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Éric Cancès,1 Antoine Levitt,2 Gianluca Panati,3 and Gabriel Stoltz1
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2Inria Paris, F-75589 Paris Cedex 12, Université Paris-Est, CERMICS (ENPC), F-77455 Marne-la-Vallée, France

3Dipartimento di Matematica, La Sapienza Università di Roma, Roma, Italy
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We propose an algorithm to determine maximally localized Wannier functions (MLWFs). This algorithm, based
on recent theoretical developments, does not require any physical input such as initial guesses for the Wannier
functions, unlike popular schemes based on the projection method. We discuss how the projection method can fail
on fine grids when the initial guesses are too far from MLWFs. We demonstrate that our algorithm is able to find
localized Wannier functions through tests on two-dimensional systems, simplified models of semiconductors,
and realistic DFT systems by interfacing with the WANNIER90 code. We also test our algorithm on the Haldane
and Kane-Mele models to examine how it fails in the presence of topological obstructions.
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I. INTRODUCTION

Wannier functions are a well-established tool in the solid-
state physics community. In addition to providing intuition on
chemical bonding, they are the theoretical and computational
underpinning of many developments such as tight-binding
approximations [1], interpolation of band structures [2],
and the so-called modern theory of polarization or orbital
magnetization [3,4].

Wannier functions are, however, not uniquely defined, and
the choice of the phase of the (quasi-) Bloch functions can
have a dramatic impact on their spatial localization. As for a
single isolated Bloch band, it was realized already in the 1960s
that in specific situations, appropriate choices of gauge lead
to exponentially localized Wannier functions [5–7]. Progress
was made in the 1980s by Nenciu [8] as well as Helffer and
Sjöstrand [9], who proved in the general case the existence
of a Bloch gauge yielding exponentially localized Wannier
functions.

Whenever Bloch bands intersect each other, as it generically
happens in three-dimensional (3D) crystals, Bloch functions
cannot be smooth, and not even continuous, at the crossing
points [excluding the exceptional case of one-dimensional
(1D) systems]. In this situation, a multiband approach is
mandatory. As early realized [5,6,10], in insulators and
semiconductors it is convenient to consider all the Bloch
bands below the Fermi level as a whole, and to replace Bloch
functions with quasi-Bloch functions, namely, eigenfunctions
of the projector P (k) on the occupied bands. Their preimages
under the Bloch transform are called composite Wannier
functions since they refer to a composite family of energy
bands. For the sake of a simpler terminology, we will skip the
adjective “composite” in the next sections.

The existence of an orthonormal basis of well-localized
Wannier functions is equivalent to the existence of an orthonor-
mal frame of quasi-Bloch functions, spanning Ran P (k),
which is both smooth and periodic as a function of k. Such
an existence problem has been a long-standing problem in
theoretical solid-state physics. The solution for 1D systems
was provided in [11,12], while a solution for 2D and 3D
systems required the crucial use of geometric ideas and
methods [13,14].

From a practical viewpoint, Marzari and Vanderbilt in-
troduced an optimization procedure to minimize the spread
of Wannier functions [15] and compute maximally localized
Wannier functions (MLWFs). The corresponding localization
functional is now known as the Marzari-Vanderbilt (MV)
functional. The approach based on the minimization of the
MV functional was developed before a full understanding of
the theoretical criteria for localization was gained. It, however,
gives very satisfactory results in many situations, and has
become one of the standard tools of computational solid-state
physics. It was conjectured in [15] that global minimizers of
the MV functional are exponentially localized, a fact which
was proved recently in [16], thereby providing a firm and
mathematically consistent ground for the MV optimization.

It has, however, been observed that, in some situations,
the minimization of the MV functional could fail because the
algorithm remained trapped in “false local minima” presenting
unphysical oscillations [15,17]. This issue is to be distin-
guished from physically relevant “real” local minima [18]
and was associated with bad initial guesses obtained by the
projection method and fine k-point meshes. This problem
has been considered recently in [19], where an alternative,
more robust method is presented. This method is, however,
still based on a projection and requires a physical input in
the choice of basis functions, while the algorithm we present
here does not require any input or parameter tuning. In that
sense, it is similar to the recently proposed selected columns
of the density matrix (SCDM) algorithm [20,21], which uses
columns of the density matrix to provide localized Wannier
functions. Compared to this method, our approach works
directly in Bloch space, avoiding any representation of the
density matrix in real space, and is readily implementable using
the same input as standard MLWFs computation. It also does
not depend on a potentially ill-conditioned matrix inversion.

We will show in this work that the issue of “false local
minima” occurs when the initial guess corresponds to a
Bloch gauge with vortexlike discontinuities, which prevent
the convergence of the MV optimization algorithm on fine
samplings of the Brillouin zone. To provide an admissible
initial guess for the MV algorithm, we should really find a
continuous Bloch gauge, a mathematically nontrivial task.
This issue has been studied recently in [22,23], where the
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authors develop constructive algorithms which complement
the abstract existence results of [13,14]. Both methods are,
however, not trivial to implement in practice, that of [22]
requiring a perturbation argument that might yield to Bloch
gauge with very sharp transitions, and that of [23] relying on
cumbersome interpolation procedures.

In this work, we present an algorithm inspired by the
theoretical works of [22,23] but more suited for actual
implementation. This method fixes the gauge at the � point in
the Brillouin zone and then incrementally on its neighboring
points, until the whole Brillouin zone is covered. Certain
pseudoperiodicity conditions have then to be satisfied, which
we enforce by the method of obstruction matrices developed
in [23]. This requires finding continuous and periodic loga-
rithms of families of unitaries, a problem discussed in [22].
We propose an algorithm to solve this problem. Although we
are unable to prove that this step always produces a continuous
Bloch gauge, we conjecture it to be the case, and support this
claim by numerical tests.

Our algorithms only provide a continuous Bloch gauge,
which yields algebraically decaying Wannier functions. There-
fore, we see this algorithm not as an end in itself but as a
way to obtain good initial guesses for the MV localization
procedure. We show by numerical examples on two- and
three-dimensional systems that this two-step process always
yields localized Wannier functions, which is not the case
for state-of-the-art methods based on the projection method.
We therefore advocate the use of our method when good
initial guesses are not available. We, however, emphasize that
our method only finds “real” local minima of the Marzari-
Vanderbilt functional, which might or might not possess
optimal spread (i.e., be a global minimum). Since they are
devoid of any physical input, they might also not correspond
to physically intuitive Wannier functions. Therefore, we do not
see our method as a replacement of the traditional construction
of Wannier functions for systems where physical insight is
available, but rather as an automated procedure that will always
produce exponentially localized Wannier functions in the case
when intuition is lacking.

This paper is organized as follows. Section II introduces
the notation and recalls some well-known facts on Wannier
functions. We next present our algorithm in a one-dimensional
case in Sec. III, then its extensions to the two- and three-
dimensional settings in Secs. IV and V. The subtle issue of
the appropriate choice of continuous and periodic logarithms
is discussed in Sec. VI. We finally illustrate the approach with
numerical results in Sec. VII, and present some perspectives
in Sec. VIII.

II. NOTATION AND STATEMENT OF THE PROBLEM

We consider a d-dimensional crystal. We denote by R =∑d
j=1 Zaj the corresponding Bravais lattice, by Y a unit cell

centered on the origin, and by R∗ = ∑d
j=1 Za∗

j the reciprocal
lattice, with ai · a∗

j = 2πδij . We choose the vectors {a∗
j } as

a basis for the reciprocal lattice. In these coordinates, the
Brillouin zone is

B=
⎧⎨⎩k ∈ Rd : k =

d∑
j=1

kj a∗
j for kj ∈

[
−1

2
,
1

2

]⎫⎬⎭�
[
−1

2
,
1

2

]d

,

where the symbol � refers to the fact that hereafter we
will identify the vector k = ∑d

j=1 kj a∗
j with its components

(k1, . . . ,kd ) with respect to the reciprocal basis.

A. Smooth families of projectors and their symmetries

The key input of our algorithm is a family P (k) of
orthogonal projectors of rank J , which is smooth with respect
to the wave vector k = ∑

j kj a∗
j ∈ Rd . Such projectors are

obtained, in standard solid-state physics computations, by
spectral projections of the effective one-body Schrödinger
operator

H = − 1
2� + Vper, (1)

where Vper is a real-valued R-periodic potential. More pre-
cisely, introduce the Bloch orbitals ψn,k, with periodic parts
un,k, so that

ψn,k(r) = un,k(r) eik·r.

