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Topological order has become a new paradigm to distinguish ground states of interacting many-body systems
without conventional long-range order. Here, we discuss possible extensions of this concept to density matrices
describing statistical ensembles. For a large class of quasithermal states, which can be realized as thermal states of
some quasilocal Hamiltonian, we generalize earlier definitions of density-matrix topology to generic many-body
systems with strong correlations. We point out that the robustness of topological order, defined as a pattern of
long-range entanglement, depends crucially on the perturbations under consideration. While it is intrinsically
protected against local perturbations of arbitrary strength in an infinite closed quantum system, purely local
perturbations can destroy topological order in open systems coupled to baths if the coupling is sufficiently strong.
We discuss our classification scheme using the finite-temperature quantum Hall states and point out that the
classical Hall effect can be understood as a finite-temperature topological phase.
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I. INTRODUCTION

Thermodynamics represents one of the most powerful
theories, allowing to use simple microscopic models for the
description of far more complex situations in reality. It relies on
the existence of universality, i.e., the fact that entire classes of
microscopic models give rise to the same macroscopic physical
behavior. In a hydrodynamic regime, these macroscopic prop-
erties can be described by a few order parameters. Therefore,
two microscopic states belong to the same universality class
only if they have the same order parameters. Based on this
idea, Ginzburg and Landau put forward a powerful theory
of universality [1] and showed that ordering of a system is
associated with the spontaneous breaking of a corresponding
symmetry. The resulting universality classes can be classified
by their symmetry properties alone.

The quantum Hall effect [2] provides an example for a
quantum state of matter which does not break any symmetry
at zero temperature. Nevertheless, it can be distinguished from
other symmetric states in this regime by its universal transport
properties, hinting at an underlying ordering principle. Indeed,
it was realized that the global structure of the wave function
in the quantum Hall effect has nontrivial topology [3–5].
This defines a new set of universality classes going beyond
Ginzburg’s and Landau’s paradigm [6].

The ground states of closed quantum systems can be
described by pure states. Interestingly, even if two wave
functions are indistinguishable by investigating all their local
order parameters, their global topology may not be the same.
For pure states without long-range correlations in closed
quantum systems, a unified theory [7] of such topological order
[8] has been developed during the past decades [3–5,7–11].
The key ingredient is the pattern of the nonlocal entanglement
in a wave function (see Fig. 1), which is completely robust
to local perturbations of arbitrary (but finite) strength in an
infinitely large system [7]. In essence, this means that two
states are equivalent if they can be transformed into one another
by arbitrary local basis changes. Because such basis changes
are described by local unitary (LU) operations, we refer to the
resulting scheme as the LU classification [7].

Mixed states, on the other hand, can be understood as
a statistical ensemble of pure states, and in principle each

of these can have long-range entanglement, i.e., topological
order. Therefore, a much richer topological structure should
be expected for density matrices than for pure states. Currently,
however, only little is known about this structure and the case
of correlated many-body systems is widely unexplored. One of
the main challenges is that, in general, the statistical ensembles
under consideration contain pure states which cannot be writ-
ten as ground states of a gapped local Hamiltonian and to which
the LU scheme thus cannot be straightforwardly applied [7].

For Gaussian states of fermions, an exhaustive classification
scheme has been suggested [12,13]. It can be understood by
writing Gaussian density matrices as thermal states of free
Hamiltonians. The latter have been grouped into a set of topo-
logically inequivalent universality classes [11]. This reduction
to noninteracting particles effectively solves the problem of
excited states with long-range correlations because all topo-
logical properties are derived directly from the ground state
of the free Hamiltonians. Other approaches for understanding
topological order in open quantum systems rely on geometric
phases and generalizations thereof [14–23], or on the closely
related concept of macroscopic (many-body) polarization [24].

In this paper, we introduce a generalization of the LU
classification scheme to density matrices describing correlated
many-body systems. First, we consider a large class of qua-
sithermal states ρ̂, for which ĥ = − log ρ̂ defines a (quasi)local
Hamiltonian. This allows a physical interpretation of such
states as true thermal states of ĥ. (As usual, ĥ is called local, if
there exists a finite length scale beyond which no couplings are
allowed; it is called quasilocal if all couplings decay at least
exponentially with distance beyond a similar length scale.)
Then, we generalize the LU classification scheme for arbitrary
density matrices. Here, the essence is to identify patterns of
the long-range entanglement in the statistical ensemble, which
is invariant under continuous changes of ρ̂. As illustrated in
Fig. 1, a density matrix is called topologically trivial if a local
basis exists in which, up to adiabatic variations, it describes a
statistical ensemble of product states (we will formalize below
what this means more precisely).

Aside from the theoretical interest in a classification scheme
of topological order of arbitrary mixed states, we are motivated
by the challenge of simulating physical systems with nontrivial
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FIG. 1. In a pure quantum state, topological order corresponds to
a pattern of long-range entanglement. For an ensemble of quantum
states, all from a certain subspace of the full Hilbert space, the notion
of topological order can be generalized by allowing arbitrary basis
changes Û within this restricted subspace. If this is sufficient to map
the entire ensemble on an ensemble of topologically trivial states, the
ensemble can be considered topologically trivial.

topology numerically. Understanding which patterns of the
nonlocal entanglement can exist is important for choosing
suitable variational states [25–27] which can capture the
topological properties of the density matrix.

In closed quantum systems, topological order defined as
a pattern of the long-range entanglement [8] is robust to
local manipulations of the state [7]. In this paper, we use
the generalized LU classification scheme to study how density
matrices are affected by such local perturbations. We argue
that one has to carefully distinguish between mixed states in
closed quantum systems and in more general driven-dissipative
systems coupled to baths. While robust intrinsic topological
order (which does not require any symmetries) can exist in the
former case, we argue that its robustness is absent in the latter
case, although weak local perturbations have no effect.

The LU classification scheme for density-matrix topolog-
ical order introduced here is a direct generalization of the
scheme by Diehl et al. [12,13]. In contrast to the earlier
approaches, our description is not limited to Gaussian density
matrices but can be applied to arbitrary correlated many-body
states. It is also related to the quantum circuit approach put
forward by Hastings [28], which represents an alternative way
of classifying the long-range entanglement in a density matrix.

The paper is organized as follows. In Sec. II, a brief
review of the LU classification scheme for pure states is given.
Section III is devoted to a discussion of thermal states in closed
quantum systems. In Sec. IV, we introduce our main result and
generalize the LU scheme to more general density matrices.
Two concrete examples of density matrices with topological
order, describing the Hall effect, are also presented. Open
quantum systems coupled to Markovian baths are discussed in
Sec. V. We close with a summary and by giving an outlook in
Sec. VI.

