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Phase diagram of electronic systems with quadratic Fermi nodes in 2 < d < 4:
2 + ε expansion, 4 − ε expansion, and functional renormalization group

Lukas Janssen1 and Igor F. Herbut2
1Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany

2Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
(Received 18 November 2016; published 1 February 2017)

Several materials in the regime of strong spin-orbit interaction such as HgTe, the pyrochlore iridate Pr2Ir2O7,
and the half-Heusler compound LaPtBi, as well as various systems related to these three prototype materials,
are believed to host a quadratic band touching point at the Fermi level. Recently, it has been proposed that such
a three-dimensional gapless state is unstable to a Mott-insulating ground state at low temperatures when the
number of band touching points N at the Fermi level is smaller than a certain critical number Nc. We further
substantiate and quantify this scenario by various approaches. Using ε expansion near two spatial dimensions,
we show that Nc = 64/(25ε2) + O(1/ε) and demonstrate that the instability for N < Nc is towards a nematic
ground state that can be understood as if the system were under (dynamically generated) uniaxial strain. We also
propose a truncation of the functional renormalization group equations in the dynamical bosonization scheme
which we show to agree to one-loop order with the results from ε expansion both near two as well as near
four dimensions, and which smoothly interpolates between these two perturbatively accessible limits for general
2 < d < 4. Directly in d = 3 we therewith find Nc = 1.86, and thus again above the physical N = 1. All these
results are consistent with the prediction that the interacting ground state of pure, unstrained HgTe, and possibly
also Pr2Ir2O7, is a strong topological insulator with a dynamically generated gap—a topological Mott insulator.
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I. INTRODUCTION

Solid matter is commonly classified by electrical transport
behavior. In a sufficiently pure metal (or semimetal) the
conductivity diverges when temperature T goes to zero, or
witnesses a superconducting transition at finite (though usually
small) T . On the other hand, we call a material an insulator (or
semiconductor) if its conductivity vanishes when the system is
cooled down. Scanning tunneling spectroscopy measurements
correlate with this behavior: In a metal the density of states
near the Fermi level is finite, while there is a finite gap in the
spectrum of an insulator (or semiconductor).

Lately, a new class of materials that do not quite fit into
this scheme has moved into the focus of attention: Systems
in which the Fermi surface shrinks to a few isolated points in
the Brillouin zone live right on the edge between metals and
semiconductors. In the purest graphene samples, for instance,
the conductivity at charge neutrality decreases with decreasing
temperature (as in a semiconductor), but approaches at the low-
est temperatures a finite value on the order of the conductance
quantum e2/h [1]. In three dimensions, materials with strong
spin-orbit coupling can host pairs of Weyl nodes, which may
be thought of as three-dimensional (3D) analogs of graphene’s
linear band crossing points, albeit with nontrivial topology [2].
Although in 3D the density of states as function of energy ε

vanishes as D(ε) ∼ ε2 near the linear band crossing point,
the low-temperature conductivity is large as long as disorder
is weak—an unusual (semi)metallic state [3]. Such a Weyl
semimetal state has recently been identified experimentally,
together with its characteristic Fermi-arc surface states, in
TaAs [4,5].

In this work we focus on three-dimensional systems with
quadratic Fermi nodes, as realized, for instance, in α-Sn
or HgTe. These materials feature band inversion due to
strong spin-orbit coupling, ensuring that the degeneracy at

the quadratic band touching point (QBT) is protected by the
crystal’s cubic symmetry, and in the undoped situation the
Fermi energy is right at the touching point [6]. Furthermore,
no other states turn out to cross the Fermi level away from this
point in these materials. The systems may thus be viewed as 3D
analogs of bilayer graphene, however, with just a single QBT
that is located at the center � of the Brillouin zone. Such low-
energy band structure has also been measured in the pyrochlore
iridate Pr2Ir2O7, therewith making it a strongly correlated
analog of HgTe [7]. Recently, a quadratic Fermi node in 3D
has also been identified in the related compound Nd2Ir2O7 [8].
In these materials, it is believed that the main physics is
predominantly driven by the iridium electronic structure, while
the interaction with the local rare-earth moments playing a
role only at very low temperatures [9]. Another family of
materials which may host a QBT at the Fermi level are given by
ternary half-Heusler compounds, with LaPtBi as a prototype
system [10–12].

In the noninteracting case, the conductivity in a Fermi
system with QBT vanishes at low temperatures with a power
law [13] (in contrast to the Weyl semimetal), and the system
hence should properly be regarded as “gapless semiconduc-
tor” [6]. However, as the density of states has the square-root
form as function of energy ε, D(ε) ∼ √