The integer n labels the band index, while k ∈ B denotes the
quasimomentum. For a fixed k ∈ B, the periodic functions
(un,k)n�1 form an orthogonal basis of L2

per(Y ) consisting of
solutions of the following eigenvalue problem:

H (k)un,k = εn,kun,k,

H (k) = 1

2
(−i∇ + k)2 + Vper,∫

Y

un,k(r)um,k(r) dr = δnm,

where the εn,k are labeled by n in increasing order. Our
convention for the Bloch transform is

fk(r) =
∑
R∈R

f (r + R)e−ik·(r+R).

In order to construct Wannier functions from the Bloch
orbitals, we identify a set I of J Bloch bands in the energy
spectrum. We assume that they are isolated in the sense that

inf
k∈B,n∈I,m�∈I

|εn,k − εm,k| > 0.

This gap condition is satisfied for instance by the occupied
bands of an insulator or a semiconductor. It ensures that the
spectral projector

P (k) =
∑
n∈I

|un,k〉〈un,k| (2)

is a smooth (and even analytic) function of k [12,16].
The underlying symmetries of the Hamiltonian H (k)

translate into corresponding symmetries of the family of
projectors P (k). We first note that, because the potential Vper

is real, P (k) satisfies the time-reversal property

P (−k) = CP (k)C, (3)

where C is the antiunitary operator corresponding to complex
conjugation, namely,

Cun,k = un,k.

We also note that, for any K ∈ R∗,

P (k + K) = τKP (k)τ−K, (4)
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with the following unitary translation operators:

(τKf )(r) = e−iK·rf (r).

The convention we use here is slightly different from the
one in [23]: our definition of τK ensures that τKun,k is an
eigenvector of H (k + K) (so that τK is a translation by −K).
The family of operators τK is a unitary group representation
of R∗, in the sense that

τK+K′ = τKτK′ and τ−K = τ ∗
K. (5)

In view of the time-reversal symmetry (3) and the trans-
lation property (4), we can restrict ourselves to studying the
reduced Brillouin zone

Bred =
⎧⎨⎩k =

d∑
j=1

kj a∗
j with

k1 ∈ [0, 1
2 ]

kj ∈ [− 1
2 , 1

2 ] for j � 2

⎫⎬⎭
�

[
0,

1

2

]
×

[
−1

2
,
1

2

]d−1

,

and map functions defined for k ∈ Bred to functions defined
for any k ∈ Rd by reflection and translation.

Remark 1. Similarly to [23], we do not use the specific
structure of the model (1), so that the approach presented here
can be applied to various other periodic models of quantum
mechanics, such as tight-binding models or relativistic models
described by a Dirac operator. We only require a continuous
family of projectors P (k) satisfying (3) and (4), for some
unitary operators τK and an antiunitary operator C satisfying

τK+K′ = τKτK′ , τ−K = τ ∗
K, C2 = Id, and

τKC = Cτ−K.

Remark 2. It is possible to further restrict the Brillouin zone
under consideration when P (k) has more symmetries than
the time-reversal and translation symmetries (3) and (4). The
construction we present here does not take into account these
possible additional symmetries, and therefore may produce
Wannier functions that do not respect these symmetries. Our
algorithm could be extended to work only on the irreducible
Brillouin zone, but this is outside the scope of this paper.

B. Orthonormal frames

The fundamental element to construct well-localized Wan-
nier functions and the output of our algorithm is a Bloch frame
depending smoothly on the wave vector k. By definition, a
Bloch frame (or, shortly, a frame) is a mapping from k ∈ Rd to
an orthonormal basis uk = (u1,k, . . . ,uJ,k) of Ran[P (k)], such
that each component satisfies the pseudoperiodicity property

un,k+K = τKun,k ∀ (k,K) ∈ Rd × R∗. (6)

The latter condition expresses the fact that such functions are
compatible with the symmetries of the family of projectors
given by (4).

We emphasize that, despite the similarity in the notation,
we do not assume that the functions un,k are (the periodic part
of) Bloch functions. It is only assumed that

P (k)un,k = un,k,

while H (k)un,k = εn,kun,k does not hold true in general. Such
functions are sometimes called quasi-Bloch functions in the
literature.

As already noticed [12], the existence of a smooth Bloch
frame is not trivial in view of the competition between the
smoothness of u and the property (6), which encodes a
global topological constraint. For instance, it is known that
in some models with broken time-reversal symmetry (e.g., in
the presence of a magnetic field or in a Chern insulator) there
cannot exist any such continuous frame, due to a topological
obstruction [13,24–26].

For two given frames u and v, we write u∗
kvk for the J × J

matrix with entries

(u∗
kvk)nm =

∫
Y

un,k(x)vm,k(x)dx.

For a J × J matrix U (k), we write

[ukU (k)]n =
∑
m∈I

um,kU (k)mn.

Note that, if u is a frame, then so is uU when the matrices U (k)
are unitary for all values of k ∈ Rd . Similarly, for an operator
A, Auk is obtained by applying A to all components uj,k of uk
independently. These conventions allow for a uniform notation
whether uj,k are functions or coefficients in a basis set of size
N (in which case uk is a N × J matrix, and the previous
definitions are simply restatements of matrix multiplication
rules).

C. Well-localized Wannier functions

(Composite) Wannier functions are defined, for a given
frame u, by

∀ r ∈ Rd , wn(r) = 1

|B|
∫
B

un,k(r) eik·r dk, (7)

and the translations of these functions:

∀ (r,R) ∈ Rd × R, wn,R(r) := wn(r − R)

= 1

|B|
∫
B

un,k(r) eik·(r−R) dk.

The Wannier functions {wn,R}n∈I, R∈R form a complete or-
thonormal basis of the subspace of L2(Rd ) associated with the
chosen J bands.

The localization properties of the Wannier functions are
determined by the regularity of the frame u. This can be seen
from the fact that, because u satisfies the pseudoperiodicity
property (6), an integration by parts gives

1

|B|
∫
B

(
∂

∂ki

un,k(r)

)
eik·r dk = −iriwn(r).

Therefore, a C∞ frame yields Wannier functions that decay
faster than any polynomial, and an analytic frame yields
exponentially localized Wannier functions (see Sec. 2 of [16]
for a more precise statement involving the Sobolev regularity
of un,k). In practice, the frame straightforwardly coming out
of the simulations, computed on the reduced Brillouin zone,
is usually not smooth because of the arbitrary phases of the
un,k and of the possible crossings between the energy levels
εn,k. Therefore, some correction through a family of unitary
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matrices U (k) has to be applied to the frame in order to
transform it into a smooth frame uU . Although it is easy
to fix phases to impose local smoothness, global smoothness
is a more complicated issue because the frame, extended by
reflection and translation to the full space Rd , might not be
continuous at the boundary of the reduced Brillouin zone.
Certain compatibility or gluing conditions should be satisfied
in order for this extension to be smooth.

Our problem is to compute real-valued localized Wannier
functions, which, after Bloch transform, is equivalent to the
following.

Problem 3. Find a smooth frame u such that

∀ k ∈ Rd , u−k = Cuk. (8)

The additional property (8) ensures that the Wannier functions
are real valued.

We discuss in the next section an algorithm for constructing
continuous frames. We do not attempt to impose a higher
degree of regularity, as done in [22,23] via abstract procedures,
but consider a more pragmatic approach where a subsequent
smoothing of the continuous frame is obtained with the MV
algorithm. Our hope is that the continuous frame we obtain
at the end of our procedure is a sufficiently good initial guess
for the minimization of the MV functional in order to actually
converge towards a minimizer.

III. ALGORITHM IN THE ONE-DIMENSIONAL CASE

We present here a practical algorithm to solve Problem 3 in
dimension 1. It can be seen as a discretization of well-known
procedures to construct smooth frames [23], dating back to
at least [12], and discussed in [15] Sec. IV C 1. We, however,
carefully present this simple case since, as in [22], it is the
building block of the algorithm in higher dimensions.

We start from a given frame u on the reduced Brillouin
zone Bred = [0, 1

2 ], which we then extend to the whole space
R by the relations (6) and (8). More precisely, we first extend
u to k ∈ (− 1

2 ,0) by uk = Cu−k , and then to any k ∈ R by
uk = τ−Kuk+K where K ∈ Z is such that k + K ∈ (− 1

2 , 1
2 ].

This procedure yields a globally continuous frame if and only
if the frame on Bred is continuous and satisfies the following
compatibility conditions at 0 and 1

2 :

u0 = Cu0, (P1)

u1/2 = τ1Cu1/2. (P2)

The algorithm we propose consists of four steps: choosing a
starting frame at 0 satisfying (P1), propagating this to [0, 1

2 ],
enforcing (P2) at 1

2 , and propagating this fix back to [0, 1
2 ].