II. BRIEF REVIEW OF TOPOLOGICAL ORDER
OF PURE STATES

A. Geometric phases

Arguably, the integer quantum Hall system constitutes
the most famous topological phase of matter. Its intriguing
(adiabatic) transport properties can be directly related to a
geometric quantity defined by the Berry curvature [29–31] for

the Bloch wave functions uα(k) of the bands α occupied by
electrons:

F =
∑

α

εμν∂μ〈uα(k)|∂ν |uα(k)〉. (1)

The integral of the Berry curvature over the Brillouin zone
(BZ), defining the Chern number C, represents an integer-
quantized topological invariant [4]

C =
∫

BZ
d2kF ∈ Z. (2)

The Chern number (2) allows to distinguish different many-
body states, in this case Slater determinant wave functions
defined from single-particle orbitals of a set of occupied bands.
Therefore, the topological order [8] described by the Chern
number provides a universality principle: microscopic many-
body states which have the same Chern number belong to
the same topological universality class. Two comments are in
order, however. First, only states with short-range correlations
are classified in this way because the definition of the Chern
number requires a gapped state to begin with.1 Second, it
should be noted that additional topological quantum numbers
may exist which allow to distinguish further between different
states with the same Chern number.

B. Long-range entanglement

More recently, a refined theory of topological order has been
developed, which applies more generally and, unlike the Chern
number, is no longer based on geometry [7]. Instead, it relies
on the quantum mechanical entanglement of the many-body
wave function. Two gapped states described by wave functions
|ψ1〉 and |ψ2〉 in an infinitely large system are topologically
equivalent iff they can be transformed into one another by a
finite time evolution with a local Hamiltonian, a so-called LU
transformation [7]:

ÛL = T exp

(
−i

∫ 1

0
dτ H̃(τ )

)
. (3)

That is, |ψ1〉 � |ψ2〉 iff |ψ1〉 = ÛL|ψ2〉 for some local H̃(τ ).
Here, a state is called gapped, if it can be written as the ground
state of a gapped local Hamiltonian; an operator is called local
if it can be written as a sum of operators ĥj which are bounded
and act on a local Hilbert space

H̃ =
∑

j

ĥj . (4)

Nonlocal terms with a coupling strength decaying expo-
nentially with distance are acceptable, and in this case the
Hamiltonian H̃ is called quasilocal.

The effect of LU transformations can be understood as
a local change of the basis. Therefore, the LU scheme
distinguishes only between wave functions with different
nonlocal properties. States with conventional long-range order
of a local order parameter are not distinguished, however,

1If there is no gap, a different gauge choice can be used to obtain a
different Chern number, making the latter ill defined.
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because arbitrary local basis changes can easily destroy such
long-range order.

The topologically trivial class is defined by the set of states
which can be related to a product state by a LU transformation,
i.e., |ψ0〉 is trivial iff for some ÛL

ÛL|ψ0〉 =
⊗

j

|φj 〉, (5)

where |φj 〉 are states in a local Hilbert space Hj labeled by
j . Nontrivial states, on the other hand, cannot be written as
product states and this fact can be reflected, for example,
in their topological entanglement entropy [10]. This clarifies
why topological order represents a pattern of the long-range
entanglement in a quantum state [6].

A comment is in order why the LU scheme can only classify
gapped states. Ground states of gapped Hamiltonians fulfill an
area law for their entanglement [32]. As shown by Kitaev
and Preskill [10], this is essential to define the subleading
correction to the entanglement entropy which stems from the
nonlocal topological order. For low-energy states in a gapless
Hamiltonian, on the other hand, the entanglement entropy can
have subleading corrections which scale logarithmically with
the volume (see Ref. [27]). This makes it difficult to distinguish
between intrinsic topological entanglement and contributions
due to quantum fluctuations delocalized over the system.

The Chern number (2) is only one example of a topological
quantum number, which is invariant under LU transformations
and thus allows to easily distinguish states from different
universality classes. A direct relation between the LU classifi-
cation discussed above and the Chern number classification
of topological states was established in in Ref. [33]. The
authors of [33] have shown that Wannier functions can be
exponentially localized (i.e., the Slater determinant state of a
band insulator can be written as a product state) if and only
if the Chern number vanishes. The topological entanglement
entropy [10] is a second example for a topological invariant.
Note, however, that it is not equivalent to the Chern number:
for example, integer quantum Hall states have no topological
entanglement entropy but a nonvanishing Chern number.

From the definition of the LU scheme in Eq. (3), it follows
that topological order is robust against local perturbations of
arbitrary strength in an infinite system, not limited by the
energy gap above the ground state. For sufficiently large but
finite systems, the perturbations need to be finite and small
compared to the system size. In this case, the topological
order is only robust for a finite time which scales like the
system size. In this paper, we will always consider the ideal
limit of infinitely large systems, however. The robustness of
topological order will be illustrated using a simple toy model
below.

Remarkably, the LU classification scheme explicitly in-
cludes the possibility to study topological order far from equi-
librium because any local Hamiltonian H̃(τ ) can be considered
in the LU time evolution. This property distinguishes the LU
scheme from other approaches to define topological order,
based for example on geometric phases in adiabatic evolutions
of a quantum system [4].

On the downside, the relation between topological order,
defined in a rather abstract way as a pattern of the long-range

A B

LU

A B

FIG. 2. Illustration of topological order representing nonlocal
(long-range) entanglement in a wave function, shared by two
spatially separated parties (A and B) in this case. The long-range
entanglement (i.e., the topological order) is robust to arbitrary local
basis changes, corresponding to LU transformations generated by
local Hamiltonians ĤA,B .

entanglement [7,8], and directly observable experimental con-
sequences becomes more involved. While geometric phases
are directly related to an adiabatic response of the system, giv-
ing rise for example to the strictly quantized Hall current, the
long-range entanglement itself is challenging to detect. Note
that the robustness of topological order and the insensitivity of
local observables to the latter goes hand in hand. However, new
detection schemes which are sensitive to quantum-mechanical
entanglement have recently been developed [34–37], and we
expect that this will provide new ways of directly detecting
topological order in the future.

