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Interplay of Pomeranchuk instability (spontaneous symmetry breaking of the Fermi surface) and d-wave
superconductivity is studied for the repulsive Hubbard model on the square lattice with the dynamical mean-field
theory combined with the fluctuation exchange approximation (FLEX+DMFT). We show that the fourfold
symmetric Fermi surface becomes unstable against a spontaneous distortion into twofold near the van Hove
filling, where the symmetry of superconductivity coexisting with the Pomeranchuk-distorted Fermi surface is
modified from the d-wave pairing to the (d + s) wave. By systematically shifting the position of van Hove filling
with varied second- and third-neighbor hoppings, we find that the transition temperature 7. for the Pomeranchuk
instability is more sensitively affected by the position of van Hove filling than the superconducting T.5C. This
implies that the filling region for strong Pomeranchuk instability and that for the 7,5 dome can be separated,
and that Pomeranchuk instability can appear even if the peak of 7 is lower than the peak of 7.5C. An interesting
finding is that the Fermi surface distortion can enhance the superconducting 7.5 in the overdoped regime, which
is explained with a perturbational picture for small distortions.
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I. INTRODUCTION

High-T, cuprate superconductors harbor many fundamental
questions, which challenge elaborate numerical analysis on
superconductivity, magnetism, and other properties. Specif-
ically, there is growing realization that various instabilities
can exist along with superconductivity [1], and the relation
between various charge instabilities and superconductivity in
the cuprates is now being intensively studied [2-5]. Also, some
experiments suggest a spontaneous breakdown of the fourfold
symmetry of electronic states in the tetragonally structured
cuprates, which is viewed as a kind of “electronic nematicity”
[6-8]. There are some explanations for the nematicity, e.g.,
in the context of fluctuating stripe orders [9]. Pomeranchuk
instability, a spontaneous breaking of fourfold symmetry of the
Fermi surface without lattice distortion, is evoked as another
possible candidate for nematicity in cuprate superconductors
[10].

The presence of Pomeranchuk instability in two-
dimensional lattice models has been suggested in
Refs. [11,12], where the forward scattering was found to
develop to induce Pomeranchuk instability. Subsequently,
properties of this instability were studied primarily in mean-
field models (“f model”), where the electrons interact only
via forward scattering [13,14]. For the two-dimensional (2D)
Hubbard model on the square lattice, a representative model
for cuprates, the existence of this instability is yet to be
fully clarified microscopically. Functional renormalization
group (fRG) calculations suggest that the superconducting
fluctuation is stronger than Pomeranchuk instability [15],
while other numerical renormalization-group approaches sug-
gest Pomeranchuk instability to be stronger around van
Hove fillings [16]. Gutzwiller wave functions combined with
an efficient diagrammatic expansion technique (DE-GWF)
obtained a ground state with a coexistence of the nematic
order and superconductivity in the 2D Hubbard model [17],
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which is also observed with the renormalized perturbation
theory for the weak-coupling case [18]. Also, the dynamical
cluster approximation (DCA) and cellular dynamical-mean-
field theory (CDMFT) showed large responses against small
distortions of the lattice [19,20], from which a possibility of
spontaneous symmetry breaking is suggested to occur at lower
temperatures or for larger cluster sizes. While these results
suggest that the 2D repulsive Hubbard model has a strong
tendency toward the Pomeranchuk instability, whether or not
this instability has higher transition temperature (') than
that of superconductivity (TCSC) has yet to be elaborated. More
importantly, the relation between the Pomeranchuk instability
and superconductivity (e.g., whether they are cooperative or
competing) is an intriguing question. While a mean-field
study for a phenomenological model suggests that they are
competing with each other with 7.5¢ suppressed in the
coexistence region [21], the relation should be clarified by
going beyond mean-field approaches.