Step 1: Fix 0. The first step is to choose a frame u0

satisfying (P1). Since H (0) is real valued, this can be done
by choosing an orthonormal set of real-valued eigenfunctions
of H (0).

Step 2: Propagate from k = 0 to 1
2 . Evolving the eigenvector

at k = 0 to 1
2 can be done in various ways, for instance

by the Sz-Nagy intertwining unitary as done in [22]. Here,
we describe a natural way of performing this operation on a
mesh of k points, using a Löwdin orthogonalization procedure.
Assume that a mesh 0 = k0 < k1 < · · · < kN = 1

2 of Bred =

[0, 1
2 ] is given. We construct iteratively

ũki
= P (ki)uki−1 ,

(9)
uki

= ũki
(̃u∗

ki
ũki

)−1/2.

Since P is continuous, provided the mesh spacing is suffi-
ciently small, the overlap matrix ũ∗

ki
ũki

has its eigenvalues
bounded away from 0, so that uki

is a well-defined orthonormal
basis of Ran[P (ki)].

Remark 4. When the mesh spacing tends to zero, it can
be shown that u converges to the solution of the following
ordinary differential equation (ODE), with initial condition
u0:

duk

dk
= dP (k)

dk
uk − 1

2
uk

([
dP (k)

dk
uk

]∗
uk + u∗

k

[
dP (k)

dk
uk

])
.

(10)
In particular, the function k �→ uk is smooth.

Step 3: Enforcing (P2) at k = 1
2 . The previous step

yields a frame that is continuous, satisfies the compatibility
condition (P1), but not (P2). Note, however, that Ran[P ( 1

2 )] =
Ran[τ1P (− 1

2 )] = Ran[τ1CP ( 1
2 )], so that u1/2 and τ1Cu1/2

are both orthonormal bases of the same space. There exists
therefore a unitary matrix Uobs, which we call “obstruction
matrix” following [23], such that

u1/2Uobs = τ1Cu1/2. (11)

This matrix can be explicitly computed as Uobs =
u∗

1/2(τ1Cu1/2). A simple computation also shows that UT
obs =

Uobs:

[Uobs]nm = 〈un,1/2,τ1Cum,1/2〉 = 〈Cτ1Cum,1/2,Cun,1/2〉
= 〈τ−1um,1/2,Cun,1/2〉
= 〈um,1/2,τ1Cun,1/2〉 = [Uobs]mn.

Therefore, Uobs = U ∗
obs = U−1

obs .
We now look for a matrix Uheal such that u1/2Uheal satisfies

the compatibility condition (P2). Applying τ1C and using (11),
we get

τ1C(u1/2Uheal) = (τ1Cu1/2)Uheal

= u1/2(UobsUheal)

= (u1/2Uheal)(U
∗
healUobsUheal).

We see that u1/2Uheal satisfies the compatibility condition (P2)
if and only if U ∗

healUobsUheal = IdJ , i.e., UhealU
T
heal = Uobs.

Since (U 1/2
obs )

T = (UT
obs)

1/2 = U
1/2
obs , we can choose

Uheal = U
1/2
obs .

With this choice, u1/2Uheal satisfies (P2). We define the
fractional power of a normal matrix in the usual way, by
applying the exponent to its eigenvalues. For matrices with
complex eigenvalues z such as Uobs, defining zα = eα ln z

requires choosing a branch cut in the complex plane for the
logarithm, which we fix by using the principal determination,
i.e., for all z ∈ C∗, Im(ln z) ∈ (−π,π ].

Step 4: Correct the frame onBred. The last step is to globally
define a new frame u′ on Bred by interpolation:

u′
k = uk U 2k

heal = uk Uk
obs.
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Note that u′
0 = u0 = Cu0 = Cu′

0, and so u′ satisfies (P1). In
the limit of infinitely small mesh spacing, the mapping k �→ uk

is continuous, and so is k �→ Uk
obs, which implies that k �→ u′

k

is continuous on Bred.
The compatibility conditions finally ensure that uk can be

extended to a continuous frame for all k ∈ R.
Remark 5. We have only imposed continuity in our

construction, but we actually get a smooth frame. This is
because the frame we constructed is the same as the one we
would obtain by defining u on R via the propagation (9), then
u′

k = ukU
k
obs. The latter frame is smooth because both k �→ uk

and k �→ Uk
obs are.

IV. ALGORITHM IN THE TWO-DIMENSIONAL CASE

As in the one-dimensional case, we first construct a frame
on the reduced Brillouin zone

Bred �
[

0,
1

2

]
×

[
−1

2
,
1

2

]
,

and then extend it by symmetry to the whole space using (6)
and (8). This yields a globally continuous frame if and only if
the frame on the reduced Brillouin zone is continuous and the
following compatibility conditions are satisfied:

u(0,k2) = Cu(0,−k2), (E1)

u(k1,1/2) = τ(0,1)u(k1,−1/2), (E2)

u(1/2,k2) = τ(1,0)Cu(1/2,−k2). (E3)

Note that these conditions are now edge conditions, relating
two points of the same edge [for (E1) and (E3)] or two
points on opposite edges [for (E2)], in contrast to the
point conditions of the one-dimensional case. These edge
conditions imply compatibility conditions at the special points
(0,0), (0, ± 1

2 ), ( 1
2 , ± 1

2 ), and ( 1
2 ,0), which are the fixed points

of the symmetry group. All these conditions can be visualized
on Fig. 1.

We take care of these conditions in a sequential manner: we
first find a frame on {0} × [− 1

2 , 1
2 ] that satisfies (E1), extend

this to a frame satisfying (E2), then enforce the condition (E3)
on the right edge.

Step 1: Constructing a frame satisfying (E1) and (E2). We
first use the one-dimensional construction to obtain a frame
u(0,k2) with − 1

2 � k2 � 1
2 , satisfying (E1) as well as

u(0,1/2) = τ(0,1)u(0,−1/2). (12)

Then, for every k2 ∈ [− 1
2 , 1

2 ], we propagate from (0,k2) to
( 1

2 ,k2) using the propagation procedure described in (9) in the
one-dimensional case. This defines a frame on Bred.

The compatibility condition (12) at k1 = 0 is propagated
for any k1 ∈ [0, 1

2 ], which implies that (E2) is satisfied. Let us
prove this when starting from k1 = 0 and going to k1 = �k.
We define ũ(�k,k2) = P (�k,k2)u(0,k2). Then, using (12) and
then (4),

ũ(�k,1/2) = P (�k,1/2)τ(0,1)u(0,−1/2)

= τ(0,1)P (�k, − 1/2)u(0,−1/2) = τ(0,1)ũ(�k,−1/2),

so that (E2) follows upon normalizing the frames as uk =
ũk (̃u∗

kũk)−1/2. However, (E3) is not satisfied in general.

−1/2
τ(0,−1)C

C
τ(1,0)C

0 1/2

1/2

τ(1,−1)C

τ(1,1)C

k2

C

τ(0,1)

τ(1,0)C
k1

τ(0,1)C

FIG. 1. Symmetries in the two-dimensional reduced Brillouin
zone. The blue arrows correspond to the edge conditions (E1), (E2),
and (E3), and the red arrows to the point conditions implied by the
edge conditions.

Step 2: Enforcing the compatibility conditions (E3) at the
corners ( 1

2 , ± 1
2 ). Before satisfying (E3) on the right edge,

we enforce the condition at the corner ( 1
2 , 1

2 ), where the
condition (E3) implies

u(1/2,1/2) = τ(1,1)Cu(1/2,1/2). (13)

This is a point compatibility condition analogous to the one
encountered in the one-dimensional case. To enforce it, we
consider the unitary obstruction matrix

Uobs = u∗
(1/2,1/2)τ(1,1)Cu(1/2,1/2),

and define the modified frame

u′
k = ukU

k1
obs. (14)

The modified frame u′ satisfies (13) by construction. Note
also that the transformation (14) preserves the compatibility
conditions (E2) and (E1). Moreover, (E2) and (13) imply that
u′ also satisfies the corner condition at ( 1

2 , − 1
2 ):

u′
(1/2,−1/2) = τ(1,−1)Cu′

(1/2,−1/2).

In order to simplify the notation, we drop the prime in the
remainder of the algorithm, and simply denote by u the
modified frame obtained at the end of this step.

Step 3: Enforcing (E3) ona the right edge. We still need
to modify u to satisfy (E3) for any value of k2 ∈ [− 1

2 , 1
2 ]. We

define to this end the following family of obstruction matrices:

Uobs(k2) = u∗
(1/2,k2)τ(1,0)Cu(1/2,−k2).