C. Robustness of topological order: Toy model

To explain the robustness of topological order in a closed
quantum system in the most fundamental way, we use the toy
model shown in Fig. 2. We consider the situation envisioned
by Einstein, Podolsky, and Rosen [38], where two spatially
separated parties A and B share a Bell state, e.g.,

|
+〉 = 1√
2

(|↑〉A|↓〉B + |↓〉A|↑〉B). (6)

The nonlocal entanglement can be characterized by the
entanglement entropy of either of the subsystems SA =
−trρ̂A log ρ̂A = log 2.

In the toy model, local unitary perturbations are described
by Hamiltonians ĤA,B acting separately on the two subsystems
A and B. They give rise to the following LU transformations:

Ûn
L = T exp

(
−i

∫ 1

0
dτ Ĥn(τ )

)
, n = A,B. (7)

By redefining the local bases, |↑̃〉n = Ûn
L|↑〉n and |↓̃〉n =

Ûn
L|↓〉n, it is easy to see that the nonlocal entanglement

entropy S̃A = log 2 of |ψ̃0〉 = Ûn
L|
+〉 is conserved under LU

transformations (7).
In a many-body system with topological order, as consid-

ered in Ref. [7], the situation is very similar. In this case,
the entanglement entropy S = αL − γ + O(1/L) between
two regions separated in space has a constant topological
contribution −γ and an extensive contribution αL proportional
to the area L of the cut separating the two subsystems [10]. In
our toy model, we have introduced two decoupled subsystems
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which we can think of as being in two separate locations. We
assume that they are sufficiently far apart from one another,
such that there are no couplings across a boundary separating
the two parts. This corresponds to the case α = 0, and all
entanglement entropy is nonlocal in this sense.

III. TOPOLOGICAL ORDER OF THERMAL STATES IN
CLOSED SYSTEMS

We start by discussing topological order of thermal states in
a closed quantum system. The analysis in this section provides
the basis for understanding the meaning of topological order
for more general mixed states. The density matrix of a thermal
state can be written as

ρ̂T = Z−1e−βĤ, (8)

where Ĥ is a local Hamiltonian, Z = tre−βĤ, and β = 1/kBT

where T is the temperature. In fact, we will use Eq. (8) as our
definition of when a state is called thermal.

In this section, we assume throughout that the system is
closed, i.e., the dynamics of the thermal state can be described
by some local (possibly time-dependent) Hamiltonian H̃(τ );
no couplings to external baths are allowed, which would lead
to nonunitary dynamics of the systems. Note that we do not
make any assumptions about how the thermal state (8) was
initially prepared, which in practice may require couplings
to external baths. We only make assumptions about the time
evolution afterwards, when the system is closed.

To define topological equivalence classes of thermal density
matrices in the spirit of the LU scheme, we have to identify a set
of manipulations which leave their global structure invariant.
A natural choice is to consider local basis changes, which can
be described by a time evolution with a local Hamiltonian [see
Eq. (3)].

In the following, we consider a closed quantum system
initially prepared in a thermal state ρ̂

(0)
T . Because there is no

coupling to external baths, the subsequent dynamics can be
described by a unitary time evolution, governed by a local
Hamiltonian H̃(τ ). This corresponds to the action of a LU
transformation on the density matrix

ρ̂T (t) = Û
†
L(t)ρ̂(0)

T ÛL(t), (9)

where Û
†
L(t) = T exp[−i

∫ t

0 H̃(τ )]. To compare different den-
sity matrices, and ask whether they have the same topological
order, we will distinguish between two scenarios now.

In the first case (globally thermal state), we consider a
situation where the entire quantum system is initially described
by the thermal state ρ̂

(0)
T , i.e., not only local but also global

observables can be calculated using Eq. (8). This situation is
expected, for example, when a system is initially coupled to
a large reservoir with which it thermalizes. In this case, we
can compare different density matrices describing the entire
system.

In the second case (locally thermal state) we assume that
only local observables can be described by the thermal state
(8), i.e., the reduced density matrices of local subsystems
are thermal. In this case, we will restrict our analysis to the
comparison of different reduced density matrices of the same
local subsystem. Note, however, that the size of the subsystems

 can be considered to be much larger than the correlation
length ξ , while still being much smaller than the system
size L:

ξ 	  	 L → ∞. (10)

This is the limit we will consider from now on.

A. Globally thermal states

By definition, the LU transformations ÛL(t) cannot change
the structure of the long-range entanglement in the globally
thermal state ρ̂

(0)
T . Therefore, the topological order of ρ̂T (t)

is the same for all times t . Physically this statement can
be understood from the fact that it takes an infinite amount
of time until long-range entanglement can build up across
the entire, infinitely large system. This is a manifestation of
the Lieb-Robinson bound for the spreading of entanglement
in the presence of purely local couplings [39].

A natural definition of topological order for globally
thermal quantum states can thus be given by applying the LU
classification scheme separately to every state in the ensemble:

Definition (global topological order). Two globally thermal
states ρ̂

(1)
T and ρ̂

(2)
T in a closed quantum system are topo-

logically equivalent ρ̂
(1)
T ∼ ρ̂

(2)
T iff they are related by LU

transformations

ρ̂
(2)
T = Û

†
Lρ̂

(1)
T ÛL. (11)

Because LU transformations define a mapping between dif-
ferent thermal states, and since the inverse Û

†
T also defines a

LU transformation, one easily confirms that Eq. (11) defines
an equivalence relation. For pure states, the classification is
equivalent to the LU scheme.

However, because unitary transformations leave the spec-
trum of the operator ρ̂T invariant, the definition in Eq. (11)
only allows to compare density matrices with a fixed global
spectrum. While this confirms our intuition that the topological
order of an ensemble of quantum states in a closed system can
be much richer than for pure states, it makes the definition of
little practical use.

Before proceeding to a less restrictive definition of topologi-
cal order for locally thermal states, we would like to emphasize
the strength of the definition above. In direct analogy to the
robustness of topological order in pure states derived from
the LU classification (see also Sec. II C), we can make a
similar statement for globally thermal density matrices: Global
topological order of thermal states in a closed quantum system
is robust to local perturbations of arbitrary strength in an
infinite system. We will discuss in Sec. V that the assumption
of a closed quantum system is crucial for this result to hold.

