentum space. This
motivates us to introduce the following scaling law for p # 1.
We denote the momentum at which the maximum of the Berry
curvature f), max(Kmax) Ooccurs as kpmax (radius of the ring), and
the half width at half maximum of the Berry curvature as
kwia (width of the ring), as shown schematically in Fig. 4(a).
Denoting critical exponents of f), max and the corresponding
length scales by

fp,max(kmax) ~M7, (453)
Emax ~ kgL~ |M |7, (45b)
Ewia ~ ko ~ [M|™™, (45¢)

we observe that when the system is approaching the critical
point, the integral of the Berry curvature remains unchanged
since it is the topological invariant. Therefore the maximum
times the area of the ring should remain the same is

k i : kwi 2
Cdi" ~ fp,max |:7T (kmax + %d) - ﬂ(kmax - Td> j|

2’ max
~ L = const, (46)
gmax";:wid
and consequently the scaling law
Yy =vo+ v (47

should be satisfied. The Berry curvature in Eq. (41) gives
y =2/p and vy = v; = 1/p, which indeed satisfy the scaling
law. The critical exponents vy and v; are in accordance with
that of the correlation length in Eq. (44), indicating that there
is essentially only one length scale in the problem. The critical
behaviors of various quantities are summarized in Table 1.
For p # 1, the fact that the Berry curvature f,(k) has
an extremum at finite k, poses a challenge to a previously
proposed renormalization-group (RG) scheme [27], as it relies
on the fact that the scaling function, which is previously
identified as the Berry curvature, has an extremum at k = 0.
This is true for all the models examined previously whose
low-energy sectors are Dirac models with p = 1 [27,28]. For
a general p, we propose to use the (2p — 2)th derivative of the

075116-7



CHEN, LEGNER, RUEGG, AND SIGRIST

Berry curvature as the scaling function

F(k,M) = 8,77 f,(k) (48)
in the renormalization-group (RG) procedure
F(8k,M) = F(0,M"), (49)

where 8k is a small deviation away from the high-symmetry
point (HSP) (the high-symmetry point (HSP) is implicitly
taken as the origin ko = 0 = (0,0)). Solving for the new
M’ at a given M iteratively yields the renormalization-
group (RG) flow that distinguishes the topological phase
transitions. The choice of the scaling function given in Eq. (48)
is justified because it satisfies the following criteria for
the renormalization-group (RG) procedure. (1) The scaling
function has an extremum at k =0, i.e., d F(k,M)|i— =
Blfp ! Jp(®)|r=0 = 0. (2) The scaling function diverges at the
critical point M. = 0 and has opposite sign as M — M} and
M — M_ . (3) Its integral is a topological invariant:

1 2 o
C'=— / de / k dkF(k, M)
0 0

~ 4x
1
_ J3sen(M)=C forp=1,
- {O for p # 1. (50)

With these criteria satisfied, the renormalization-group (RG)
procedure depicted in Eq. (49) can be used to judge topological
phase transitions because it makes F(k,M) flow away from
the critical-point configuration and converge to the fixed-
point configuration Fy(k, M) without changing the topological
invariant C’ in the whole procedure [27].

Since the Berry curvature of our low-energy effective
theory, Eq. (41), does not depend on the polar angle ¢,
the scaling direction can be taken along any radial direction
8k = k. We can substitute the Berry curvature given in Eq. (41)
and the scaling function of Eq. (48) into Eq. (49) and expand
the equation for a small §k = |8k| and M = M’ — M to the
lowest nonvanishing order. This procedure leads to the generic
renormalization-group (RG) equations

M _ M 1 a,pr(k,M)lkzo_ﬂ 1)

dl sk 2p) omFOM) M’

where A, is a p-dependent numerical factor—(A;, A,,
As, Ay, ...)=(3/4,45/4,315/2,9009/4, ...)—and the
scaling parameter is dl = 8k*” since it is the lowest
nonvanishing order in the expansion. From Eq. (51), we see
that the critical point lies at M, = 0 for all p as expected,
since the Dirac Hamiltonian we start with, Eq. (39), has a
band inversion at M, = 0. The lowest-order expansion of the
scaling function in 8k is

F(0,M)
ypk2P’
xp,M?

xl’ _ y[) SkZ[J

F(8k,M) = : BN
MIM|  M3|M]| 1+

(52)

which takes the Lorentzian form with a half width at half
maximum that scales like Sky ~ |M|"/?, where x, and y,
are p-dependent numerical factors. Consequently, the length
scale & ~ (Sk;,l ~ |M|~"/P extracted from the scaling function
in Eq. (52) coincides with the correlation length in Eq. (45),
meaning that there is still only one length scale in the problem
whose critical behavior is |[M|~!/7.
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IV. CRITICAL EXPONENTS IN MIRROR PLANES OF A
CORRELATED TOPOLOGICAL INSULATOR