These matrices satisfy by construction

Uobs(−k2) = Uobs(k2)T , Uobs(1/2) = Uobs(−1/2) = IdJ .

At this point, we would like to define a new frame by

u′
(k1,k2) = u(k1,k2)Uobs(k2)k1 .
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(a) Step 1. (b) Step 2. (c) Step 3.

FIG. 2. Real part of the average of the first component
∫

Y
Re [u1,k(r)]dr, of a Bloch frame corresponding to J = 5 Bloch bands, as a

function of k ∈ [− 3
2 , 3

2 ]2 (top) and associated Wannier function w1 in logarithmic scale (bottom). The real part of the average of u1,k is used as
a proxy to visualize the regularity of the frame uk. After step 1, the frame satisfies the compatibility conditions related to vertical translations,
and the associated Wannier function is localized vertically, but not horizontally (left panel). After step 2, the frame satisfies all the compatibility
conditions at the corners ( 1

2 + n1,
1
2 + n2) (with n1,n2 ∈ Z), but not on the vertical edges between these points. The associated Wannier function

is still delocalized horizontally (middle panel). After step 3, the frame satisfies all the compatibility conditions and is globally continuous,
although not smooth. The associated Wannier function is localized, but exhibits a slow algebraic horizontal decay (right panel). See Sec. VII
for the details of the model used.

The frame u′ satisfies all the compatibility conditions (E1)–
(E3), is continuous with respect to k1, but may fail to be
continuous with respect to k2, because the eigenvalues of
Uobs may pass through the branch cut of the logarithm
in the negative real axis. We are therefore faced with the
problem of the continuous periodic logarithm: find a matrix-
valued function k2 �→ L(k2), with L(k2) Hermitian, which
is continuous and satisfies the following conditions for all
k2 ∈ [− 1

2 , 1
2 ]:

exp[iL(k2)] = Uobs(k2), L(−k2) = L(k2)T ,

L(−1/2) = L(1/2) = 0J .

If such a function exists, the frame

u′
k = uk exp(ik1L(k2))

is continuous and satisfies the compatibility conditions (E1)–
(E3). We delay the discussion of this problem to Sec. VI.

The behavior of the algorithm on a simple example can be
visualized in Fig. 2.

Remark 6. The algorithm produces a continuous frame.
However, in contrast to the 1D case, it does not provide any
additional regularity. Because the 1D construction guarantees
a smooth frame, there are no discontinuities of derivatives in
the vertical direction, i.e., at the points (k1,

1
2 + Z). However,

the condition for the first derivative to be continuous at a point

( 1
2 ,k2) is

∂u′

∂k1

∣∣∣∣
(1/2,k2)

= −τ(1,0)C
∂u′

∂k1

∣∣∣∣
(1/2,−k2)

which is in general incompatible with (E3). This yields
discontinuous derivatives at ( 1

2 + Z,k2).
This means that the Wannier function will only decay

algebraically in the a1 direction, as can be seen in the right
panel of Fig. 2. This is, however, easily fixed by the application
of the MV minimization algorithm, as will be shown on Fig. 5
in Sec. VII. We note that the MV algorithm is essentially
equivalent to other forms of smoothing, such as for instance
the one employed in [22]: the MV algorithm can be seen as the
gradient flow of a Dirichlet-type energy functional, i.e., a heat
flow, whose solution can be written as a convolution similar to
the one used in [22].

V. ALGORITHM IN THE THREE-DIMENSIONAL CASE

We use the same induction to pass from the two-
dimensional to the three-dimensional case as the one to pass
from the one-dimensional to the two-dimensional case. We
define a frame on the reduced Brillouin zone

Bred �
[

0,
1

2

]
×

[
−1

2
,
1

2

]2

,

075114-6



ROBUST DETERMINATION OF MAXIMALLY LOCALIZED . . . PHYSICAL REVIEW B 95, 075114 (2017)

and extend it to the full reciprocal space by symmetry. The
compatibility conditions to be satisfied by the frame u are now

u(0,k2,k3) = Cu(0,−k2,−k3), (F1)

u(k1,±1/2,k3) = τ(0,±1,0)u(k1,∓1/2,k3), (F2)

u(k1,k2,±1/2) = τ(0,0,±1)u(k1,k2,∓1/2), (F3)

u(1/2,k2,k3) = τ(1,0,0)Cu(1/2,−k2,−k3). (F4)

Step 1: Constructing a frame satisfying (F1)–(F3). Our first
step is to use the two-dimensional algorithm to build a frame
u(0,k2,k3) on the face k1 = 0. This frame satisfies (F1), and
additionally

u(0,±1/2,k3) = τ(0,±1,0)u(0,∓1/2,k3),

u(0,k2,±1/2) = τ(0,0,±1)u(0,k2,∓1/2).

For any (k2,k3) ∈ [− 1
2 , 1

2 ]2, we propagate from (0,k2,k3) to
( 1

2 ,k2,k3) using (9). This defines a continuous frame on Bred

which satisfies (F1)–(F3), but not (F4).
Step 2: Enforcing (F4) on the edges of the face k1 = 1

2 . As in
the two-dimensional case, before enforcing (F4) on the whole
face k1 = 1

2 , we enforce it on the four edges of its boundary.
In order to do this, we first fix the corner ( 1

2 , 1
2 , 1

2 ), for which
the compatibility condition is

u(1/2,1/2,1/2) = τ(1,1,1)Cu(1/2,1/2,1/2). (15)

We define the obstruction matrix

Uobs = u∗
(1/2,1/2,1/2)τ(1,1,1)Cu(1/2,1/2,1/2),

and introduce

u′
k = ukU

k1
obs.

By construction, u′ satisfies (15). The compatibility condi-
tions (F1)–(F3) are also still valid for the modified frame u′.
In addition, in view of (15) and (F2) and (F3), the frame
u′ satisfies the compatibility conditions at the other corners
( 1

2 , 1
2 , − 1

2 ),( 1
2 , − 1

2 , 1
2 ), and ( 1

2 , − 1
2 , − 1

2 ).
We next enforce the condition (F4) on the edge (k1,k2) =

( 1
2 , 1

2 ), namely,

u(1/2,1/2,k3) = τ(1,1,0)Cu(1/2,1/2,−k3).

The corresponding unitary obstruction matrix is

Uobs(k3) = u∗
(1/2,1/2,k3)τ(1,1,0)Cu(1/2,1/2,−k3).

Note that Uobs(−k3) = Uobs(k3)T and Uobs(± 1
2 ) = IdJ . As in

the two-dimensional case, provided we can solve the logarithm
problem, we find a Hermitian logarithm L(k3) satisfying
L(−k3) = L(k3)T , L(± 1

2 ) = 0J , and eiL(k3) = Uobs(k3), and
modify the frame as

u′′
k = u′

k exp(ik1L(k3)).

The modified frame u′′ then satisfies (F4) on the two edges
(k1,k2) = ( 1

2 , ± 1
2 ).

We repeat this construction on the edge (k1,k3) = ( 1
2 , 1

2 ),
and introduce appropriate Hermitian matrices L(k2) such that

u′′′
k = u′′

k exp(ik1L(k2))

satisfies (F4) on the two edges (k1,k3) = ( 1
2 , ± 1

2 ).

To simplify the notation, we drop the primes in the
remainder of the algorithm, and simply denote by u the
modified frame obtained at the end of this step.

Step 3: Enforcing (F4) on the whole face k1 = 1
2 . The

compatibility condition (F4) is, on the whole face k1 = 1
2 :

u(1/2,k2,k3) = τ(1,0,0)Cu(1/2,−k2,−k3).

We therefore introduce the family Uobs(k2,k3) of unitary
obstruction matrices

Uobs(k2,k3) = u∗
(1/2,k2,k3)τ(1,0,0)Cu(1/2,−k2,−k3).

Because of the previous step,

Uobs(1/2,k3) = Uobs(−1/2,k3) = Uobs(k2,1/2)

= Uobs(k2, − 1/2) = IdJ .

As in the two-dimensional case, we would like to define a new
frame satisfying all the compatibility conditions as

u′
k = ukUobs(k2,k3)k1 .

We again are faced with the logarithm problem, which we
discuss in Sec. VI.

Remark 7. As a mathematical curiosity, this construction
immediately extends to higher dimensions, again provided the
logarithm problem can be solved. By induction, we first build
a frame on {0} × [− 1

2 , 1
2 ]d−1, then propagate it to [0, 1

2 ] ×
[− 1

2 , 1
2 ]d−1. We next fix the obstruction on the boundary

of { 1
2 } × [− 1

2 , 1
2 ]d−1, and conclude by finding a continuous

logarithm of the obstruction matrix on { 1
2 } × [− 1

2 , 1
2 ]d−1 to

correct the frame.