B. Locally thermal states

The time evolution in Eq. (9) cannot change the long-
range entanglement globally. Nevertheless, the structure of the
entanglement in a reduced density matrix of a local subsystem
can change completely after a finite time related to the size 

of the subsystem. In other words, the topological properties of
the system may change faster on shorter length scales than on
longer ones.
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FIG. 3. The spectrum of − log ρ̂ corresponding to a generic
density matrix ρ̂ can be divided into manifolds μ of states separated
by gaps �(μ)

ρ . Adiabatic deformations of the density matrix ρ̂ leave
this spectral structure invariant. Two density matrices with the
same spectral structure are defined to be topologically equivalent
if all manifolds are equivalent; two manifolds of states from
different density matrices are topologically equivalent if they can
be transformed into one another by a combination of arbitrary unitary
transformations Û within the manifold, and a LU transformation
acting on the entire Hilbert space H . We sketch an example where
the first manifold is long-range entangled and the second manifold is
equivalent to an ensemble of topologically trivial states.

To introduce a precise notion of topological order in a
subsystem, we will now define adiabatic deformations of a
density matrix which leads us to a more restrictive definition of
topological order than given above for globally thermal states.
As an important example, we discuss adiabatic time evolutions
of nonintegrable (i.e., thermalizing) quantum systems, and
argue that these lead to adiabatic deformations of the reduced
density matrix of a local subsystem.

1. Adiabatic changes of thermal density matrices

To make a definition of adiabatic changes (or continuous
deformations) of a locally or globally thermal density matrix
ρ̂T , let us consider the spectrum of the operator − log ρ̂T = βĤ
in a generic many-body system. In general, it consists of μ =
1, . . . ,M manifolds of states, separated by gaps �(μ)

ρ in the
spectrum (see Fig. 3). The number of states in each manifold,
and the number of manifolds separated by gaps define the
spectral structure of the density matrix. Note that the choice
of calculating the spectrum of − log ρ̂T is in principle arbitrary
because the spectral structure of other operators like ρ̂ or ρ̂2

is equivalent. It is motivated by the fact that − log ρ̂T yields
the Hamiltonian (up to the factor β) in the case of thermal
states, which connects our classification scheme directly to
approaches developed for pure eigenstates of the Hamiltonian.

When − log ρ̂T actually describes a Hamiltonian, adiabatic
changes of the latter have to be slow compared to the gaps
�(μ)

ρ /β. In this case, there can be no transitions between
different manifolds and the population within each manifold
is conserved, i.e., the spectral structure of the density matrix is
invariant. This physical consideration motivates the following
definition: A deformation of a density matrix ρ̂ → ρ̂ ′ is called
adiabatic, if it leaves the spectral structure of the density
matrix invariant. Note that within the different manifolds μ

in the spectrum, the density matrix can change and nontrivial
reorganizations may take place.

As in the case of closed quantum systems, we assume
that adiabatic changes of the state should not modify the
topological order of a thermal state describing the local
subsystem. This motivates the following definition:

Definition (local topological order). Two locally thermal
states ρ̂

(1)
T and ρ̂

(2)
T in a subsystem of a closed quantum

system are topologically equivalent, ρ̂(1)
T ∼ ρ̂

(2)
T , iff they can be

transformed into one another by adiabatic deformations. This
requires ρ̂

(1,2)
T to have the same spectral structure.

Note that we restricted ourselves to reduced density matri-
ces ρ̂

(1,2)
T of local subsystems here because, as discussed in the

previous section, in a closed quantum system the spectrum of
the global density matrix cannot change.

In the case when the local subsystem can be described
by a pure quantum state ρ̂T = |ψ〉〈ψ |, the definition of
local topological order coincides with the usual definition
for pure states in a closed system. It is equivalent to the LU
classification scheme [7], to which also the definition of global
topological order simplifies in this limit.

Unlike in the case of global topological order, local topo-
logical order is not robust to arbitrary local perturbations in an
infinite system. Because we consider only a local subsystem,
strong perturbations can entangle it with the surrounding parts
of the closed quantum system in a finite time. This leads to
thermalization of the local subsystem and may cause changes
of the spectral structure of the reduced density matrix.

On the other hand, local topological order remains robust
to arbitrary local perturbations which are weak compared to
the gaps �(μ)

ρ /β: they only lead to adiabatic changes of the
reduced density matrix and hence leave its spectral structure
invariant.

2. Adiabatic evolutions of reduced density matrices in
thermalizing systems

As an important example which illustrates the relevance
of adiabatic variations of density matrices, let us consider
a generic closed quantum system which is nonintegrable.
Further, we assume that the initial state is locally thermal.
Therefore, after a global time evolution described by H̃(τ ) as
in Eq. (9), local observables are expected to thermalize after
a finite time t ′ > t [40]. Hence, the reduced density matrix
of a local subsystem ρ̂ ′

T is still given by a thermal state at
time t ′, but using the new Hamiltonian Ĥ′ = H̃(t) and a new
temperature β ′; t ′ depends on the size of the subsystem ,
which is assumed to be finite [see Eq. (10)].

To compare different thermal states describing the same
local subsystem with different Hamiltonians Ĥ′, we have to
distinguish between two cases. When H̃(τ ) is varied suffi-
ciently slowly (adiabatically), the structure of the probability
distribution described by the reduced density matrix ρ̂ ′

T (t) does
not change, i.e., the spectral structure of ρ̂ ′

T (t) is left invariant.
If, on the other hand, H̃(τ ) is varied too quickly (quench), the
structure of the reduced density matrix can change completely.
In this case, the local topological order, as defined above, can
change.
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IV. LU CLASSIFICATION OF DENSITY-MATRIX
TOPOLOGICAL ORDER

Now, we introduce a more practical definition of local
topological order in a density matrix. To this end, we return to a
discussion of the effect of adiabatic changes of the Hamiltonian
H̃(τ ) on the reduced density matrix ρ̂T of a local subsystem.
This leads us to a definition of density-matrix topological order
in terms of LU transformations, which we suggest to use more
generally for a larger class of density matrices.

In this section, we start by generalizing our discussion to
quasithermal states. They will be defined as general density
matrices ρ̂ with a local logarithm ĥ = − log ρ̂ (exponentially
decaying terms in ĥ are acceptable, in that case ĥ is quasilocal).
Because such quasithermal density matrices can be interpreted
as thermal states of the effective local Hamiltonian ĥ, the
same considerations as in the case of true thermal states apply.
Note, however, that we can only think of ρ̂ as an effective
thermal state as long as log ρ̂ remains local; otherwise, a mean-
ingful distinction between local and nonlocal entanglement
is impossible, which, however, is indispensable for defining
topological order [8]. Later, we will generalize our definition
of topological order and apply the LU classification scheme to
arbitrary density matrices. In this section, we do not discuss
the robustness of density-matrix topological order, so there
is no need to distinguish between open and closed quantum
systems. Rather, the goal is to identify the topological structure
of a given density matrix in a physically meaningful way.