ε, the long-range
Coulomb interaction is only marginally screened and the
low-temperature behavior of these systems might decisively
depend on the role played by the interactions. In fact, using
an ε expansion around the upper critical spatial dimension of
d = 4, as well as in the limit of large number N of QBTs at the
Fermi level, Abrikosov and Beneslavskii [14,15] found a scale-
invariant interacting ground state with unusual power laws in
various thermodynamic observables—a 3D non-Fermi liquid
(NFL) state. This scenario has recently been reviewed and put
forward as an explanation for the anomalous low-temperature
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behavior measured in Pr2Ir2O7 [13]. In an ensuing series of
papers [16–18], we have argued, on the other hand, that the
expansion around the upper critical dimension, and also the
strict large-N limit itself, might possibly even qualitatively
fail to describe the ground-state behavior in the physical
situation for d = 3 and N = 1. From a renormalization-group
(RG) perspective, the chief culprit is the negligence of those
short-range components of the Coulomb interaction, which
one is tempted to discard as irrelevant at large N or small
ε = 4 − d, which however may become important away from
these limits. By employing a simple one-loop analysis for fixed
N = 1, we found the Abrikosov-Beneslavskii scale-invariant
ground state to be unstable in d = 3, indicated by a runaway
flow of short-range interactions [16]. The situation is similar
to (2 + 1)-dimensional relativistic quantum electrodynamics
(QED2+1), which has a scale-invariant (“conformal”) ground
state at large number of fermions N , but is believed to suffer
from a quantum phase transition towards a symmetry-broken
ground state if N drops below a critical number Nc [19–24].
In a calculation that resembles the inaugural work in QED2+1,
we showed that an analogous critical fermion number Nc

exists in the nonrelativistic system with QBT in three spatial
dimensions, by deriving and exploiting the nonperturbative
solution of the Dyson-Schwinger equations within the 1/N

expansion [18].
In the present work we add to the picture the results of

various complementary approaches to the problem. We first
demonstrate that above and near two spatial dimensions, the
instability of the NFL state occurs at a large value of N .
This allows us to prove the existence of a phase boundary
in the d-N plane, and to calculate its shape to leading order
in ε = d − 2. Within this limit, we also show that the ground
state for N < Nc is a nematic insulator with spontaneously
broken rotational symmetry and full, but anisotropic gap.
We furthermore revisit the expansion near the upper critical
dimension with control parameter ε = 4 − d by formulating
the corresponding Gross-Neveu-Yukawa theory, and establish
the existence of another, quantum critical fixed point (QCP),
alongside the Abrikosov-Beneslavskii NFL fixed point. The
existence of this QCP turns out to be responsible for the
nematic instability. We demonstrate that both fixed points,
and their nontrivial interplay as a function of N , can also be
assessed in a simple perturbative expansion in fixed dimension
d = 3, thereby extending our previous results [16] to general
fermion number N . If N is lowered from infinity towards the
physical N = 1, the QCP and the NFL fixed point approach
each other in coupling space and eventually merge at some
critical Nc. For N < Nc they disappear into the complex-
coupling plane, leaving behind the runaway flow of short-range
couplings. Computing the precise value for Nc in d = 3 beyond
simple approximations is, of course, a challenging task. In
order to gain yet another estimate we employ the functional
renormalization group (FRG) in the so-called dynamical
bosonization scheme. Although this scheme a priori lacks
an obvious control parameter, we discover a posteriori that
our FRG predictions coincide precisely with the results from
the ε expansions both near two and near four dimensions.
For general 2 < d < 4, it smoothly interpolates between these
two perturbatively accessible limits [25]. This leads to a phase
diagram in the d-N plane with the insulating nematic state at
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FIG. 1. Phase diagram of electronic systems with N quadratic
Fermi nodes in 2 < d < 4 spatial dimensions from 2 + ε expansion
(Sec. III), perturbative RG in fixed dimension (Sec. IV), and
functional RG (Sec. VI). For comparison: 1/N -expansion result
from Ref. [18]. For visualization purposes, the vertical axis has
been rescaled by N/(1 + N ). For N < Nc the system is unstable
towards a nematic ground state with full, but anisotropic gap. For the
systems with the band structure equivalent to that of HgTe, this state
corresponds to a strong topological Mott insulator (STMI). For N >

Nc the systems remains semimetallic, but exhibits unusual exponents
in various observables—a non-Fermi liquid state (NFL) [13]. All
these results place the physical situation for N = 1 and d = 3 (dotted
lines) on the Mott insulating side of the transition.

small N and/or near d = 2, and the scale-invariant non-Fermi
liquid state at large N and/or near d = 4; see Fig. 1. In
full agreement with our previous results, we find all these
approaches to place the physical situation for d = 3 and N = 1
on the insulating side of the transition. The resulting nematic
ground state can be understood as if the material were under,
in this case “dynamically generated,” uniaxial strain. In the
systems with the band structure equivalent to that of HgTe
or α-Sn, it corresponds to a strong topological insulator with
dynamically generated band gap—a strong topological Mott
insulator.

The paper is organized as follows: We describe our model
in Sec. II. In Secs. III and IV we derive and discuss the
(2 + ε)-expansion results and the results from perturbative
expansion in fixed d = 3. The properties of the nematic QCP
are examined within an effective Gross-Neveu-Yukawa theory
in Sec. V, within the expansion around the upper critical
dimension d = 4. Section VI discusses our FRG approach
to the problem. Concluding remarks are given in Sec. VII.