Given the situation, we study in the present paper super-
conductivity and Pomeranchuk instability in the intermediate
correlation regime by evoking FLEX+DMFT [22,23], a
diagrammatic extension of the dynamical mean-field theory
(DMFT) [24-26], which takes into account the spin and charge
fluctuation effects on top of the DMFT local self-energy,
and can reproduce the dome structure in T5¢ [23]. The
advantages of this method are first, there are no finite-size
effects unlike in DCA and CDMFT, which should be important
for capturing small Fermi surface deformations, and second,
we can calculate finite-temperature regions in contrast to
DE-GWF to capture the effect of this nematicity on the
superconducting 7.°C. This also enables us to systematically
examine the relation between superconductivity and Pomer-
anchuk instability when the electron band filling and the
second and further neighbor hoppings (¢',¢”) are varied. After
confirming the existence of Pomeranchuk instability around
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the van Hove filling consistently with the previous works, we
shall study the superconducting phase, which reveals that the
symmetry of the gap function is changed from the ordinary
d-wave pairing to the (d + s) wave [17,19]. Interestingly, the
Fermi surface distortion can enhance the superconductivity in
the overdoped (or strongly frustrated) regime with larger ¢/,¢”.
We shall explain this 7,5¢ enhancement with a perturbation
picture for small Fermi-surface distortions, and also with the
random phase approximation (RPA) in the weak-coupling
regime.

Another finding here is that the Pomeranchuk instability
temperature 7! is more sensitive to (¢/,¢”), hence the Fermi
surface warping, than the superconducting 7.5€. This contrasts
with the previous mean-field calculations [21] that showed
almost the same filling dependence for the two transition
temperatures. This should come from the fact that the present
formalism takes account of the filling dependence of the
pairing interaction beyond mean-field levels. The result also
implies that the superconducting 7, dome and that for
Pomeranchuk instability can be separated.

II. FORMULATION

We consider the standard repulsive Hubbard model on the
square lattice with a Hamiltonian,

H= Ze(k)c,t_ack,a +U Zni,mz‘.l, (H

k,o i

where c,t , creates an electron with wave vector k = (ky,k,)
and spin ’a, U is the on-site Coulomb repulsion, and n; , =
cjac,-_g. In the presence of second-neighbor (¢’) and third-
néighbor (t"") hopping parameters, the 2D band dispersion is
given as

€(k) = — 2t(cos ky + cos ky) — 4t'cos k, cos k,
— 2t"(cos 2k, + cos 2ky) — u, )

where ¢ is the nearest-neighbor hopping (the unit of energy
hereafter), and w the chemical potential. We basically adopt
t' = —0.20¢, t” = 0.16f, which are determined to fit the
band calculation for a typical hole-doped single-layer cuprate,
HgBa,CuOy.4s [27,28].

For the numerical procedure, we employ the FLEX+DMFT
method, which is a kind of diagrammatic extension of DMFT,
where the fluctuation exchange approximation (FLEX) [29]
and the DMFT are combined with a double self-consistency
loop. This kind of scheme has been considered in Refs. [22,30],
and has recently been formulated through the Luttinger-Ward
functional with applications to superconducting states in Ref.
[23]. The latter can describe a TCSC dome against the band
filling along with a spectral weight transfer. These are the virtue
of FLEX+4-DMFT that corrects the overestimated local-FLEX
self-energy in a filling-dependent manner. In FLEX+DMFT,
the self-energy is calculated through the FLEX self-energy and
DMFT self-energy (Ximp) as

(k) = Srex(k) — Ziex (k) + Zimp(@y), 3)
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where the FLEX self-energy g gx(k) is given as

_ 1N [3, ek —k)
EFLEX(k)_Nk’B;[Z 1 —Uxotk — k')

L xok—K)

_ A M 2 _ 1 /
U T Uget— iy U ok k)}G(k)'

“

Here Ny and B are the total number of k points and inverse
temperature, respectively, k = (w,,k) with o, the Matsubara
frequency for fermions, G (k) Green’s function, and

1
= —— Gk Gk 5
x0(q) Nkﬂij (k + )G (k) )

is the irreducible susceptibility. The local part of the FLEX
self-energy, EIF"LCEX, is computed by replacing Green’s function
G with the local one, Gioc = (1/Ny) Y, G(k), in Egs. (4)
and (5).