As discussed in the previous section, adiabatic changes
of a quasithermal density matrix leave its spectral structure
invariant. Within each manifold μ, arbitrary dynamics can
take place because of the absence of a gap. Their effect can
be described by a unitary matrix Ûμ acting between states
from the manifold μ. In addition, the local Hamiltonian H̃(τ )
can mix quantum states from different manifolds, without
changing their populations, however. This is described by
the action of a LU transformation. Here, we assume that
LU transformations act on a finite length scale L0 � ξ larger
than the correlation length, but smaller than the size  of the
subsystem under consideration, L0 	 .

Therefore, as summarized in Fig. 3, the effect of adiabatic
variations of the quasithermal density matrix ρ̂ is a combina-
tion of the unitaries Ûμ acting within the manifolds, and LU
transformations acting between them. These considerations
lead us to the following definition of topological order in a
quasithermal density matrix, which formalizes our definition
of topological order in a locally thermal state given in
Sec. III B.

Definition (LU topological order). Two states ρ̂
(1)
T and

ρ̂
(2)
T with the same spectral structure (manifolds μ =

1, . . . ,M) are topologically equivalent, ρ̂
(1)
T ∼ ρ̂

(2)
T , iff all

their manifolds are topologically equivalent. A manifold
of states 
 = {|ψn

μ〉}n=1,...,Nμ
is topologically equivalent to

� = {|φn
μ〉}n=1,...,Nμ

, iff it can be transformed into � by
a combination of a unitary transformation Uμ within the
manifold, and a local unitary transformation ÛL acting on
the entire Hilbert space:

∣∣ψn
μ

〉 = ÛL

∑
m

Un,m
μ

∣∣φm
μ

〉
. (12)

One easily confirms that our definition of density-matrix
topology represents an equivalence relation: ρ̂ ∼ ρ̂ follows
trivially by using the identity matrix Uμ = 1, ÛL = 1̂; for
ρ̂1 ∼ ρ̂2 it follows that ρ̂2 ∼ ρ̂1 by using U ′

μ = U †
μ and Û ′

L =
Û

†
L; and from ρ̂1 ∼ ρ̂2 (with Uμ and ÛL) and ρ̂2 ∼ ρ̂3 (with

U ′
μ and Û ′

L) it follows that ρ̂1 ∼ ρ̂3 by using U ′′
μ = U ′

μUμ and
Û ′′

L = Û ′
LÛL.

A density matrix is topologically trivial iff all manifolds
can be transformed into an ensemble of product states. This is
illustrated for an ensemble from a single manifold in Fig. 1.
If at least one ensemble is topologically nontrivial, the entire
density matrix contains a nontrivial structure of long-range
entanglement, which cannot be eliminated by basis changes
within the manifolds.

The definition of LU topological order provided above
can be applied more generally to density matrices which are
not quasithermal (i.e., log ρ̂ is nonlocal). In this case, our
arguments relying on adiabatic deformations of quasithermal
states do not apply, and Eq. (12) provides a formal definition
of density-matrix topological order.

Pure states correspond to density matrices with a particu-
larly simple spectral structure: the pure state has quasienergy
− log ρ = 0 whereas for all other states − log ρ = ∞. In this
case, Uμ = 1 and the density-matrix LU scheme reduces
to the original LU classification for pure states. Thermal
states ρ̂T = e−βĤ/Z at finite temperatures, 0 < β < ∞, all
have the same topological classification, determined by the
spectrum and eigenstates of Ĥ. The state at T = ∞ is always
topologically trivial.

A comment is in order about the nature of transitions
between density matrices with different topology. This requires
a change in the spectral structure, i.e., at least one of the
spectral gaps �(μ)

ρ = 0 has to close. Unlike in the case of
pure ground states in a closed quantum system, a topological
transition does not require the system to become critical, i.e.,
density-matrix topological order does not classify different
physical phases. This phenomenology has been previously
predicted for Gaussian systems by Diehl and co-workers
[12,13] (see also discussion below). Nevertheless the pattern
of long-range entanglement, i.e., the topological order in the
density matrix, changes at the topological transition.

We note that eigenstates of the density matrix for which the
value of − log ρ is very large may only play a subdominant
role in determining the properties of the ensemble. To take
this effect into account, a refined definition of LU density-
matrix topological order can be made where only the first few
manifolds are considered.

A. Example: Topological order at finite T

As a generic example, we discuss the density-matrix topo-
logical order of integer Chern insulators in two dimensions,
i.e., the lattice versions of the integer quantum Hall effect
[41,42]. As in Sec. II A, we consider fermions occupying Bloch
bands |uα(k)〉 which are separated by a band gap � > 0 from
the unoccupied states |uβ(k)〉, first without interactions. We
will discuss a generic class of topological transitions existing
in these models at finite temperatures, when the ratio of the
band gap to the bandwidth is tuned. Along these lines we
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(a) (b) energy

...

(c) energy (d)

...

FIG. 4. (a) As a toy model that possesses density-matrix topolog-
ical order, we discuss a two-band integer Chern insulator (N particles)
at finite temperatures. (b) The spectral structure of the thermal density
matrix − log ρ̂ = βĤ has gaps �(μ)

ρ at low energies if the combined
bandwidth of the two bands is smaller than the band gap 2J < �.
If on the other hand 2J > �, only the first gap �1

ρ remains open
(c). The many-body Chern numbers C of the resulting manifolds of
states are indicated. As a result, we obtain the phase diagram shown
in (d), where regions with different topological order are indicated by
different colors.

argue that the classical Hall effect can be understood as a
manifestation of density-matrix topological order.

1. Toy model: Two bands

We start from the Haldane model [42], which has two bands
|u±(k)〉 with energies ε±(k) and opposite Chern numbers C+ =
−C−. To simplify our analysis, we assume that the energies of
the two bands are related by ε−(k) = −ε+(k), and that they
can be characterized by the bandwidth J and the band gap �

[see Fig. 4(a)]. We consider the case of half-filling where the
lowest band is completely filled at zero temperature, realizing
a pure Chern insulator. To begin with, we assume that the
fermions are noninteracting.

Next, we construct the spectrum of the many-body Hamil-
tonian

Ĥ0 =
∑

k

∑
τ=±

ετ (k)ĉ†k,τ ĉk,τ , (13)

which determines the spectral structure − log ρ̂ = βĤ0 of
the thermal density matrix. As shown in Fig. 4(b), the first
manifold contains only the ground state which is separated by
a gap �(1)

ρ = β� from the next manifold of states. The second
manifold is constructed from particle-hole excitations and has
a width 2J . If

2J < �, (14)

there is a second gap �(2)
ρ = β(� − 2J ) to the next manifold.