VI. LOGARITHM PROBLEM

We come back in this section to the so-called logarithm
problem, summarized in Problem 8 below.

An element k ∈ Rd is denoted (k1,k′) in this section. We
also introduce the set of edges in dimension 3 (vertices in
dimension 2)

E =
{

k′ = (k2, . . . ,kd ) ∈
[
−1

2
,
1

2

]d−1

×
∣∣∣∣ ki ∈

{
−1

2
,
1

2

}
for some 2 � i � d

}
.

With this notation, we can summarize the logarithm problem
as follows.

Problem 8. Given a continuous mapping U from [− 1
2 , 1

2 ]d−1

to the set of unitary matrices, such that

∀ k′ ∈ E, U (k′) = IdJ , (16)

and

∀ k′ ∈ [−1/2,1/2]d−1, U (−k′) = U (k′)T (17)

find a continuous mapping L from [− 1
2 , 1

2 ]d−1 to the set of
Hermitian matrices, such that

∀ k′ ∈ E, L(k′) = 0J ,

and, for all k′ ∈ [− 1
2 , 1

2 ]d−1,

eiL(k′) = U (k′), L(−k′) = L(k′)T . (18)
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FIG. 3. Eigenvalues of L, with a naive determination (left) and with our algorithm (right). This example was obtained by a variation of the
potential presented in Sec. VII with J = 7.

This is the problem as used by our construction in the
previous two sections: (16) is satisfied because we fixed the ob-
struction matrix on the edges, while (17) stems from the
structure of the conditions (E3) and (F4). Let us already
note that this problem cannot be solved in general (see the
counterexample in [22], which we recall in Sec. VI C). We
describe an algorithm that solves the problem provided that
the type of eigenvalue collisions present in this counterexample
does not occur. In our numerical tests, we did not encounter
such difficulties and were always able to solve the logarithm
problem. We refer to Sec. VI C for a discussion of this issue.

A. Two-dimensional case

A logarithm of U can be found by starting at k2 = − 1
2 , and

by following the eigenvalues of U to ensure the continuity of
L. This procedure can be seen as a discrete counterpart of the
phase following procedure used in [22, Lemma 2.13] for a
single band.

Assume that [− 1
2 ,0] is partitioned as − 1

2 = k2,0 < k2,1 <

· · · < k2,N = 0. We set L(k2,0) = 0, and iteratively determine
L(k2,j ) as a logarithm of U (k2,j ), taking into account the phase
information in L(k2,j−1). To this end, we diagonalize U (k2,j ) as
U (k2,j ) = W (k2,j )D(k2,j )W (k2,j )∗, where W (k2,j ) is unitary
and D(k2,j ) a diagonal matrix whose entries have modulus 1.
We then set L(k2,j ) = W (k2,j )E(k2,j )W (k2,j )∗, where E(k2,j )
is the diagonal matrix given by

iE(k2,j )n = ln[D(k2,j )n] + 2πi pj,n,

pj,n = argmin
p∈Z

dist(ln[D(k2,j )n] + 2iπ p,E(k2,j−1)),

(19)

where dist[x,E(k2,j−1)] is the distance of the imaginary
number x to the set of diagonal elements of E(k2,j−1). The
matrix-valued function L is finally extended from [− 1

2 ,0] to
[− 1

2 , 1
2 ] by the relation L(−k2) = L(k2)T . The continuity at

k2 = 0 is ensured because L(0)T = L(0) [see (17)].
Figure 3 shows the algorithm in action on one ex-

ample. With a naive phase determination, i.e., E(k2,j )n =
ln[D(k2,j )n], the matrix-valued function L is not continuous
when the eigenvalues of U cross −1, and therefore the
eigenvalues of L cross ±π (left panel). This is because the
complex logarithm is only continuous outside its branch cut,

chosen here on the negative real axis. When that happens in
our procedure, the integer p jumps to accommodate this, and
the eigenvalues of L evolve smoothly (right panel).

If the eigenvalues of U never collide for values of k2 in
the open interval (− 1

2 , 1
2 ), then L is continuous in the limit of

infinitesimal mesh spacing. This is a consequence of the fact
that the minimizer in (19) is always uniquely determined, and
the phase following procedure ensures that the eigenvalues are
determined continuously when they cross the value −1 (see
also the continuity result stated in [22, Lemma 2.13]). The
continuity of the frame is preserved even if a crossing happens,
as long as the integer pn is the same for all the colliding
eigenvalues. On the other hand, when two eigenvalues with
different values of pn collide, L is discontinuous. In the
example of Fig. 3, this would correspond to a collision of
the top and bottom eigenvalues. In this case, our algorithm
fails. We, however, never observed such a situation in all the
tests we have performed. We discuss this in more details in
Sec. VI C.

B. Three-dimensional case

The three-dimensional case is handled similarly to the two-
dimensional case, in slices: for every k2, we find a continuous
logarithm of k3 �→ U (k2,k3), which we call L(k2,k3). As long
as there are no crossings between eigenvalues with different
values of pn, this L is continuous with respect to both k2 and
k3, which solves the problem.

C. Eigenvalue collisions

The prototypical case of a problematic eigenvalue collision
is exemplified by the following situation (see [22, Example
2.25]): let J = 2 and, for k ∈ R, define

U (k) = −
(

cos(2πk) − sin(2πk)
sin(2πk) cos(2πk)

)
. (20)

The eigenvalues of this matrix are (see Fig. 4)

λ±(k) = e±2iπ(k+1/2).

If the matrix-valued function L is continuous at k = 0, the
phases of its eigenvalues must, respectively, vary by amounts
of 2π and −2π when evolving from k = − 1

2 to 1
2 . Therefore,

L(1/2) must have eigenvalues ±2π and cannot be equal to
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FIG. 4. Imaginary part of ln [λ±(k)], the principal logarithm of
the eigenvalues of (20).

0. This shows that no matrix logarithm can simultaneously be
continuous and satisfy L(− 1

2 ) = L( 1
2 ).

In [22], the authors avoid this problem by relaxing Problem
8 to the following weaker problem: Find a sequence of Her-
mitian, continuous matrices L1, . . . ,LN for k′ ∈ [− 1

2 , 1
2 ]d−1,

equal to 0J on E , and such that

e−iLN (k′)/2 . . . e−iL1(k′)/2U (k′)e−iL1(k′)/2 . . . e−iLN (k′)/2 = IdJ ,

(21)

∀ i ∈ {1, . . . ,N }, Li(−k′) = Li(k′)T . (22)

This is in fact sufficient for our purposes. Coming back to
the last step of the algorithm in the three-dimensional case,
assume that, instead of finding L satisfying (18) and setting

u′
k = uk eik1L(k2,k3),

we find a family of functions (Li)i=1,...,N with values in the
space of Hermitian matrices, which in addition satisfy (21).
Then, we can fix the frame in N steps by defining

u′
k = uk eik1L1(k2,k3) . . . eik1LN (k2,k3).

The corrected frame u′ is continuous and satisfies all the
required compatibility conditions.

In [22], the authors use the relaxed problem (21) in
two steps. Their proof relies crucially on the analyticity
properties of the eigenvalues and eigenvectors, and is tied to
the one-dimensional case d − 1 = 1, i.e., d = 2. Moreover, it
does not provide a practical way of computing the Hermitian
matrices Li . A natural extension to their method to dimension
d = 3 is to slightly perturb U (k) to eliminate any problematic
eigenvalue collision, and replace eigenvalue crossings with
avoided crossings, which the authors allude to in [22, Remark
1.10]. For the two- and three-dimensional cases, where it is
necessary to avoid crossings in one- and two-dimensional set-
tings, respectively, generic perturbations will turn the crossings
into avoided crossings because the space of unitary matrices
with repeated eigenvalues is of codimension 3. This argument
can be made precise using the transversality theorem [27],
but the construction is technical and we refrain from doing so
here. This allows us to find a continuous logarithm L1(k) of a
perturbation Ũ (k) of U (k) by the procedure above. Then,

Û (k) = e−iL1(k)/2U (k)e−iL1(k)/2

is very close to IdJ , and therefore its eigenvalues never cross
−1. There is therefore no obstruction in finding a logarithm
L2(k) of Û (k). Finally,

e−iL2(k)/2e−iL1(k)/2U (k)e−iL1(k)/2e−iL2(k)/2 = IdJ .

The problem with this approach is that it is not clear how to
best implement in practice the perturbation argument because
small gaps in Ũ (k) result in eigenvectors that are continuous
but have very large variations, yielding large derivatives for
L1(k). Therefore, although we could in principle design a
scheme to treat such eigenvalue collisions, it is likely to be
unstable on coarse meshes, and would require some parameters
to be fine tuned.