II. MODEL

Consider binary II-VI compounds crystallizing in the zinc
blende structure, such as CdTe and HgTe. CdTe is a semicon-
ductor with a direct band gap of εg � 1.6 eV at the center
� of the Brillouin zone [6]. In the nonrelativistic limit the
valence-band upper edge at crystal momentum �k = 0 consists
of six degenerate p states with orbital angular momentum
quantum number � = 1. Spin-orbit coupling partially lifts this
degeneracy, giving rise to an energetically lower-lying doublet
with total angular momentum j = 1/2 (“p1/2” or “�7” states)
and an energetically higher-lying quadruplet with total angular
momentum j = 3/2 (“p3/2” or “�8” states). The p3/2 states at
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FIG. 2. Schematic electron band structure of II-VI zinc blende
crystals near � point. In the finite-gap semiconductor CdTe (a) the
spin-orbit coupling splits the three p-type bands into a lower-lying
j = 1/2 band (p1/2) and an energetically higher multiplet with total
angular momentum j = 3/2 (p3/2). In the solid solution Cd1−xHgxTe
spin-orbit coupling increases for increasing x. The p3/2 multiplet
is therewith shifted towards the conduction s band, culminating in
a linear band crossing at x ≈ 0.84 (b). For even larger spin-orbit
coupling the s band exchanges roles with one of the p3/2 bands (“band
inversion”), and the band gap consequently remains identically zero,
with the conduction and valence bands touching quadratically at
the Fermi level. This is the situation in the gapless semiconductor
HgTe (c).

�k = 0 form the upper edge of the heavy- and light-hole bands.
They are shifted by the spin-orbit interaction towards the
energetically lowest conduction-band states which originate
from the s states of the next shell (“s1/2” or “�6” states), thereby
reducing the band gap; see Fig. 2(a). Experimentally, the size
of the band gap can be tuned by gradually substituting Cd
atoms by Hg atoms in the solid solution Cd1−xHgxTe. While
Cd and Hg have the same valence shell electron configuration,
the main difference is the influence of the relativistic effects
due to the higher nuclear charge of Hg. Upon increasing x

in Cd1−xHgxTe the gap between the s1/2 electron band and
the p3/2 light- and heavy-hole bands shrinks; simultaneously,
the effective masses of the electron band and the light-hole
band decrease with increasing x. Eventually, at x ≈ 0.84, the
bands touch and the dispersion of both the electron band and
the light-hole band becomes linear. By contrast, the effective
mass of the heavy-hole band remains finite; see Fig. 2(b). For
x > 0.84 the s1/2 electron states drop below the p3/2 multiplet
and the curvature of the s-type band turns negative: it converts
into a valence band. At the same time the curvature of the
p3/2 light-hole band becomes positive, thus now representing
a conduction band; see Fig. 2(c). The band structure is inverted
and exhibits nontrivial topology with protected Dirac surface
states [26]. The system, however, is not (yet) a topological
insulator: The degeneracy of the bulk p3/2 states at the � point
is protected by the crystal symmetry. The band gap is therefore
identically zero as long as the (discrete) rotational symmetry is
not explicitly (e.g., by external strain) or spontaneously (e.g.,
by interactions) broken. Moreover, in the undoped system,
the Fermi level is locked right at the QBT. The touching
point is fourfold degenerate and consists of states with total
angular momentum quantum number j = 3/2. Consequently,
the effective low-energy Hamiltonian can be written in terms of
4 × 4 angular momentum representation matrices Jx,Jy,Jz ∈
C4×4. Taking the crystal’s cubic symmetry into account, the

only possible invariants that can be constructed out of these
matrices and which are quadratic in momentum �k are given by

14×4, (�k · �J )2, k2
xJ

2
x + k2

yJ
2
y + k2

z J
2
z . (1)

In the above, the first two invariants respect the full spherical
O(3) symmetry, while the third one breaks the rotational
symmetry down to the discrete cubic C4 × C4 symmetry. Ex-
perimentally, the degree of nonsphericity is usually relatively
small [6]. In fact, the full spherical symmetry is expected to
be emergent at low energies [15].

A low-energy model for the Fermi systems with quadratic
band touching is therefore given by the spherically symmetric
Luttinger Hamiltonian [27]

H0(�k) = 1

2m0

[(
α1 + 5

2
α2

)
p214×4 − 2α2(�k · �J )2

]
, (2)

with electron mass m0 and phenomenological parameters α1

and α2. The spectrum of H0 is

ε�k = (α1 ± 2α2)
�k2

2m0
, (3)

and describes a QBT at �k = 0 if |α1| < 2|α2|. The parameters
α1 and α2 can be extracted experimentally by fitting, for
instance, magnetoabsorbtion measurements to the predictions
of the Luttinger model, yielding

α1 � 12.8, α2 � 8.4, (4)

at temperature T = 4.4 K [28]. Such values correspond to
effective masses of the electron and hole bands near the �

point as me � m0
30 and mh � m0

4 . The electron effective mass
is significantly smaller than the hole effective mass. This
is because at the band inversion point the former vanishes
while the latter remains finite, see Fig. 2(b). Nevertheless,
at low temperatures and in pure samples, it is theoretically
expected that electron and hole effective masses renormalize
and eventually approach a common value towards T → 0—
emergent particle-hole symmetry [13,29]. Plasma reflection
measurements in p-doped HgTe indeed show a systematic
decrease of the hole effective mass with decreasing charge
carrier concentration, and this has been attributed to the
effect of electron-electron interactions [30]. To the best of our
knowledge, however, emergent particle-hole symmetry has not
yet been experimentally verified so far.