For calculating the DMFT self-energy, Ziyp, we need to
solve the impurity problem in DMFT. Here we employ the
modified iterative perturbation theory (modified IPT) as the
impurity solver. In this method, the original IPT is modified
for the systems having no particle-hole symmetry [31], thus
applicable to frustrated or non-half-filled cases. This is not
computationally expensive, which enables us to scan over var-
ious parameter regions. We have checked, by using the ALPS
library [32,33], that the continuous-time quantum Monte Carlo
(CT-QMC) impurity solver [34,35] gives similar results even
away from half-filling in the intermediate-coupling regime
[see Fig. 1(a)].

After obtaining Green’s function, we plug it into the
linearized Eliashberg equation,

1
ME) = -3 D Velk = K)GE) AR, (6)
k/

where A(k) is the anomalous self-energy, while

(k) = 3.0 xot) 1o, xo(k)
Verr(k) = U + 2U T Un® 2U 5 U (7)

is the effective pairing interaction, and A the eigenvalue of
Eliashberg’s equation. Superconducting 7.5 is determined as
the temperature at which A = 1. In the right-hand side of
Eq. (6), we have neglected the local DMFT vertex contribution,
whose validity is discussed in Appendix.

To allow the Pomeranchuk instability to occur, we introduce
a seed to deform the Fermi surface in the initial input for
the self-energy as Yipiia1 = 0.05¢(cos k, — cos k). While we
linearize the anomalous part of Green’s function as being
infinitesimal, we can deal with finite Pomeranchuk order
parameters, so that we can discuss superconductivity for finite
distortions in this formalism.
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FIG. 1. (a) Temperature dependence and (b) filling dependence
of the Pomeranchuk order parameter n for U/t =4.0,(t',t") =
(—0.20,0.16). In (a), the circles (squares) represent the results
of FLEX+DMFT with the modified IPT (CT-QMC) as a DMFT
impurity solver. (c) Fermi surface [as represented by the color-coded
spectral weight A(k,w = 0)] with n =0.66,U/t =4.0,(t',t") =
(—0.20,0.16), for T =0.0333¢t> T (Bt =30; left) and
T = 0.0286r < TF' (Bt = 35; right).

III. RESULTS
A. Pomeranchuk instability

The Pomeranchuk order parameter 1 can be defined, for the
originally fourfold cosine bands, as

n= Z(cos ky — cos kx)(c,ick), (8)
k

and we display the result against temperature and band
filling in Figs. 1(a) and 1(b), respectively. We can see
that the order parameter starts to grow continuously with
decreasing temperature, which indicates a second-order phase
transition. If we turn to the filling dependence, we observe
the order parameter abruptly grows around the edges of the
Pomeranchuk phase, indicative of transferring to a first-order
phase transition consistently with the previous work [13].
Hereafter, we focus on the filling region around the peak of
TH, where the transition is of second order.
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FIG. 2. (a) Phase diagram against temperature 7/t and band
filling n for U/t = 4.0,(¢',t") = (—0.20,0.16). Shown are the su-
perconducting 7.5¢ with undistorted Fermi surface (green circles),
superconducting 7.5¢ with Fermi surface distortion (purple circles),
and Pomeranchuk 77" (black squares). The dotted line represents 7!
when we ignore the superconductivity. The yellow arrow indicates
the van Hove filling in the interacting system. (b) Density of states
at the filling indicated by the yellow arrow in (a) for gt = 20,U/t =
4.0,(¢',t") = (—0.20,0.16).

If we look at the Fermi surface in Fig. 1(c) for U/t = 4.0
and n = 0.66, we can see that the Fermi surface, identified as
the ridges in the spectral function A(k,w = 0) obtained with
the Padé approximation, indeed becomes distorted at lower
temperatures, T < TFL.