We do not discuss such extensions here since, as explained
in Sec. VII, we have never encountered any problematic
eigenvalue collisions in our numerical tests on two- and
three-dimensional systems. We do not know whether there
is a topological reason forbidding such crossings, or whether
crossings only occur on subspaces of codimension 3 and are
therefore generically absent in two- and three-dimensional
situations, where the obstruction matrices depend on 1 and
2 parameters, respectively.

VII. NUMERICAL RESULTS

This section presents numerical tests of the method pro-
posed here, as well as a comparison with the projection
method. We first detail our methodology. We then test the
algorithms on two-dimensional toy models, three-dimensional
semiconductors with effective potentials, and density func-
tional theory (DFT) computations. Results on topological
insulators are presented in an appendix.

A. Spatial discretization

We present in this section numerical experiments illus-
trating our algorithm. We solve the periodic Schrödinger
equation (1) using a Galerkin basis consisting of all plane
waves

eK(r) = eiK·r,

for K ∈ R∗ such that |K|2 � Ec, for some fixed energy cutoff
Ec. Note that the basis we consider does not depend on the
value of k ∈ Bred, in contrast to most plane-wave codes, which
use the k-dependent cutoff condition |k + K|2 � Ec. This
is done for convenience in our rudimentary implementation.
This has a number of undesirable properties. For instance, the
equality

H (k + K) = τKH (k)τ−K

is only approximately valid, in the regime where k and
K are not too large. In addition, τK is not unitary when
restricted to the vector space spanned by the Galerkin basis.
These properties are, however, recovered in the limit when
Ec → +∞. In our tests, we take Ec large enough to avoid
these problems.

B. Two-dimensional case

As a first test, we use an artificial potential with ran-
domly chosen coefficients, with unit cell Y = [− 1

2 , 1
2 ]2. More
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precisely,

V (r) =
∑

(j,k)∈Z2

V̂j,k e−2iπ(j,k)·r + c.c., (23)

where the only nonzero coefficients V̂j,k were selected ran-
domly. The results we present here correspond to the following
set of coefficients:

V̂(0,0) = 0, V̂(0,1) = 5.50 + 10.37 i, V̂(0,2)

= −12.50 + 11.52 i, V̂(1,−1) = 11.70 + 10.21 i,

V̂(1,−1) = 11.70 + 10.21 i, V̂(1,0) = −10.19 + 10.04 i,

V̂(1,1) = −7.85 + 1.97 i, V̂(2,0) = −2.02 + 4.61 i.

With this potential, the first five bands are isolated from the
higher-energy ones, so we choose J = 5.

We note that this system is entirely unphysical, and was
chosen to be a challenging test for our algorithm. On this
system, it is hard to get good initialization for the projection

method because the centers and shapes of the Wannier
functions are a priori unknown.

1. Results obtained with the proposed algorithm

The result of our algorithm can be seen in Fig. 5, where
we represent the first component u1,k of our Bloch frame as
a function of k, using the same methodology as in Fig. 2. We
also plot the associated Wannier function w1 to check its spatial
decay. On this very simple example, there is no ambiguity in
finding the logarithm on the right edge because the eigenvalues
of the obstruction matrix never cross the value −1, as can be
seen in Fig. 6. We therefore obtain a continuous frame, which
leads to localized Wannier functions. However, there are slight
discontinuities in the first derivative at the edges k1 = 1

2 + p

for p ∈ Z. This translates into a slow spatial decay of the
Wannier function in the x1 direction.

To smooth the discontinuities of ∂k1un,k , we use the MV
procedure. The output of this minimization is given in Fig. 5(b).

(a) With our algorithm, before MV minimization.

(b) With our algorithm, after MV minimization.

FIG. 5. Result of our algorithm for the model specified by (23). As in Fig. 2, we plot the average real part of the first component u1,k of the
Bloch frame with J = 5 as a function of k (left) and corresponding Wannier function (right).
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FIG. 6. Phase of the obstruction matrix.

On this simple example, the main features of the frame do not
change, but some extra regularization occurs. This removes
the spatial tail of the Wannier function in the x1 direction.

We checked that the Wannier function we obtain presents
an exponential decay, provided the cutoff energy Ec and the
number of iterations of the MV algorithm are sufficiently large.

2. Comparison with the projection method

We next compare the results of our algorithm to those
obtained from the projection method commonly used to
initialize the MV algorithm [15]. The initial guesses for
the projection method are J Gaussian functions centered at
random positions. The width of these Gaussian functions
is chosen to match approximately the size of the localized
Wannier functions we obtained with our method. Figure 7
represents the Bloch frame obtained by one example of such
a projection, before and after running the MV minimization.

Although the frame is smooth in most regions, and obeys
by construction the symmetry properties, we can see isolated
points of discontinuity, which visually manifest themselves
as rapid changes of color. Moreover, the MV minimization

(a) With the projection method, before MV minimization.

(b) With the projection method, after MV minimization.

FIG. 7. Result of the projection method with an initial guess corresponding to Gaussian functions centered at random positions, for the
same model and methodology as in Fig. 5.

075114-11
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procedure fails to further localize the initial guess, a situation
the authors of [15] refer to as “false local minima.”

The behavior around the isolated points of singularity can
be understood as follows. We denote by vk the periodic parts
of the Bloch transform of the trial Wannier functions used
as an initial guess. When J = 1, according to the projection
method, the corresponding frame is given by

uk = P (k)vk

‖P (k)vk‖ = 〈wk,vk〉wk

|〈wk,vk〉| = eiθ(k)wk,

where wk is any vector in the one-dimensional vector space
Ran P (k), which can be chosen locally continuous, and θ (k)
is the phase of 〈wk,vk〉. This phase is well defined and
continuous as long as 〈wk,vk〉 is nonzero. The condition
〈wk,vk〉 = 0 is a set of two real equations, which generically
admits point solutions in dimension 2 and solutions on a
one-dimensional manifold in dimension 3. The frame u is
singular at these values. The analysis when J > 1 is more
involved but yields the same conclusions: the frame is singular
when the overlap matrix [P (k)vk)∗(P (k)vk] is not invertible,
which generically is a set of two equations. By formal analogy
with similar phenomena in other application fields, we call
such singular sets vortices. Vortices are points in dimension
2 and lines in dimension 3. A more quantitative information
about the behavior of frames around vortices can be obtained
by introducing the notion of eigenspace vorticity [28], which
generalizes the pseudospin winding number appearing in the
literature on graphene [29].

As can be seen in Fig. 7(b), the MV minimization fails
to resolve these vortices: on a finite mesh, these pathological
singularities appear as local minima of the functional. This is
because the MV algorithm was designed with a continuous
input in mind. The continuity ensures that, when the mesh
is fine enough, the matrix elements Mnn,k,b, defined in (26)
and used crucially in the algorithm are close to 1. This allows
to define their logarithm unambiguously. In the presence of
vortices, this quantity is not close to 1, even on fine meshes,
and the algorithm is not well defined.

In order to confirm that the undesirable behavior of the
MV algorithm arises from the existence of initial vortices, we
consider the case of a single band. The dominant contribution
to the MV functional is given by [16]

̃[u] =
∫
B

∫
Y

|∇kuk(r)|2dr dk. (24)

Consider a model vortex at k = 0 (without loss of generality),
and let k = (ρ cos θ,ρ sin θ ). We consider the model vortex
uk = eiθu0 in a neighborhood of 0. Then ∇kuk(r) has a 1/ρ

singularity at 0. Therefore, on a N × N grid, we can expect that
the MV functional (24) diverges like ln(N ). In dimension 3,
where vortices are lines, ∇kuk also presents a 1/ρ divergence,
where ρ is the distance from k to the line of singularities. This
also yields a logarithmic divergence of the functional. The
reasoning is similar for J > 1.

Such a divergence is observed in our simulations: for the
simple case presented here, the values of the MV functional at
convergence of the algorithm on a 20 × 20, 40 × 40, 80 × 80,
and 160 × 160 grid, respectively, are 3.7, 5.7, 7.9, and 9.6. This
is consistent with a logarithmic divergence. However, since the
divergence is relatively mild (logarithmic only), when the mesh

is sufficiently coarse, these vortices are found not to impact
the algorithm, which converges to nonsingular minima. For
instance, the MV algorithm on the example considered here
converges to a smooth minimum on a 7 × 7 grid in k space,
but stalls without removing the vortices on 10 × 10 grids and
finer.