To simplify the problem, we here assume both particle-hole
and spherical symmetry from the outset. The intricate effects
of symmetry-breaking terms will be discussed in a separate
paper [31]. We thus set α1 ≡ 0 and absorb 2α2 in the definition
of the effective mass m ≡ m0/(2α2). The spectrum hence
simply becomes ε�k = ±k2/(2m). The Luttinger Hamiltonian
can then be written in a form that allows its immediate
generalization to arbitrary dimension d [17]:

H0(�k) =
( d

2 +1)(d−1)∑
a=1

da(�k)γa, (5)

with Hermitian Dirac matrices γa , a = 1, . . . ,(d/2 + 1)(d −
1), satisfying the Clifford algebra {γa,γb} = 2δab. They have
dimension dγ = 2
(d+2)(d−1)/4� with 
 · � symbolizing the floor
function. The functions da(�k) denote real hyperspherical
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harmonics for the angular momentum of two on the (d − 1)
sphere:

da(�k) =
√

d

2(d − 1)

d∑
i,j=1

ki	a,ij kj , (6)

with the generalized real Gell-Mann matrices 	a as con-
structed in Ref. [17]. In d = 3, they read

	1 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, 	2 =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠,

	3 =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, 	4 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠,

	5 = 1√
3

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠. (7)

From this we obtain, for d = 3, d1 + id2 =
√

3
2 k2e2iϕ sin2 ϑ ,

d3 + id4 =
√

3
2 k2eiϕ sin 2ϑ , and d5 = 1

2k2(3 cos2 ϑ − 1), with
ϑ and ϕ as spherical angles in �k space. The five Dirac matrices
γ1, . . . ,γ5 in this case have dimension dγ = 4. This form of the
three-dimensional Luttinger Hamiltonian was previously put
forward in the context of finite-gap semiconductors with zinc
blende structure in Ref. [32]. Setting d = 2, we recover the
known two-dimensional QBT Hamiltonian [33–35]. For d =
4, Eqs. (5) and (6) become equivalent to the four-dimensional
QBT Hamiltonian proposed by Abrikosov [15].

In the continuum limit, the noninteracting Lagrangian that
describes the electronic system with N independent quadratic
nodes at the Fermi level is then given by

L0 = ψ
†
i [∂τ + H0(−i∇)]ψi, i = 1, . . . ,N. (8)

Each Grassmann field ψ1, . . . ,ψN has dγ components. τ

denotes imaginary time. In Eq. (8) and from now on, where un-
ambiguous, we assume summation convention over repeated
indices. The physical situation that describes HgTe and α-Sn,
as well as the pyrochlore iridates and half-Heusler compounds,
is given by N = 1. For generality and computational clarity,
however, we allow an arbitrary number N of fermion species,
i.e., Fermi nodes.

As the Coulomb interaction is only partially screened [18],
its effects are crucial. We take them into account by introducing
a scalar field a which mediates the long-range interaction via

La = 1
2 (∇a)2 + ieaψ

†
i ψi . (9)

Here e is the effective charge, into which all numerical con-
stants of the system have been absorbed, e2 = 2me2

0/(4πh̄2κ).
e0 is the electron charge and κ denotes the “background”
dielectric constant arising from energy bands away from the
Fermi level [36]. Integrating out the Coulomb field a in the
partition function would generate a nonlocal density-density
interaction ∝1/k2 in Fourier space, which is ∝1/rd−2 in real
space, and thus of the usual form in d = 3.

e e

e e

e e

e e

FIG. 3. Feynman diagrams that generate local four-fermion in-
teractions from the long-range Coulomb interactions at one-loop
order. Straight (wiggly) inner lines correspond to fermion (Coulomb)
propagators.

III. 2 + ε EXPANSION

In a RG treatment, new effective interactions which are not
present microscopically may be generated by loop corrections.
Most of them are power-counting irrelevant and can be
safely neglected. Local four-fermion interactions, however,
are marginal in d = 2 and could thus become relevant at an
interacting fixed point in d = 2 + ε. We therefore have to take
them into account as well. In fact, the diagrams shown in Fig. 3
generate a local four-fermion term of the form ∝e4(ψ†

i γaψi)2

from the long-range interaction. Once generated, this term
generates further contact interactions. At one-loop order, we
find that all possible four-fermion interactions can be written
as a linear combination of the following three basis terms:

Lψ = g1(ψ†
i ψi)

2 + g2(ψ†
i γaψi)

2 + g3(ψ†
i γabψi)

2, (10)

with γab = i
2 [γa,γb] and couplings gα , α = 1,2,3.