We further predict that the scaling laws proposed in
Eq. (11c) for 1D and Egs. (36) and (47) for 2D have to be
satisfied even when the topological phase transitions are driven
by interactions, as demonstrated in the following example at
the mean-field level. The model we consider is a simplified
model for a topological Kondo insulator (TKI), such as
samarium hexaboride, on a simple cubic lattice [45,66]:

H = Hy + Hpyp + Hip, (53a)

Hy = Zef fiir - Z(td cj'cj + 15 f f; +He)
i (i,))

=Y hele; +1) £ f; + He, (53b)
(D)

Hyy = Y Y (iVeloof; +iVfiouc, +He), (53c)

a=x,9,2 (i, ])a

Hiwo=Y U flfis £ £y (53d)

Here, cf, ¢ and ff, f are creation- and annihilation-
operators for d and f electrons, respectively; Hy represents
the on-site energy of f electrons as well as hopping of d
and f electrons between nearest neighbors ((i, j)) and next-
to-nearest neighbors ({{7, j))); Hyyy, represents the (odd-parity)
hybridization between d and f orbitals; Hjy is the on-site
repulsion for f orbitals.

It was shown in Ref. [45] that a mean-field treatment
based on the Kotliar—Ruckenstein slave-boson scheme [67] can
transform this Hamiltonian into a noninteracting Hamiltonian
with renormalized parameters,

tf—>z2tf, t}—>Z2t}, V-2V, € —>e€p+r (549

When tuning the on-site repulsion U, the gap can close at
the high-symmetry point (HSPs) I', X, M, or R, and one can
therefore observe topological phase transitions.

While the system is three-dimensional, the mirror sym-
metries of the simple cubic lattice allow the definition of
three distinct mirror Chern number (MCNs) [68]. In the three
mirror-invariant planes in momentum space, k, = 0, k, = 7,
and k, =k, [69], the energy eigenstates may be chosen to
be simultaneous eigenstates of the respective mirror operator,
M |u*(k)) = +ilu*(k)), where the momentum k lies in this
mirror-invariant plane. Considering only the states |ua+(l~c)) for
the Berry curvature, we can then calculate the three mirror
Chern number (MCNs) C;"_y, C_,, and C;_, [45]. Close
to the high-symmetry point (HSP) where the gap closes, we
can map the states with mirror eigenvalue +i in the different
mirror planes to two-dimensional Dirac models, where the
mass parameter M is a function of the model parameters.

Keeping all other model parameters fixed, we can consider
the phase diagram as a function of €; and U, as shown in
Fig. 5 [45]. In this setup, we can observe topological phase
transitions by varying either €, or U and fit the critical
exponents y and v for different high-symmetry point (HSPs)
(see Figs. 5 and 6). Close to the transition, we can approximate
the system by a 2 x 2 Dirac model where the mass term is a
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12

STI BI

0 2 4 6 8
€f

10 12 14

FIG. 5. Phase diagram of the simple model for a TKI as a
function of €, and U for t; = 1, t; = =04, t; = —0.1, 1, = 0.04,
and V = 0.4 from a mean-field treatment with Kotliar-Ruckenstein
slave bosons [45] showing strong-topological-insulator (STI), weak-
topological-insulator (WTI), and (trivial) band-insulator phases (BI).
Phase transitions occur whenever the gap closes at one of the HSPs
I', X, M, or R. The dashed red line shows the parameters of the plots
in Fig. 6.

function of either €, or U. In all cases, we find that M — M. is
approximately proportional to € — €y or U — U, such that
the critical exponents y ~ 2, v, & v, ~ 1 are close to the
values of the noninteracting case with orbital symmetry p = 1
(see Table I). In particular, the scaling law (36) is always
satisfied up to numerical precision.

The renormalization-group (RG) flow in the parameter
space M = (M;,M,) = (¢;,U) can be obtained by [27]

(55a)
(55b)

F(k(),E},U) = F(k() + 8k,€f,U),
Fko,€}.U") = Flko + 8k,€}.,U).