The phase diagram is displayed in Fig. 2(a), where we can
see that the Pomeranchuk instability temperature 7', which is
determined as the temperature at which 1 becomes nonzero, is
peaked around n = 0.66 for the present parameter set (U/t =
4.0,(¢',t") = (—0.20,0.16)). A yellow arrow indicates the van
Hove filling in the interacting system at which the spectrum is
peaked at the Fermi energy [see Fig. 2(b)] in which we have
obtained the density of states with the Padé approximation
and confirmed the peak position does not change for T >
TPl The fact that the Pomeranchuk instability tends to be
strong near this filling is consistent with the previous results
[13,21]. The peak in the Pomeranchuk dome does not precisely
coincide with the van Hove filling, which may be an effect
of the asymmetric density of states [13] as in Fig. 2(b). By
contrast, the superconducting 7.5 in the present result is a
monotonically decreasing function of the hole doping around
the van Hove filling.
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FIG. 3. The superconducting and Pomeranchuk phase boundaries
for U/t = 4.0 (left panels) and the spectral weight A(k,w = 0)
for n =0.80,8t =20,U/t = 4.0 (right) are shown for (¢',t") =
(—0.20,0.16) (a), (—0.175,0.14) (b), and (—0.15,0.12) (c). The
symbols are the same as in Fig. 2(a), and yellow arrows indicate
respective van Hove fillings in the interacting system.

This contrasts with the previous mean-field calculations
[21] which ignore the filling dependence of the effective
pairing interaction, where both 7€ and T.!" are peaked around
the van Hove filling. Thus the present result indicates that
the filling dependence of the effective interaction has an
important effect of rendering distinction of optimal doping
levels between the Pomeranchuk 7."' dome and the supercon-
ducting 7.5¢ dome. To confirm this, let us systematically vary
the second- and third-neighbor hopping parameters (¢',t”) in
Fig. 3, which change the Fermi surface warping as well as
the van Hove filling. We can see that, for a fixed n = 0.80,
the change in the parameters shifts the distance of the filling
from the van Hove filling as represented by the blurring of the
spectral function around (0,7),(7r,0). Left panels in Fig. 3 plot
the phase diagrams for three typical cases with different Fermi
surface warping. We find that the Pomeranchuk 7! drastically

PHYSICAL REVIEW B 95, 075109 (2017)

(@) d S

(b) =0 n70

L]
-
g X ik
-
N <
S, o il
-7 . n -2

FIG. 4. (a) Momentum dependence of the gap function for 7 =
0.0286t < TP with n =0.66,U/t = 4.0,(t',t") = (—0.20,0.16)
(left panel), which can be decomposed into a d-wave part and
an (extended) s-wave (fourfold symmetric) part (right). (b) Dif-
ference in the pairing interaction with the Fermi surface dis-
tortion (Ve'}f'o) and without (Vi="), for n = 0.66,8t = 31,U/t =
4.0,(¢',t") = (—0.20,0.16).

changes along with the van Hove filling (yellow arrows), while
the superconducting T.5€ is much less sensitive.

We can thus conclude that, despite both superconductivity
and Pomeranchuk instability being Fermi surface instabilities
affected by the spectral weight at the Fermi energy, the
Pomeranchuk instability is much more sensitive to the Fermi
surface shape (distance from the van Hove filling). This
implies that we can separate the dominant regions for the two
instabilities by changing the position against the van Hove
filling (dominated by ¢',¢").

B. Superconductivity under Fermi surface distortions

Now, an intriguing issue is how superconductivity behaves
in the presence of the Pomeranchuk Fermi-surface distortion.
If we look at the superconducting order parameter in Fig. 4(a),
the pairing symmetry is seen to be distorted from the ordinary
d wave to the d-+(extended)s wave. Here, an interesting
observation is that the superconducting 7.5 can be enhanced
by the Pomeranchuk distortion of the Fermi surface. Indeed, if
we go back to Fig. 2, we have also plotted the superconducting
TS5 (green dots) when the fourfold Fermi surface is artificially
imposed below Pomeranchuk TF'. We can see the 75¢ with
the distorted Fermi surface (purple dots) is actually higher.

To identify the origin of this enhancement, we can compare
the pairing interaction between the cases of Pomeranchuk-
distorted and the fourfold-imposed Fermi surfaces. Figure 4(b)
plots the difference of the two cases for the same parameters
U/t =4.0, n =0.66, and Br = 31). We can see that the
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Pomeranchuk instability distorts the pairing interaction, where
the difference has a d-wave-like sign reversal.