The four-fermion couplings have mass dimension [gα] =
2 − d, suggesting that an ε expansion around d = 2 may be
feasible. The charge e, however, has dimension [e2] = 4 − d

and is thus strongly RG relevant towards the infrared. In order
to gain full control over the perturbative expansion, we have
to take the limit of both small ε and large N . In this double-
expansion limit proper fixed points become weakly coupled in
all interaction channels. Fortunately, as we shall see below, the
fixed-point annihilation we are after automatically happens at
large N as long as ε is small. The scenario is therefore under
perturbative control with a single control parameter ε = d − 2.

The RG flow in the full theory space, given by

L = L0 + La + Lψ, (11)

is obtained by integrating out a thin momentum shell from the
ultraviolet cutoff 	 to 	/b with b > 1. At one-loop order, we
find the flow equations

de2

d ln b
= (2 + z − d − ηa)e2, (12)

dg1

d ln b
= (z − d)g1 − (e2 + 2g1)g2 − 24g2

3, (13)

dg2

d ln b
= (z − d)g2 + 4(e2 + 2g1)g2

5
− (e2 + 2g1)2

20

− 37 + 16N

5
g2

2 + 112

5
g2g3 − 136

5
g2

3, (14)

dg3

d ln b
= (z − d)g3 − 1

5
(e2 + 2g1)g3 + g2

2 − 6g2g3

+ 4(11 − 4N )

5
g2

3, (15)
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with the anomalous dimension of the Coulomb field ηa and
dynamical exponent z as

ηa = Ne2, z = 2 − 4

15
e2. (16)

In order to arrive at Eqs. (12)–(16) we have rescaled the
couplings as e2	d+ηa−z−2Sd/(2π )d �→ e2 and gα	d−zSd/

(2π )d �→ gα with Sd as the surface area of the (d − 1)
hypersphere in d dimensions. We have performed the angular
integration directly in d = 3, and have employed the 4 × 4
representation of the Dirac matrices γa , with a = 1, . . . ,5.
The dimension of the couplings e2 and gα is counted in general
dimension d. These flow equations generalize those previously
published [16] to general fermion number N > 1. To see that
they coincide with the latter in the limit N ↘ 1 we note that in
this limit one of the terms in Eq. (10) can be eliminated in favor
of the other two by making use of the Fierz identity [16,37]

5∑
a,b=1

(ψ†γabψ)2 = −10(ψ†ψ)2 − 2
5∑

a=1

(ψ†γaψ)2. (17)

For N = 1 we can thus rewrite Eq. (10) as

LN=1
ψ = (g1 − 10g3)(ψ†ψ)2 + (g2 − 2g3)

5∑
a=1

(ψ†γaψ)2,

(18)

which is the form employed in Ref. [16]. If we now shift the
couplings in Eqs. (13)–(15) appropriately,

g1 − 10g3 �→ g1, g2 − 2g3 �→ g2, (19)

we find that the flow equations for the shifted couplings g1 and
g2 indeed become independent of the third coupling g3 when
N = 1:

dg1

d ln b
= (z − d)g1 − (e2 + 2g1)g2 − 10g2

2, (20)

dg2

d ln b
= (z − d)g2 − (e2 + 2g1)2

20
+ 4(e2 + 2g1)g2

5

− 63

5
g2

2 . (21)

Moreover, Eqs. (20) and (21) in conjunction with Eqs. (12)
and (16) for N = 1 are evidently equivalent to the flow
equations published in Ref. [16]. Our results for general
N are therefore continuously connected to the N = 1 case,
the presence of a third independent coupling for N > 1
notwithstanding.

Some comments on the structure of the flow equations are
in order:

(1) If we start the RG for small (but finite) initial charge
e2 > 0 and vanishing contact interactions gα = 0 (as relevant
for HgTe and α-Sn), e2 will flow to larger values towards
the infrared until the anomalous dimension ηa becomes of the
order 2 + z − d when the flow of e2 slows down and eventually
stops for ηa = 2 + z − d [see Eq. (12)].

(2) The beta function for the charge e2 has an especially
simple form [38]; in particular, there is no vertex correction
∝e2gα in (de2)/(d ln b). That this happens here at one loop
is not a coincidence, but basically a consequence of the Ward

identity associated to the gauge symmetry ψ �→ eieλ(τ )ψ , a �→
a − ∂τλ. We therefore expect the form of Eq. (12) [but not
Eq. (16)] to hold at arbitrary loop order. In this way we obtain
an exact relation for the Coulomb anomalous dimension ηa at
a putative charged fixed point,

ηa = 2 + z − d, (22)

with z being the (presumably nontrivial) dynamical exponent
at the fixed point. This resembles the analogous situation in the
Abelian Higgs model and in QED2+1, where similar exact rela-
tions for the gauge anomalous dimensions are known [23,39].
The form of the (marginally) screened Coulomb potential at a
charged fixed point is therefore V (r) ∝ 1/rz exactly. This is
in agreement with the large-N result of Ref. [18].