This series continues, and for N → ∞ we obtain gaps
(assuming μ 	 N )

�(μ)
ρ = β[� − (μ − 1)2J ]. (15)

In the limit of a completely flat band [43], J = 0, there are
N + 1 largely degenerate manifolds of states (N is the number
of fermions).

Now, we derive the topological classification of the thermal
states ρ̂ = e−βĤ0/Z. To this end, we make use of the equiv-
alence of the Chern-number and LU classifications of Bloch
bands, which has been proven in Ref. [33]. At zero temperature
T = 0, the ground state is pure and can be characterized by
the many-body Chern number C = −1. Because the global
topology of the entire spectrum is always trivial, it follows that
the manifold consisting of all other states except the ground
states has total Chern number C = 1.

At finite temperature T > 0, the spectral structure of the
density matrix becomes more complex. For zero bandwidth
J = 0, the μ = 0′ . . . , N manifolds can be characterized by
their total Chern numbers, defined by integrating the Berry
curvature from all bands within the manifolds. From counting,
one obtains

Cμ = (−1 + 2μ/N )Nμ, Nμ =
(

N

μ

)2

, (16)

where Nμ is the number of states in the manifold labeled by μ.
Because a manifold with a total nonvanishing Chern number
cannot be transformed to an ensemble of product states, which
has a trivial Chern number, the resulting density matrix is
topologically nontrivial.

Upon variations of the bandwidth, the spectral structure of
the density matrix changes. Manifolds at large intermediate
energies begin to overlap and the topological structure of the
density matrix changes when the spectral gaps �(μ)

ρ close
one after the other [see Eq. (15)]. Let us discuss the most
extreme case when the bandwidth 2J > �. Now, only the
first and the last spectral gaps �(1)

ρ = �(N)
ρ = β� remain open

while the rest of the spectrum is a broad continuum [see
Fig. 4(c)]. Because the total Chern numbers of the lowest
and highest states are C = −1 and 1, the total Chern number
of all remaining states taken together vanishes, C = 0.

In Fig. 4(d), we show the resulting phase diagram of the
toy model. At T = 0 (T = ∞) the system is always in the
same topologically nontrivial (trivial) equivalence class. For
finite temperatures 0 < T < ∞ different topological classes
are realized, depending on the ratio of the bandwidth to the
band gap.

2. Relation to the classical Hall effect

As a closely related example, let us consider the (classical)
Hall effect of noninteracting electrons in a magnetic field and
at finite temperatures. Quantum mechanically, this situation
can be understood as a thermal state ρ̂T of electrons occupying
many different Landau levels, each of which has Chern number
C = 1. Because the Landau levels are completely flat, corre-
sponding to J = 0 in our toy model, the density matrix has
(LU) topological order at finite temperatures. The associated
classical Hall current, which is directly related to the Chern
number C = 1 of the Landau levels, can be understood as a
direct manifestation of this density-matrix topological order.

Theoretically, the temperature can be increased further,
until the electrons begin to be influenced by lattice effects in
the host crystal. In this regime, the same types of topological
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transitions as derived from our toy model are expected when
the finite width of the energy bands begins to play a role. In this
case, too, higher bands have negative Chern numbers [41] and
the topological order of manifolds in the many-body spectrum
becomes more complicated.

To study density-matrix topological order of the Hall effect
experimentally, we suggest to consider the Haldane model
[42] at finite temperature. This model has recently been
implemented using ultracold fermions in an optical lattice
[44]. By adding additional long-range tunnelings, we expect
that the bandwidth can be reduced [43] and the topological
transitions discussed above can be studied. Alternatively,
the Hofstadter-Hubbard model can be implemented at finite
temperatures and with additional interactions [45–49], which
we will discuss next.

3. Interacting fermions in the Hofstadter-Hubbard model

As a second example, we apply the LU classification
scheme to spinless thermal fermions in a Hofstadter-Hubbard
model [41,45–49]. The Hamiltonian consists of fermion
hopping between nearest-neighbor sites,

Ĥt = −t
∑
〈i,j〉

eiφi,j ĉ
†
i ĉj + H.c., (17)

with Peierls phases eiφi,j giving rise to α units of magnetic flux
per plaquette, and nearest-neighbor interactions

Ĥint = U
∑
〈i,j〉

ĉ
†
i ĉi ĉ

†
j ĉj . (18)

In addition, we add an attractive superlattice potential

Ĥpot = −g
∑

j

δjxmod4,0δjymod2,0ĉ
†
j ĉj , (19)

as shown in Fig. 5(a). We consider the case when α = 1
8 at the

same filling n = 1
8 .

For g = 0, this model is in an integer (quantum) Hall phase
and the ground state has Chern number C = 1. In Fig. 5(c),
we show the full spectrum of the Hamiltonian. At g = 0,
we furthermore find a second manifold of N2 = 9 states,
corresponding to magnetoexcitons. Because the first Landau
level has the same Chern number as the zeroth one, we expect
a total Chern number C = 9 of the second manifold. We
confirmed this in Fig. 5(b) where we calculate the many-body
Chern number of this manifold as the winding of the U (9)
Wilson loop [31]

C = 1

2π

∮ 2π

0
dθy∂θy

Im log det Ŵ (θy). (20)

We use twisted periodic boundary conditions [50] with twist
angles θx,y , and the U (N ) Wilson loop is defined as

Ŵ (θy) = P exp

[
−i

∫ 2π

0
dθxÂx(θx,θy)

]
. (21)

Here, P defines path ordering along θx and Am,n
x (θx,θy) =

〈ψm(θx,θy)|i∂θx
|ψn(θx,θy)〉 is the U (N ) non-Abelian Berry

connection; |ψm,n(θx,θy)〉 for m,n = 1, . . . ,N denote the
eigenstates of the Hamiltonian from the respective manifold,
at twist angles θx,y .

(c)
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FIG. 5. (a) We study the Hofstadter-Hubbard model in a superlat-
tice potential. Fermions with nearest-neighbor interactions (strength
U ) tunnel between sites of a square lattice (hopping t) in a magnetic
field (flux per plaquette α). On the sites indicated by solid black dots,
an attractive superlattice potential (strength g) is switched on, which
drives a topological phase transition in the ground state for gc ≈ 1.5t .
We used N = 3 particles, α = 1

8 , and U = t and set t = 1. (b) The
winding of the Wilson loops W (θy) for the first (red) and second
(blue) manifold of states at g = 0 is shown as a function of the twist
angle θy introduced in the periodic boundary conditions. (c) The full
spectrum of the thermal density matrix, Ĥ = −β log ρ̂, is shown. The
spectral structure changes around gc ≈ 1.5t (green dashed line).