Since the model has linear band crossing (p = 1 in Table I),
Eq. (51) yields

M —M; algF(k’M)|k:ko
8k2 20y, F(ko,M)

(56)

for i = 1,2, where the first derivative in M; and the second
derivative at k can be obtained numerically in a very
efficient manner by computing only three points F(kg,M;),
F(koy + 8k,M;), and F(ky,M; + §M;). The two-dimensional
renormalization-group (RG) flow is then deduced from the
vector field

V(e .U) = (Zij}‘) (57)

and is plotted in Fig. 7 for kg € {I',X,M,R} and §k = lﬂm.
The phase transitions can be identified as the critical lines
of the renormalization-group (RG) flow, i.e., sources of the
renormalization-group (RG) flow where |V | — oo, and are
shown as black lines. This model also displays unstable fixed
points, sources of the renormalization-group (RG) flow but
with | V| — 0, where no topological phase transition takes
place. Examples are shown in the plots for M and R as dashed
lines. Note also that (U’ — U) — oo for large € as there

3y F (ko) — 0.
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V. CONCLUSIONS

In summary, we reveal the following intriguing aspects of
topological phase transitions in 2 x 2 Dirac Hamiltonians. The
first point addresses the correlation function and correlation
length. We suggest that the Fourier component Ag of the
Berry connection in 1D and that of the Berry curvature in
2D represent correlation functions. The correlation function
in 1D measures the charge-polarization correlation between
filled-band Wannier states at different positions, whereas in
2D it measures a correlation between filled-band Wannier
states that is intimately related to the itinerant-circulation
part of orbital magnetization. These Wannier-state correlation
functions at large distance decay with a correlation length,
which can be measured in 2D since it is gauge invariant in
this case. For instance, it could be measured in the topological
insulator (TIs) that are artificially engineered in 2D optical
lattices. In the topologically nontrivial state, the correlation
length coincides with the decay length of the edge state up to
a constant prefactor. Despite this coincidence, the correlation
length seems to be more general for the characterization of
topological phases than the decay length of the edge state,
since it manifests even in the topologically trivial state and
in periodic boundary conditions. In addition, the correlation
function can be used to identify whether a phase transition is
topological or not, since the correlation function must have a
diverging correlation length and a sign change at large distance
at a phase transition that is topological.

The second feature are the critical exponents and the
scaling laws that constrain them. The noninteracting Dirac
Hamiltonians with only one even-momentum channel are
shown to have universal critical exponents regardless of the
microscopic details of the Hamiltonian. In essence, this is
because the tuning energy parameter can only enter the channel
that is even around the gap-closing momentum, rendering a
curvature function that has a particular power-law dependence
on the tuning energy parameter. On the other hand, the
saturation of the integral of the curvature function near the
gap-closing momentum leads to scaling laws, which may be
verified experimentally in the gauge-invariant cases in 2D.
Using a model of a topological Kondo insulator (TKI), we
demonstrate that the scaling laws should be satisfied even
in interacting models, and irrespective of whether the tuning
energy parameter M is a interacting or noninteracting term.
Finally, the orbital symmetry of 2D 2 x 2 Dirac models fixes
the critical exponents of various quantities, as summarized
in Table I, allowing the notion of universality class to be
introduced.
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APPENDIX: CORRESPONDENCE BETWEEN
CORRELATION LENGTH AND EDGE-STATE
DECAY LENGTH

Here, we elaborate the correspondence between the cor-
relation length & and the decay length of the edge state in
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correspond to the dashed red line in Fig 5. The phase transition at I" is not visible, as we are only considering ko = X.

the topologically nontrivial state, using the well-established
analysis of Dirac Hamiltonians projected to real space [30-35].
First, let us consider the 1D 2 x 2 Dirac Hamiltonian discussed
in Sec. IIB. For a model described by the gauge choice
of Eq. (14) and defined in the x > 0 half-space, we aim at
calculating the zero-energy edge state whose wave function is
localized near x = 0 and satisfies, after replacing §k = —id,

@d- o)y ={—iAc,d, + [(M — M) — Bd}]o,}y = 0.
(AD)

After multiplying this equation by o,, we see that the wave

—10, and other parameters as in Fig. 5. The parameters
X) oxe , we obtain the solutions
) oc e E btain the solut

AL (é)z HM — M) (A2)
55 =33 5) T B '

The requirement of a positive decay length 5;1 +&7 =
—nA/B > 0 demands n = —sgn(A/B), i.e., the eigenvalue
of x, depends on the sign of A/B. The longer of the two,
&_, represents the decay length of the edge state which, when
M — M., approaches

e ot e ot g = B Mo e e (A
T
12¢ ‘ | (17
i
B THT
i i
i | il
b 10 5 10
2 N\
10f 10F ‘/ /,
! i Z//-/,/;\\\\\x L
6F 6L ;;///'CE‘-Q\}\“H 4
i 77/
o R NI 2500 |

Unstable fixed points are shown by dashed lines for ky € {M,R}.

cf

FIG. 7. Plots of the RG flow for the same parameters as in Fig. 5 for the four HSPs I', X, M, and R. The color indicates the flow rate, where
blue denotes small and orange high flow rates. The thick black line is the critical line where the gap closes and is the same as those in Fig. 5.
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One sees that the edge state only appears in the topologically
nontrivial state [35] B(M — M.) < 0, and has a decay length
&_ > 0 that coincides with the correlation length in Eq. (17)
when M — M..