(3) Using the exact relation (22) together with the one-loop
formulas for ηa and z in Eq. (16) we obtain the fixed-point
value for the charge: e2

∗ = (4 − d)/N + O(1/N2), which is
under perturbative control in the limit of large N . In this limit
we find

ηa = (4 − d)

[
1 − 4

15N
+ O(1/N2)

]
, (23)

z = 2 − 4(4 − d)

15N
+ O(1/N2), (24)

at a putative charged fixed point, in agreement with Ref. [13].
In the following we describe the fixed-point structure in the

double-expansion limit 1/N � ε � 1 with ε = d − 2. It will
prove convenient to consider a finite and fixed, but arbitrary,
product n ≡ Nε2. In the limit of small ε with fixed n, the
flow equations decouple and no contact interactions ∝g1 and
∝g3 will be generated by the charge, if absent initially. The
coupling g2, however, will be generated according to the flow
equation

dg2

d ln b
= −εg2 − 16g2

2

5
− ne4

20ε2
, (25)

where we have rescaled gα �→ gα/N for convenience. The
charge sector has a stable fixed point at e2

∗ = 2ε2/n + O(ε4).
With this value for the charge, the above flow equation has
fixed points at

g±
2∗ = −5ε

32

(
1 ±

√
1 − 64/25

n

)
+ O(ε2). (26)

They are located at real values of the coupling if and only if
n � 64/25, i.e.,

N � Nc(ε) = 64

25ε2
+ O(1/ε), (27)

to the leading order in ε = d − 2.
Higher-order loop corrections indeed contribute only to

subleading order O(1/ε) to Nc, as anticipated in the above
equation. This can be argued as follows: To two-loop order,
there are three classes of diagrams that contribute to the beta
function of g2 as ∝g3

2, ∝e2g2
2, and ∝e6, respectively. Examples

for each class are given in Fig. 4. Without explicitly evaluating
the diagrams, we can deduce their leading-order scaling with
N by counting the number of closed fermion loops in each
diagram. The examples in Fig. 4 are representatives of those
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e e e

e e e

e e

g2 g2

g2

∝ N2g3
2 ∝ Ne2g2

2 ∝ e6

g2 g2

FIG. 4. Two-loop Feynman diagrams contributing to the flow of
g2 at large N . From the number of closed fermion loops we can
deduce the scaling of these terms with N to leading order in 1/N ,
which after the rescaling [as below Eq. (25)] yield the contributions
as displayed in Eq. (28).

diagrams that contribute to the leading order for large N . From
this we obtain the form of the two-loop corrections to the flow
of g2 within our double-expansion limit as [after the rescaling
as below Eq. (25)]

dg2

d ln b

∣∣∣∣
two loop

= c1g
3
2 + c2e

2g2
2 + c3ne6

ε2
, (28)

with fixed coefficients c1,2,3. These terms evidently contribute
only to order O(ε3) to the flow of g2 when g2 = O(ε) and
e2 = O(ε), while the tree-level and one-loop terms given in
Eq. (25) are of order O(ε2). We expect a similar hierarchy
to hold also beyond the two-loop order. Consequently, the
one-loop value for Nc as displayed in Eq. (27) is the correct
leading-order value for small ε.

The presence (absence) of the two charged fixed points for
N above (below) Nc has striking implications for the structure
of the RG flow. Consider first N > Nc: The fixed point at
g−

2∗ is fully infrared attractive, representing a scale-invariant
phase with gapless fermions but nontrivial exponents as given
in Eqs. (23) and (24). The weakly interacting regime with
e2 � 1 and gα = 0 indeed lies in this fixed point’s basin of
attraction. The fixed point represents a conformal phase and
is nothing but the Abrikosov-Beneslavskii non-Fermi-liquid
fixed point previously found at large N [13,15]. The fixed
point at g+

2∗, on the other hand, is a quantum critical point with
precisely one RG relevant direction. It was found earlier within
a simple perturbative RG analysis for N = 1 [16]. The strongly
interacting regime for g2 < g+

2∗ < 0 is no longer in the basin of
attraction of the Abrikosov-Beneslavskii NFL fixed point, but
exhibits an instability towards divergent coupling g2 → −∞
at finite RG scale. The transition is governed by the QCP at
g+

2∗. In order to elucidate the nature of the instability and the
corresponding infrared phase we add to the Lagrangian various
types of infinitesimally small symmetry-breaking bilinears

L� = �nemψ
†
i γ5ψi + �scψ

†
i γ45ψ

∗
i + �∗

scψ
T
i γ45ψi

+ �chψ
†
i ψi + �magψ

†
i γ45ψi, (29)

where γ45 ≡ iγ4γ5. The nematic order parameter �nem breaks
the rotational symmetry and can be understood as origi-
nating from uniaxial strain in z direction [13,40]. Finite
�nem opens a full, but anisotropic gap in the spectrum and
converts the semimetal into a three-dimensional topological
insulator [26,41]. In the related uncharged system with the
long-range Coulomb interaction neglected, nematic quantum

criticality was previously extensively investigated by devising
and exploiting the corresponding Gross-Neveu-Yukawa theory
in d = 4 − ε dimensions [17]. The superconducting s-wave
order parameter �sc, on the other hand, breaks U (1) charge
symmetry. A corresponding superconducting quantum critical
point for strong attractive contact interactions was also recently
investigated [29]. �ch induces a finite charge density, and
represents a finite chemical potential. Finally, �mag breaks time
reversal. The corresponding magnetic quantum critical point,
which in the pyrochlore iridates governs a transition towards
an all-in-all-out antiferromagnet, was previously studied at
large N [42]. To the leading order in the present (ε,1/N )
double expansion with fixed n = Nε2 the flow of these “mass
parameters” reads