When g is increased, the ground state becomes a trivial band
insulator, where all fermions are localized by the presence of
the superlattice potential in the limit g → ∞. By calculating
its Chern number using the U (1) Wilson loop, we checked that
the ground state is topologically trivial with C = 0.

The spectral structure of the density matrix changes
completely when g becomes large. In the limit g → ∞, we
expect μ = 1, . . . ,N manifolds above the ground state, each
with N − μ fermions localized in the superlattice potential.
This is confirmed by our exact numerical calculation in
Fig. 5(c). Because of interaction effects and due to the
additional superlattice potential, we obtain no additional
spectral structure within these manifolds. Since they include
all Landau levels in the g → ∞ limit, we expect that the total
Chern number of all manifolds is zero. We confirmed this by
an explicit numerical calculation of the winding number of
the U (63) Wilson loop at g = 20t , corresponding to the first
manifold above the ground state in this regime.

In conclusion, we have shown that the LU classification
scheme allows to identify the topological order in density
matrices describing correlated many-body systems. We in-
troduced the total many-body Chern number, defined as the
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winding of the U (Nμ) Wilson loop corresponding to a
manifold μ with Nμ states, as an efficient way to calculate
topological invariants characterizing many-body density ma-
trices.

B. Relation to the scheme of Diehl et al.

To derive the LU classification (12), we expressed the
density matrix as a thermal one, with an effective Hamiltonian
ĥ = − log ρ̂. This analogy was exploited before by Diehl
et al. [12,13] who studied mixed Gaussian states of (free)
fermions ĉn. Essentially they showed for Gaussian states that
the Hamiltonian ĥ is local, unless the system becomes critical
and develops long-range correlations. Then, by distinguishing
different symmetry classes of the free Hamiltonian ĥ =∑

n,m hn,mĉ
†
nĉm as in Ref. [11], they introduced topological

quantum numbers which classify the bands of the single-
particle Hamiltonian hn,m. These are invariant under LU
transformations (11) and give rise to topologically distinct
classes of mixed states.

Formally, the key difference between the scheme of Diehl
et al. and the LU classification put forward here lies in the
way how the topological properties of the Hamiltonian ĥ

are extracted, and to which Hamiltonians ĥ the classification
schemes can be applied. In Refs. [12,13] the Hamiltonian ĥ

needs to be quadratic in boson or fermion operators, and the
single-particle Hamiltonian hm,n needs to be known explicitly.
This allows to apply single-particle band theory directly. In
the LU scheme, in contrast, ĥ can be an arbitrary many-
body Hamiltonian, and we also do not require translational
invariance of the system. To apply the LU scheme, the spectral
structure of the density matrix needs to be constructed and the
topology of every manifold of states is obtained, as described
in Fig. 3. Note that this procedure includes states from the
entire spectrum, including high energies.

Furthermore, Diehl et al. [12,13] showed for Gaussian
states that transitions between topologically distinct phases
can take place when the system becomes critical and ĥ is
nonlocal (“the damping gap closes” [13]), or when one of
the gaps in the spectrum of hm,n (or, equivalently of ρ̂) closes
(“the purity gap closes” [13]). The same phenomenology
is derived from the LU scheme: a closing of the purity gap
corresponds to a closing of a gap �(μ)

ρ = 0, where the spectral
structure of ρ̂ can change. When − log ρ̂ becomes nonlocal,
the density matrix is no longer quasithermal and adiabatic
deformations can induce nonlocal changes of the state. As
a result, the topological order in the sense of a pattern of
long-range entanglement can change.

We conclude that the LU classification (11) introduced
in this paper should be understood as a generalization of
the scheme developed by Diehl et al. for Gaussian states to
quasithermal mixed states describing interacting many-body
systems with strong correlations.

V. DRIVEN-DISSIPATIVE SYSTEMS

So far we considered only mixed states in closed
systems and with unitary perturbations. We have shown that
while global topological order is robust to arbitrary local
perturbations, the topology of local thermal states is only

robust under weak (adiabatic) perturbations of the system.
The reason was that a local subsystem can become entangled
and thermalize with the surrounding parts of the closed
system. Now, we extend our discussion to more extreme
situations, where the system is open and coupled to local
baths. We are interested, in particular, in the steady state of a
(driven-dissipative) open quantum system, and its dynamics
when local perturbations are applied.

We consider open quantum systems coupled to Markovian
baths, such that the dynamics of the density matrix can be
described by a Lindblad master equation [51]

∂tρ(t) = L(t)ρ(t). (22)

Here, L(t) denotes the Liouville superoperator involving only
local processes and acting on the vectorized density matrix
ρ(t). We want to study the robustness of nonequilibrium steady
states ρ

0
(for which L0ρ0

= 0) to arbitrary local perturbations

in L(t).
First, we define more precisely the class of gapped nonequi-

librium steady states (NESS) which we want to consider. We
call a NESS ρ

0
gapped if it is the unique steady state of a local

Liouvillian L with a finite damping gap �L; the Liouvillian

is called local iff all its Lindblad generators L̂n are bounded
local operators. This is equivalent to the notion of gapped
ground states |ψ0〉 of local Hamiltonians in the context of
closed quantum systems.

A. LU classification scheme

We will assume that ĥ = − log ρ̂ is a (quasi)local operator,
which (by analogy with the result for Gaussian states [13]) we
expect to be true when ρ̂ has no long-range correlations. In this
case, we can readily apply the LU classification scheme from
Sec. IV to classify different topological equivalence classes of
NESSs.

Let us first discuss the effect of weak local perturbations
of the Liouvillian L. When their characteristic strength g is
smaller than the damping gap, g 	 �L, the change of the
NESS is perturbative in ε = g/�L 	 1. Such perturbative
modifications of the density matrix ρ

0
→ ρ

0
+ δρ cannot

close the gaps in − log ρ̂ defining its spectral structure when ε

is sufficiently small. We thus conclude that the density-matrix
LU topological order of a NESS of a local Liouvillian L is
robust to arbitrary but weak local perturbations of L.