This explains the observation in [15, Sec. IV D 2], where
the MV minimization is reported to sometimes fail for random
initial guesses. The authors state that “this problem (false local
minima) is not associated with the presence of a large number
of bands, but instead with the use of fine k-point meshes,”
consistent with our observation that the energy contribution
of a vortex diverges logarithmically with the grid spacing.
They also “never observed the system to become trapped in
a false local minimum when starting from reasonable trial
projection functions.” In the situation we consider here (a
random potential), “reasonable trial projection functions” are
hard to devise in advance. We have found vortices to occur for
a large class of initial inputs, although of course not for ones
close to real maximally localized Wannier functions, where the
overlap matrix [P (k)vk]∗[P (k)vk] has its eigenvalues bounded
away from zero.

By contrast, our algorithm always succeeded in construct-
ing a good frame, even on more complicated systems where the
eigenvalues of the obstruction matrix cross the value −1, as in
Fig. 3. In order to investigate whether the type of problematic
eigenvalue collisions of the obstruction matrix described in
Sec. VI was possible, we played with the Fourier coefficients
V̂ , but were not able to see any. In fact, the only way we
could make the eigenvalues of the obstruction matrix collide
is by closing the gap infk∈B [εJ+1(k) − εJ (k)], which violates
the hypotheses of our problem (we only consider isolated
bands). We do not know if it is fundamentally impossible
for eigenvalues of the obstruction matrix to cross at a finite
gap (for topological reasons, for instance), or if it is simply an
exceptional situation which we failed to encounter in our tests.

C. Three-dimensional case

The previous two-dimensional example with a random
potential was artificial and not representative of real systems.
To test our algorithm on more realistic cases, we use the simple
effective one-body potentials of [30] in a zinc-blende structure,
discretized on a plane-wave basis. These pseudopotentials
were chosen to obtain representative band structures at
minimal cost. In this framework, the potential V reads as

V (r) =
∑

K∈R∗
V̂ (K) e−iK·r,

V̂ (K) = VS(|K|) cos(K · τ ) + iVA(|K|) sin(K · τ ),

where τ = a(1,1,1)/8 and a is the lattice constant of the zinc-
blende structure. The form factors VS and VA, as well as the
parameters a for various compounds, are tabulated in [30].

We first test our algorithm on silicon. We study the first four
bands, which are isolated from the others. As in the 2D case,
our algorithm was able to produce a continuous frame, as seen
in Fig. 8, where we plot again the average real part of the first
component of the Bloch frame, on the cut plane k2 = 0.
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(a) Before MV minimization (b) After MV minimization

FIG. 8. Average real part of the first component of the Bloch frame obtained by our method on the cut plane k2 = 0, before (left) and after
(right) the MV algorithm, on a 24 × 24 × 24 grid.

Figure 9 represents the J = 4 different phases of the
eigenvalues of the obstruction matrix Uobs(k2,k3) in the three
stages of the algorithm: fixing the corners, the edges, and the
face. Before fixing the corners, there is a conical intersection in
the eigenvalues at (0,0). This is a nongeneric case, presumably
due to eigenvalue degeneracy at � in the model, itself related

to a particular symmetry of the potential. However, this
intersection is harmless, as it connects eigenvalues with the
same phase determination. After fixing the corners, the conical
intersection moves to the corners, and the phase of all the
eigenvalues has a maximum of about 0.6, well below π . Fixing
the edges is not necessary in this case.

(a) Before fixing the corners.

(b) Before fixing the edges. (c) After fixing the edges.

FIG. 9. Phase of the obstruction matrix for the silicon example.
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FIG. 10. Smallest eigenvalue of the overlap matrix (25). The
lowest isosurface corresponds to the region where this matrix is nearly
indefinite, and forms a vortex line.

To compare our method to the projection method, as in
the 2D case, we use as initial Wannier functions Gaussians
centered on random points. The projection method yields a
continuous frame as long as the overlap matrix

O(k) = [P (k)vk]∗[P (k)vk] (25)

is positive definite for all k ∈ B. As can be seen in Fig. 10,
this matrix becomes indefinite on vortex lines. This yields
discontinuous frames, as illustrated in Fig. 11(a). In our tests
with random positions of the Gaussians, this occurred about
half the time. As in the 2D case, the MV algorithm is unable
to remove these vortices when the sampling of the Brillouin
zone is fine enough. In this example, the MV algorithm was
able to remove the vortices on grids of size up to 20 × 20 ×
20, but not on finer grids. As expected, when the Wannier
centers are selected appropriately, the MV algorithm converges
to localized Wannier functions.

Silicon represents an easy test case because it possesses a
relatively large direct gap between the valence and conduction
bands. This makes the projector on the valence bands a
smooth function of k, which in turn produces well-localized
Wannier functions. We also tried our algorithm on more
complicated semiconductors such as indium arsenide, still
using the pseudopotentials of [30]. Indium arsenide has a very
small direct gap, resulting in sharp variations in the Brillouin
zone near the band edges which require a fine sampling of
the Brillouin zone to resolve accurately the band structure.
Although the obstruction phases of Fig. 9 are more rugged
in this case, their amplitude at the last step is still less than
about 0.6, well below π , and our algorithm has no problem
distinguishing the bands to fix the phases.

D. Interface with Wannier90 and tests on DFT systems

We have implemented our algorithm in a way that is com-
patible with the standard code WANNIER90 [17,31]. To that end,
we note that our method, while presented here with frames,
can also be implemented in the WANNIER90paradigm where one
computes a fixed set of electronic orbitals unk for each k point,
and then finds a set Uk of unitaries from which the final frame is
constructed as u′

k = ukUk. The advantage of this approach for
the MV algorithm is that only the low-dimensional unknowns
Uk have to be optimized, and that the only inputs from
electronic structure codes are the overlap matrices

Mnm,k,b = 〈unk+b,umk〉, (26)

where b runs over nearest neighbors of 0 on the k-space
mesh. This separates the computation of the un,k from the
computation of Wannier functions, and facilitates the creation
of independent libraries. Similarly to the traditional MV
minimization, in our algorithm we only need as input the
overlap matrices Mnm,k,b (.mmn file) to compute the final
frame u′

k = ukUk and output the unitary matrix Uk at each
k point (.amn file). Because this format does not explicitly

(a) Before MV minimization (b) After MV minimization

FIG. 11. Average real part of the first component of the Bloch frame obtained by the projection method on the cut plane k2 = 0, before
(left) and after (right) the MV algorithm, on a 24 × 24 × 24 grid. The MV algorithm is able to smooth out the general features of the frame,
but not to remove the vortices.
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FIG. 12. One of the four Wannier functions produced by our
algorithm for silicon. The positive and negative isovalues of the
Wannier function are plotted, at a level equal to 20% of the maximal
absolute value of the function. The Wannier functions obtained by
our algorithm are localized, and appear to be close to combinations
of the four bond-centered maximally localized Wannier functions.

account for the time-reversal symmetry, it is more convenient
to use a modified version of our algorithm (see Appendix),
which does not use the time-reversal symmetry. The resulting
code is available at https://github.com/antoine-levitt/wannier
and can readily be inserted in any workflow using WANNIER90.

We have tested our algorithm on bulk silicon computed by
the code QUANTUM ESPRESSO [32] using the PBE exchange-
correlation functional. Our conclusions are the same as those
of the previous section using an effective potential approach.
The phases of the obstruction matrix are similar to those of
Fig. 9, and our algorithm produces a continuous frame. The
corresponding Wannier functions are localized, as can be seen
on Fig. 12.

These Wannier functions are not maximally localized,
but form a good initial guess for the MV algorithm. By

contrast, initializing the algorithm with randomly centered
s-type orbitals (as is the default in WANNIER90 in the absence
of a specific prescription) might yield an algorithm that
can converge to a “false local minimum,” especially on fine
meshes, as can be seen in Fig. 13. However, when the initial
guess is good enough, the convergence is satisfactory, and even
faster than using our algorithm to produce an initial guess.

The computational time of our algorithm is dominated by
the cost of a few operations on J × J matrices at each k point,
and is therefore comparable to that of one iteration of the
MV algorithm. By contrast, the projection method requires
computations on the plane-wave grid, and is therefore much
more costly. Therefore, the total time for the computation of
MLWFs is lower with our algorithm, even when it requires
more iterations to converge than the projection method with
good initial guesses.

VIII. CONCLUSION AND PERSPECTIVES

We proposed an algorithm to obtain well-localized Wannier
functions without any initial guess or free parameters, and
presented numerical results showing its correctness, as well
as its superiority compared to the projection method on very
fine meshes and when good initial guesses are not available.
The flipside to this is that our method, which does not
utilize the physics of the system, might not yield optimal
Wannier functions, but only local minima. We anticipate our
method to be useful for systems where no physical intuition is
available, and where well-localized Wannier functions, even
if not optimal or physically sensible, can be used for example
for Wannier interpolation [2].