d�nem

d ln b
=

(
z − 16g2

5
+ 2e2

5

)
�nem + O

(
�2

α

)
, (30)

d�sc

d ln b
=

(
z − e2

2

)
�sc + O

(
�2

α

)
, (31)

d�ch

d ln b
= z �ch + O

(
�2

α

)
, (32)

d�mag

d ln b
=

(
z + e2

5

)
�mag + O

(
�2

α

)
, (33)

where we have applied the same rescalings as below Eqs. (16)
and (25). Near the QCP (e2

∗,g
+
2∗) the free energy density has a

scaling form [43]

f (δg,�α) = |δg|(d+z)/y F±
α

(
�α

|δg|xα/y

)
, (34)

where δg ≡ g2 − g2∗ defines the distance to criticality and F±
α

is a scaling function. The exponents xα and y are given by the
linearized flow of �α and δg,

d�α

d ln b
= xα�α + O(�2),

dδg

d ln b
= y δg + O(δg2), (35)

with α ∈ {nem,sc,ch,mag}. The corresponding susceptibilities
χα therefore scale as

χα = − ∂2f

∂�2
α

∝ |δg|−γα with γα = 2xα − d − z

y
(36)

near the QCP. χα diverges if γα > 0. From Eqs. (26) and (30)–
(33) we find for n > 64/25 to the leading order

γnem/ν = ε

√
1 − 64/25

n
+ O(ε2), (37)

γsc/ν = −ε + O(ε2), (38)

γch/ν = −ε + O(ε2), (39)

γmag/ν = −ε + O(ε2), (40)

with the correlation-length exponent ν = 1/y =
1/[ε

√
1 − 64/(25n)]. At the QCP, there is therefore a

unique ordering tendency that corresponds to a positive
susceptibility exponent: the nematic instability with order
parameter 〈ψ†

i γ5ψi〉 and exponent γnem = 1 + O(ε). Note
also that �ch (chemical potential) couples to the conserved
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g2

dg2
d ln b e2∗

N > Nc

N = Nc

N < Nc
g+
2∗ g−

2∗

NFLQCP

FIG. 5. Schematic beta function for g2 with e2 at its infrared
fixed-point value e2

∗. Blue arrows on horizontal axis indicate RG flow
towards infrared. For N ↘ Nc the QCP and the NFL fixed point
merge and annihilate for N < Nc, leaving behind the runaway flow
towards negative g2.

charge in the theory and as such did not receive perturbative
corrections in Eq. (32).

Consider now N near Nc: The two fixed points at g+
2∗ and g−

2∗
then approach each other and eventually merge at N ↘ Nc.
Below Nc, they disappear into the complex-coupling plane.
The beta function (dg2)/(d ln b) [Eq. (25)] for e2 = e2

∗ is then
always negative, see Fig. 5.

The flow for N < Nc is therefore towards divergent
negative g2 for all ultraviolet starting values for g2, i.e., even in
the weakly interacting limit with g2|UV ≈ 0, relevant for HgTe
and α-Sn.

When the fixed-point annihilation takes place, the
correlation-length exponent ν at the QCP diverges, which is
consistent with the infinite-order transition at Nc, see below.
The susceptibility exponent γnem, on the other hand, remains
finite. Note that the structure of the flow diagram changes
only locally near g+

2∗ = g−
2∗ when N crosses Nc, with the

behavior away from this merging point remaining unchanged.
By continuity, we therefore expect that the nature of the
infrared phase for N near and below Nc with small g2|UV ≈ 0
is the same as the infrared phase for N near and above Nc with
g2|UV < g+

2∗.
This way we conclude that the electronic systems with

quadratic Fermi nodes and (even weak) long-range Coulomb
interaction is unstable towards the nematic ordering when N <

Nc, with Nc = 64/(25ε2) + O(1/ε) to the leading order in the
2 + ε expansion. This is in agreement with the previous result
for N = 1 [16]. Naive extrapolation of the critical fermion
number to the physical dimension d = 3 leads to Nc(d = 3) �
2.56, and thus above the physical case for N = 1. The low-N
system appears as if under, in this case dynamically generated,
uniaxial strain, and represents a topological Mott insulator.

Near and below Nc, the RG flow effectively slows down
at the merging point. Upon integrating the flow equations we
find that the RG “time” b it takes the flow of g2 to diverge is

b0 = exp

⎛
⎝ π/ε√

Nc
N

− 1
+ O[(Nc/N − 1)0]

⎞
⎠. (41)

For N � Nc, the dynamically generated gap � is hence
exponentially suppressed,

� ∝ b−z
0 . (42)

The above scaling law has an essential singularity at N ↗
Nc, much like the thermal Berezinskii-Kosterlitz-Thouless
transition [43], and quite typical for the present type of
conformal phase transition [44]. The result is consistent
with the form previously derived for the 3D QBT system
by solving the Dyson-Schwinger equations directly in d =
3 within the 1/N expansion [18]. Here this infinite-order
transition as function of N follows as a direct consequence
of the fixed-point annihilation mechanism. Analogous scaling
laws for N -dependent transitions are known to hold also
for conformal phase transitions in QED3 [19,23,24], the
Abelian Higgs model [39,43,45], and many-flavor quantum
chromodynamics [46], and in all of these cases are due to an
analogous mechanism.