When the (local) perturbations of L are strong, however,
arbitrary changes of the NESS are possible on finite time
scales. Consider, for example, a situation where L is suddenly
quenched to L′ with a NESS in a different phase. After a finite
time determined by the damping gap of L′, i.e., τ ∼ 1/�L′ ,
the new NESS is reached. It can have completely different
properties from the initial NESS we started from. Therefore,
LU topological order is not robust to local perturbations of
arbitrary strength in an infinite system.

B. Robustness of topological order: Toy model

Next, we return to the simple toy model, which we used
in the beginning (Sec. II C) to illustrate the robustness of
topological order of pure states in closed quantum systems.
Now, we consider a situation when Alice and Bob share a state
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LCP

A B

A B

FIG. 6. Topological order is not robust when couplings to local
baths are considered. They can destroy the long-range entanglement
in the system, which is the hallmark of topological order, in a finite
time. This destruction of nonlocal entanglement between two parties
A and B by the action of local Lindblad generators L̂A,B is illustrated
in the figure.

ρ̂ describing a statistical mixture. We can use the eigenbasis
of the density matrix and write ρ̂ = ∑

n ρn|n〉〈n|.
When only unitary perturbations acting separately in the

systems A and B exist, the entanglement entropies SA(n) and
SB(n) of each of the eigenstates |n〉 are conserved by LU
transformations [see Eq. (7)]. Therefore, SA,B(n) constitute
good quantum numbers characterizing ρ̂, which are robust to
arbitrary local unitary perturbations. This conserved nonlocal
entanglement is the essence of the LU classification scheme
for globally thermal states.

If we consider a driven-dissipative quantum system, how-
ever, where Alice and Bob both have couplings to local baths,
the situation changes. The dynamics of their shared quantum
state ρ̂(t) is nonunitary, described by a Lindblad master
equation if the reservoirs are Markovian. Such nonunitary
time evolution no longer conserves the entanglement entropies
SA,B(n) between the two subsystems, even if the coupling to
the baths is purely local. This is illustrated in Fig. 6.

For concreteness, let us imagine a situation where Alice
and Bob initially share the Bell state ρ̂0 = |
+〉〈
+| and
Alice, say, measures the spin. This requires coupling to a
measurement apparatus, i.e., a local reservoir, on her side.
After the projective measurement, the state of the system is a
statistical mixture

ρ̂ ′ = 1
2 (|↑〉A〈↑| ⊗ |↓〉B〈↓| + |↓〉A〈↓| ⊗ |↑〉B〈↑|). (23)

The entanglement entropies S(n) of the eigenstates of ρ̂ ′ both
vanish, SA(n) = 0.

This example illustrates that topological order, which is a
pattern of long-range entanglement [6] of a quantum state, is
not robust to local nonunitary perturbations in general. We
formalize this in the Appendix.

VI. SUMMARY AND OUTLOOK

In this paper, we leveraged the LU classification scheme
[7] to define topological order of mixed states in generic
interacting quantum systems. We generalized previous results
for Gaussian states of free fermions obtained by Diehl et al.

[12,13] and identified possible topological structures in density
matrices of correlated many-body systems. According to our
scheme, two density matrices are topologically equivalent if (i)
they share the same spectral structure, and (ii) the ensembles
of states defined by gaps in the spectrum of the density matrix
are topologically equivalent; this is the case when two such
ensembles can be transformed into each other by a local unitary
transformation and a combination of arbitrary unitary transfor-
mations within the ensembles. We argued that this definition
of topological order defines equivalence classes of density ma-
trices which can be adiabatically transformed into each other.

Physically, the LU classification scheme distinguishes
density matrices with different patterns of the long-range
entanglement, which is robust to adiabatic deformations of
the system. Identifying properties of mixed states which are
robust to local perturbations is an important goal for quantum
information applications [52]. It is relevant, in particular,
for addressing the question as to how robust topologically
protected qubits are against couplings to the environment,
which are unavoidable in practice. Here, we made a step
in this direction by identifying such robust structures of
density matrices, although the development of a topologically
protected qubit in an open system is still an unsolved problem.

We have shown that the robustness of topological order
in a density matrix depends crucially on the nature of the
system under consideration. We pointed out that for thermal
states describing global properties of a closed quantum
system, density-matrix topological order is robust to local
perturbations of arbitrary strength in an infinite system. If
only local observables are described by a reduced density
matrix, however, topological order is only robust to weak
local perturbations. Similarly, density-matrix topological order
in nonequilibrium steady states of driven-dissipative open
quantum systems is only robust to local perturbations which
are weak compared to the damping gap.

Our work formalizes the meaning of topological order
in density matrices describing generic quantum many-body
systems, not restricted to quadratic Hamiltonians or Gaussian
states. This paves the way for future investigations of the
dynamics of topological order. In particular, it allows to study
local subsystems of a larger system, and investigate how
topological order develops (or decays) as a function of time
on different length scales.

A key future challenge will be the direct detection of
the topological order in a density matrix. As a first step,
studying the reduced density matrix of a small subsystem is
interesting, in particular when the global state of the system
changes in time. In this case, we note that one option is to
use quantum state tomography to map out the entire density
matrix of the small subsystem and extract its topological order
afterwards.
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APPENDIX: LOCAL, COMPLETELY POSITIVE MAPS

In this appendix we discuss the analog of LU transfor-
mations for driven-dissipative open quantum systems. We
will show that all gapped NESSs of local Liouvillians are
equivalent according to this definition.

A natural generalization of LU transformations to open
systems is to include nonunitary perturbations in the finite time
evolution. We introduce local completely positive (LCP) maps
as follows: A LCP map is defined by a finite-time evolution
of an open quantum system according to a local Liouvillian
L̃(τ ),

LCP = T exp

(
−

∫ 1

0
dτ L̃(τ )

)
. (A1)

Two NESSs ρ
1,2

can be considered equivalent under LCP
transformations iff a LCP map exists such that

ρ
2

= LCP ρ
1
. (A2)

However, because the NESS of a gapped Liouvillian is reached
from any initial state after a finite time evolution, any two
NESSs are equivalent under LCPs: consider two gapped
NESSs with Lj ρj

= 0. To show that ρ
1

= LCP1ρ2
, up to

exponentially small corrections, the following LCP can be
used:

LCP1 = exp(−t1L1), t1 � 1/�L1 . (A3)

The finite damping gap �L1 > 0 allows to prepare ρ
1

in a finite
time. The same argument can be used to show that LCP2ρ1

.
As a result, the analog of LU transformations for open

quantum systems, i.e., LCP maps, only define one trivial
equivalence class. Thus, we cannot expect to find as robust
topological structures in NESSs as in pure states describing
closed quantum systems.
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