To pinpoint the origin of the distortion effect on the super-
conducting 7.5, we can consider the perturbational effect for
small distortions, based on a general linearized gap equation,

1
M) = =37 > K kK)p(K), ©)
k/

where ¢(k) = |G (k)| A(k), while K (k,k’) is the kernel, given
as K(k,k') = |G(k)|Vegr(k — k')|G(k")| in FLEX+DMFT [as
seen by multiplying |G| to both sides of Eq. (6)]. If we consider
small d-wave-like distortions [as displayed in Fig. 4(b)] for this
kernel,

K (k,k'y — K(k,k') + 8K (k,k'), (10)

the first-order perturbation for the maximum eigenvalue Apax
satisfies

A = Y B S Kk K Ypman () = 0, (11)
k.k'

where ¢max is the eigenvector for Ama. Namely, SAL)
identically vanishes due to the d-wave nature of the K¢, so

that the leading term is the second-order one,

_ Z | P (k)8 Kk K )i (K2 -
h )\max - )H'

822

max

0, (12)
i kK

where i is the index for the eigenvalue A; and eigenvector ¢; of
the kernel matrix K. Since this expression is positive-definite,
small d-wave deformations of the kernel in the linearized
gap equation always enhance the superconducting TCSC. This
explains the T,5€ enhancement in Fig. 2(a), and can provide a
new pathway for enhancing superconducting 7,5 in terms of
Fermi surface distortion.

However, it should be difficult to achieve purely d-wave-
like distortions for the kernel, and the terms having some
other symmetries should in general arise even from purely
d-wave distortions of the Fermi surface. We can elaborate
this by introducing a parameter g, where g; represents either
(i) a spontaneous distortion of the electronic states [g; =
G (k) — Gundistorted(k)], or (ii) a small d-wave modulation of the
Hamiltonian (1 =}, 5gkcch,ack,0)~ Then we can expand
the interaction kernel in gz, which gives, up to the second order,

1 82K

= 38,08y,

2;8gp8gq proq
(13)

, , 0K
K(kK)— K(kK)+ Y 5508 T
P P

and the effect on the eigenvalue A reads

2
¢:1 x(k)z - 8g d)l(k,)
5)»1(1%2)1)& § : | - Lot P |

ik )‘-max - )\i

Y st Y K e seew). a4
o 2 pyq Sgpagq p¥oq .

We can see that whether TcSC can be enhanced depends on the
second term on the right-hand side of Eq. (14). From this we
expect that the enhancement tends to occur when the second-
largest eigenvalue is close to the largest one, for which the first
term on the right-hand side of Eq. (14) becomes dominant.
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FIG. 5. Comparison of the eigenvalue XA calculated with RPA
between the fourfold symmetric Fermi surface (¢ =0) and the
distorted Fermi surface (¢ = 0.01) with red (black) dots representing
the case of A=0 < A<=001 (Ae=0 5 2 =001y for Br =5,U/t = 2.0.
The horizontal axis corresponds to the band filling, while the vertical
axis is ¢'/t, with t” = —0.8¢" (which includes the parameter set used
in Fig. 3).

We can in fact check this argument in the weak-coupling
case. To obtain qualitative tendencies, we have performed a
RPA calculation at a relatively high temperature for various
values of parameters to compare the fourfold symmetric
case with the distorted Fermi surface by making the nearest-
neighbor hopping slightly anisotropic, t, =1+ ¢€,t, =1 — ¢,
by hand with the first line in Eq. (2) becoming e(k) =
—2t.cos k, — 2t,cos k. Inthe RPA, we ignore the self-energy
effect in the Eliashberg Eq. (6).

When we compare the eigenvalue under a distortion A¢=%-0!
with A¢= for the symmetric case, the result in Fig. 5 for U/t =
2.0,8t = 5 shows that we do have a region (marked with red
circles representing A="0! > 1¢=0) in which the distortion
enhances the eigenvalue. This effect tends to occur away from
half-filling, and for larger values of distant-neighbor hopping
t’,t” (i.e., more frustrated cases). Thus we can confirm that
the enhancement of the superconductivity by small distortions
indeed occurs at least in the weak-coupling limit where we can
ignore the self-energy effect.