One may further consider the edge state at the interface
between a topologically trivial and a nontrivial state, i.e.,
M — M, changes sign at the interface. This can be easily
obtained from the analysis in Egs. (A1) to (A3) by considering
a 1D Dirac model in the real space —oo < x < oo that
has a position dependent mass term M(x) — M. = M,0(x) +
M,0(—x), where 6(x) is the step function. M; and M, must
have opposite sign, as we shall see below. Using the ansatz for
the zero-energy edge state [34]

/e ex (— /x dX/>
ISP\ Een )

where o, x, = nx, = %x,, the same analysis leads to Eq. (A2)
with the replacement —nA/B — —A/B.For —A/B > 0, the
longer one of the two solutions is

(A4)

’

A
& _(x) = —sgn(B(M(x) — MC))‘M(x)——M

_ {—sgn(B(M(x)—Mc)) for x>0, (A5)

sgn(B(M(x) — M.)) for x <O.

The sign of 7 is chosen such that the multiple n/£_ makes the
wave function in Eq. (A4) vanish at x = Fo00. Likewise, for
—A/B < 0, the longer one is

)

A
&4 (x) = sgn(B(M(x) — MC))‘M(X)——M

x>0,

| sgn(B(M(x) — M.)) for
- o o

—sgn(B(M(x) — M.)) for

For either case, one sees that M(x) — M, must be of opposite
sign between x > 0 and x < 0 to have the same value of 7,
i.e., the edge state is in the same eigenstate of o, on both sides.
Moreover, from Egs. (A5) and (A6) one sees that the edge-
state decay length for both the topologically nontrivial side
(B(M(x) — M_.) < 0) or the trivial side (B(M(x) — M_.) > 0)
coincides with the correlation length in Eq. (17).

For the 2D 2 x 2 Dirac Hamiltonian discussed in Sec. III B,
the procedure is similar. Consider the model defined in the
half-space x > 0 of the 2D plane. We look for the solution
of the edge state at transverse momentum 8k, = 0 and zero
energy E = 0. Using 6k, = —id, leads to

{ —i(A1xox + Asc0y)d + [(M — M) — B3} )0}y = 0.
(A7)
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Performing a rotation of the {oy,0,} components by

Oy cosf  sinf (o,
<0y> - (— sinf  cos 9) <ay’,)’ (A8a)
_A2x
6 = arctan , (A8b)
Alx
leads to
{—iAc0)d, + [(M — M) — B3} ]o/}¥ =0, (A9)

with A, = A}, cos6 — Ay, sin 6. Multiplying the equation by
o, we see that the wave function is an eigenstate of 0. The
ansatz ¢ o x,e /%, with O‘;Xﬂ =1y, and n = *£1, leads to
the same solution as in Eq. (A2) with the replacement A — A,
and B — B,.Demanding E;l + &' = —nA,/B, > Oyields
n = —sgn(A,/By), so the eigenvalue of yx, is determined by
thesignof A, /B,. At M — M.,onehas&_ > &, sothe decay
length is

. (A10)

Ax
_~ —sgn[B.(M — MJ)]|———
§ sgn[B( C)]‘M—MC

Hence the zero-energy edge state, which only appears in
the band-inverted regime [35], where B,(M — M_.) < 0, has
a decay length that coincides with the correlation length in
Eq. (33b) up to a multiplicative constant that depends on the
parameters of the Dirac Hamiltonian. Note that for the simple
models with Aj, = Ay, =0, such as the simple model of a
Chern insulator in Sec. III B, the two length scales coincide
&~ ./2/3& as M — M.. The edge state localized at the
interface between a topologically trivial and nontrivial state
for this 2D case can be calculated in the same fashion as in
Egs. (A4) to (A6), and the same conclusion is obtained.

To address the edge state in the higher orbital symmetry
Dirac model discussed in Sec. IIIC, we consider Eq. (39)
defined in half-space x > O such that ¢ = 0, and solve the
zero energy edge state in real space that satisfies

d - o)y = [ny0: (=37 + Mo, ]y = 0.

Multiplying the equation by o, and using the wave func-
tion ¥ = x,¢(x), where y, satisfies o, ), = nx, = £1 and
d(x) oc e™*/% lead to

(Al1)

_npi!
=
The decay length is identifiable with the real part of one of
the roots &, = Re(£), in which the eigenvalue 1 is chosen
such that &, > 0. Comparing with Eq. (44), the coincidence
between correlation length and the edge state decay length is
evident.
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