Our algorithm can fail when eigenvalues of the obstruction
matrix corresponding to different number of turns p collide.
We have never found this to be the case in practice. However, it
is unclear whether such a phenomenon is impossible because
of topological reasons or if it is simply rare and we have never
found it in our tests. A better understanding of this issue is

(a) 4 × 4 × 4 mesh (b) 30 × 30 × 30 mesh

FIG. 13. Spread as a function of the number of iterations, for a coarse and a fine k-point mesh. We use as initial guess (1) the one produced
by our algorithm; (2) the projection method with bond-centered s-type orbitals; (3) the projection method with s-type orbitals with random
centers (five different realizations). On the left panel, the black and light blue curves eventually converged to the global minimum after about
500 iterations, but the red one converged to a local minimum to machine precision. The red and black curves on the right panel seem to have
converged to a local minimum, but the gradient is nonzero and the energy keeps decreasing, although very slowly; after 100 000 iterations, the
energy was still above 136 bohrs2.
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a worthwhile direction of research. Our algorithm could be
adapted to tackle such collisions, but would be significantly
more complicated, introduce free parameters, and be less
robust for coarse k-point meshes, which is why we refrain
from doing so in this work.

As we demonstrated, a singular input to the MV algorithm
may or may not yield a physically relevant answer, depending
on the size of the mesh: singularities may not be seen on
a coarse mesh, while fine meshes emphasize the divergent
contribution of the vortices to the functional. In this case, the
MV algorithm stalls and is unable to converge to a “true” local
minimum. The behavior of the MV algorithm in this case
would be interesting to study from a numerical analysis point
of view. Another important question is whether any continuous
frame will yield exponentially localized Wannier functions
when used as initial guess to the MV algorithm.

On the numerical side, our algorithm, publicly available at
https://github.com/antoine-levitt/wannier, can readily be inter-
faced in standard workflows using the WANNIER90 [17,31]
code. Our construction preserves the time-reversal symmetry,
but not any other symmetries the crystal might possess,
unlike the construction in [33]. The extension of our method
to additional symmetries is also an interesting direction for
future work.
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APPENDIX: SYSTEMS WITHOUT TIME-REVERSAL
SYMMETRY AND TOPOLOGICAL INSULATORS

Our algorithm was introduced in the framework of time-
reversal-symmetric systems, and more precisely of a symmetry
of bosonic type, which is one in which the antiunitary
time-reversal operator C squares to 1. This is the case where we
know theoretically that there exist localized Wannier functions.
Although a detailed study is outside the scope of this paper, it is
interesting to explore what happens when this assumption fails,
and in particular investigate the case of topological insulators.
Our algorithm can be adapted very simply to systems without
time-reversal symmetry (or with a fermionic one, that squares

to −1), and we explain it here for one- and two-dimensional
systems (the three-dimensional case is a simple extension).

In 1D, we first start with a frame at �, which we do not im-
pose to be real. Then, we propagate it using (9) to the segments
[0, 1

2 ] and [− 1
2 ,0]. At this point, generically u1/2 �= τ1u−1/2: we

compute the unitary obstruction matrix Uobs = u∗
1/2(τ1u−1/2),

and set u′
k = ukU

k
obs, which is now a continuous frame.

In 2D, we apply the same construction as in the 1D
case to build a continuous frame on the segment from
(0, − 1

2 ) to (0, 1
2 ) that satisfies u(0,1/2) = τ2u(0,−1/2). Then, we

propagate it horizontally and obtain a frame u(k1,k2) on [− 1
2 , 1

2 ]2.
Generically, u(1/2,k2) �= τ1u(−1/2,k2), which we now fix in two
steps. We define the top edge obstruction matrix Uobs,top =
u∗

(1/2,1/2)(τ1u(−1/2,1/2)), set u′
(k1,k2) = u(k1,k2)U

k1
obs,top, and drop

the primes for simplicity. We now define the obstruction matrix
Uobs(k) = u∗

(1/2,k)(τ1u(−1/2,k)), which, like in the time-reversal-

symmetric case, satisfies Uobs(− 1
2 ) = Uobs( 1

2 ) = IdJ . Provided
we can find a continuous logarithm L(k) of Uobs(k), we set
u′

(k1,k2) = u(k1,k2)e
ik1L(k2) and obtain a continuous frame.

Note that, as this algorithm always produces a continuous
frame if the logarithm problem is solved, it follows that the
logarithm problem cannot be solved for materials with nonzero
Chern numbers, where we know that there cannot exist a
continuous frame [14]. We will now show how exactly the
existence of a logarithm fails on a Chern insulator.

Chern insulators: The Haldane model

We test our algorithm on the prototype of Chern insulators,
the two-band Haldane model. We use the same notation as
in the original paper [25]: the parameters t1 and t2 are the
nearest- and next-nearest-neighbors hopping terms, φ is the
phase, which breaks the time-reversal symmetry, and M is
the onsite energy, which breaks the inversion symmetry. We
used as parameters t1 = t2 = 1 and M = 0.1, and consider the
first band (J = 1). Note that since the Haldane model only
has one band, it is not a good test case to see the collision
of eigenvalues we are concerned about in Sec. VI, but rather
illustrates how our algorithm fails on a topological insulator
with a nonzero Chern number, as any algorithm must, since
continuous frames cannot exist in this case [13].

The Haldane model is a time-reversal-symmetric insulator
for φ = 0. When φ is increased and the time-reversal symmetry

FIG. 14. Phase of Uobs(k2) as a function of k2 for the Haldane model with φc ≈ 0.019, for φ = 0 (left), φ = φc − 0.005 (middle), and
φ = φc + 0.005 (right). As φ increases, the time-reversal symmetry breaks down and, at φc, the gap closes and U jumps abruptly from −1 to
1. When φc is increased into the Chern insulator regime, the map U has degree 1, and no choice of branch cut can make its phase continuous
and periodic.

075114-16

https://github.com/antoine-levitt/wannier


ROBUST DETERMINATION OF MAXIMALLY LOCALIZED . . . PHYSICAL REVIEW B 95, 075114 (2017)

FIG. 15. Phase of Uobs(k2) as a function of k2 for the Kane-Mele model, for λν,c = 3
√

3, with λν = λν,c + 0.02 (left) and λν,c = λν,c − 0.02
(right). As λν,c decreases, the system transitions from an even to an odd Z2 invariant, and eigenvalues with different numbers of turns collide.

is broken, the band gap decreases until it closes at φc =
arcsin[M/(3

√
3t2)] ≈ 0.019. After that point, it is a Chern

insulator (with Chern number 1).
As can be seen in Fig. 14, when φ is small, the phase of the

obstruction matrix (here, a single number) evolves smoothly
and symmetrically with respect to the origin: Uobs evolves in
the upper half-circle |Uobs| = 1, Im Uobs � 0, and goes from 1
to −1 and back again, taking the same path in reverse. When φ

increases, the transition from −1 back to 1 gets sharper, until it
is discontinuous at the critical threshold φc. When φ increases
again, this discontinuity is resolved, but this time Uobs goes
through the lower half-circle on its way back. The net result
is that a logarithm of Uobs(k2) will pick up a phase factor of
2π when going from k2 = − 1

2 to 1
2 , and cannot therefore be

continuous and periodic.

Z2 topological insulators: The Kane-Mele model

We now turn to the case of Z2 topological insulators [34].
Z2 topological insulators are characterized by a fermionic

time-reversal symmetry, squaring to −1 instead of 1 as the
one considered in this paper, and possess a Z2 topological
invariant. Systems with an odd invariant have a topological
obstruction to the construction of frames respecting the time-
reversal symmetry, but no obstruction to the construction of
nonsymmetric frames [35].

We test our algorithm on the Kane-Mele model [36]. With
the same notation as in [36], we choose a = 1, t = 1, λR =
0, λSO = 1. For this choice of parameters, the system is in a
regular insulator phase for λν > λν,c = 3

√
3, and in a quantum

spin Hall phase for λν < λν,c.
We show in Fig. 15 that this transition introduces a collision

of eigenvalues with different numbers of turns. The correspon-
dence between the eigenvalue collisions and the Z2 invariant
was recently proved in [37, Proposition 5.7]. Let us stress
that this collision occurs because of the nontrivial topological
states of systems with fermionic time-reversal symmetry. For
systems with a bosonic form of time reversal (the ones we
consider in this paper), we found no such crossings.
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