It has been known that the gap symmetry (for the leading
eigenvalue) tends to be changed for higher doping or more
frustrated cases [36]. The present result suggests that the TcSC
enhancement arising from the distortion tends to occur around
the boundary for the gap symmetry to change where the leading
and subleading eigenvalues are close to each other. This is
also consistent with the above result for the ' dependence
in FLEX+DMFT (Fig. 3), where the enhancement of 7,5C
occurs for (¢',t") = (—0.20,0.16). We also notice that the
structure of Eq. (14) is reminiscent of the pseudo-Jahn-Teller
effect, in which a Jahn-Teller-like distortion occurs without
degeneracies due to the second-order effect of the distortion
[37]. In this context we can also recall a well-known property
that, if the eigenvalues are degenerate (e.g., for p + i p pairing),
T5C€ can be enhanced by the strain effect [38]. From these, the
present result may also be viewed as a possibility for this kind
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of TcSC enhancement revealed even for the (nondegenerate)
d-wave regime in the 2D square lattice Hubbard model.

IV. SUMMARY AND DISCUSSIONS

We have employed the FLEX+DMFT approach to study
the interplay of Pomeranchuk instability and superconductivity
in correlated electron systems. We have revealed that the
superconductivity with the distorted Fermi surface has the
symmetry of the gap function changed from the d wave to
the d + s wave, consistent with the previous studies [17,19].
We have found that the Fermi surface distortion can enhance
the superconducting 7.5 in the overdoped regime. We have
explained this enhancement in terms of the perturbation for
small distortions, and also with RPA in the weak-coupling
regime. The Pomeranchuk 7' is found to be much more
sensitive to Fermi surface warping and the position of the van
Hove filling than the superconducting transition temperature.

In the main parameter set for the present calculation, the
Pomeranchuk 7. dome appears in the overdoped region, while
experimentally the electronic nematicity is mainly observed
in the underdoped regime. If the nematicity in the cuprates
comes from the Pomeranchuk instability, then the present
result suggests that it should strongly depend on the component
materials that can have various values of second-neighbor (¢')
and third-neighbor (+”) hoppings: For instance, La,_, Sr,CuOy4
with smaller #',#” has the van Hove filling sitting around 20%
doping [28,39,40], which is close to the situation given in
Fig. 3(c), where the Pomeranchuk 7, dome appears around the
optimal to underdoped regimes.

If we comment on the method, FLEX+DMFT, despite
being an improvement over FLEX or DMFT, still overes-
timates the nonlocal self-energy effect. For more accurate
estimates, other methods (e.g., diagrammatic expansion in the
two-particle level as in DI" A [41] or dual fermion method [42])
will be needed. Also, we have assumed here translationally
invariant systems, while the study of the interplay between
superconductivity and charge instabilities involving finite
wave vectors will be another interesting future work.
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APPENDIX: EFFECT OF THE DMFT VERTEX I'pyper

According to the formulation in Ref. [23], we should
consider the local anomalous self-energy Aj,. coming from
the DMFT functional. Then the linearized Eliashberg equation
becomes

1
MM = - 3= D [Ver(k — k') + Tpmer(wn,m)]
"

x |G AWK, (A1)

where I'pmpr = 6 Ao /8 F is the functional derivative of the
local anomalous self-energy. While this term can be ignored for
studying pure d-wave pairing as in the previous paper [23], we
examine its effect on the d + s pairing here. We consider this
effect to be small, because the additional term is an extended
s-wave (nonlocal) pairing rather than the ordinary s wave, so
that a cancellation should occur in the momentum summation.
To check this along the argument in the main text, we can
calculate the lower bound for the maximal eigenvalue when
I'pmer is considered without calculating I'pyer directly. From
the eigenvector A, of Eq. (6), we extract the part of the gap
function that is not affected by I'pmpr as

2k |G Aax (k)

A'(k) = Apax(k) — A2
(k) (k) S 1GHP (A2)
Then a quantity,
V- Yiw AMRIGHR P Vesr(k — KNIGK)>A'(K)
2 AFBOIGR)>Ak) ’
(A3)

gives the lower bound for the maximal eigenvalue when I'pypr
is considered. We have actually confirmed that the difference
between A’ and A (without I'pypr) is very small, (A — A')/A <
0.01. Thus we can conclude the effect of the DMFT vertex
I'pmrr does not significantly change the result for the T,5¢
enhancement.
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