IV. PERTURBATIVE RG IN FIXED d = 3

Now that the existence of a finite critical fermion number
Nc in d > 2 is established within a controlled 2 + ε expansion,
a natural next step is to predict its value in the physical case
for d = 3. This is a difficult strong-coupling problem. Similar
to classical critical phenomena, a reliable theoretical estimate
can only be obtained by employing and comparing various
different approaches to the problem. While the large-N theory
in fixed d = 3 has been devised recently [18], another simple
approach is the perturbative renormalization group in fixed
dimension. This is the subject of the present section, thereby
generalizing the N = 1 results of Ref. [16] to N > 1. Yet
another approach to the problem will be employed in Sec. VI.

The downside of this perturbative approach is the lack of
a small control parameter, as the fixed-point annihilation will
take place in a strong-coupling regime. Ignoring this reserva-
tion, we may evaluate the flow equations (12)–(16) directly in
d = 3. Although the structure of the flow considerably gains
in complexity as the different short-range couplings no longer
decouple near Nc, the physical conclusions drawn within the
2 + ε expansion entirely carry over to the present approach:

Small initial charge e2 flows to strong coupling towards the
infrared with the fixed-point value being e2

∗ = 15/(15N + 4).
At a putative charged fixed point the dynamical exponent is
z = 2 − 4/(15N + 4) and the Coulomb anomalous dimension
is ηa = 15N/(15N + 4), in agreement with the exact relation,
Eq. (22). For N > Nc with

Nc = 2.095 (43)

we find an RG attractive NFL fixed point located at real
couplings. In the large-N limit it is located at

NFL: (g1∗,g2∗,g3∗) =
(

0, − 1

20N2
,0

)
+ O(1/N3). (44)

It governs the infrared behavior of the weakly interacting
theory with ultraviolet values gα|UV ≈ 0, α = 1,2,3, and
e2|UV > 0. There is also a QCP with one RG relevant direction.
It is located at strong repulsive short-range coupling g2∗ < 0
and weak |g1,3∗| � |g2∗|. In the large-N limit its fixed-point
values read

QCP: (g1∗,g2∗,g3∗) =
(

0, − 5

16N
,0

)
+ O(1/N2). (45)
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For N ↘ Nc the QCP and the NFL fixed point merge at

QCP/NFL: (g1∗,g2∗,g3∗) � (9.4, − 23.7,0.5) × 10−3,

(46)

and annihilate for N < Nc, leaving behind the runaway flow
towards divergent short-range coupling. In contrast to the
situation in d = 2 + ε, the interaction channels now do not
decouple, and all short-range couplings gα therefore diverge
at the same RG time. Their ratio, however, remains finite,
and we find that |g1/g2| and |g3/g2| always remains small.
Such hierarchy is usually taken as an indication that the
dominant ordering tendency is the one that corresponds to
the strongest short-range coupling [47]. In the present system,
strong g2 < 0 leads to nematic order [17]. This suggests to
associate the runaway flow with a nematic instability, as done
in our previous work [16]. The argument can be solidified by
comparing susceptibilities in analogy to the analysis in the
preceding section. We determine the flow of infinitesimally
small “mass parameters” �α given in Eq. (29),

d�nem

d ln b
=

(
z + 2(e2 + 2g1)

5
− 4(4N + 3)g2

5

)
�nem, (47)

d�sc

d ln b
=

(
z − e2 + 2g1

2
− 5g2

)
�sc, (48)

d�ch

d ln b
= z�ch, (49)

d�mag

d ln b
=

(
z + e2 + 2g1

5
+ 2g2

5

)
�mag, (50)

where we have neglected for simplicity terms ∝g3�α as those
should give only small corrections of the order of |g3∗/g2∗| �
2% to the flow of the �α’s near the QCP, see Eqs. (45) and (46).
In the large-N limit, we find the susceptibility exponents at the
QCP as

γnem/ν = 1 + O(1/N ), (51)

γsc/ν = −1 + O(1/N ), (52)

γch/ν = −1 + O(1/N ), (53)

γmag/ν = −1 + O(1/N ), (54)

where ν = 1 + O(1/N ). The QCP therefore governs the con-
tinuous transition towards the nematic state, in agreement with
the previous mean-field result [16]. At the QCP-NFL merging
point (g1∗,g2∗,e2

∗) for N ↘ Nc the expansion is no longer under
perturbative control, and the one-loop approximation does not
necessarily lead to a unique positive susceptibility exponent.
We find

γnem/ν � −0.33, (55)

γsc/ν � −1.32, (56)

γch/ν � −1.11, (57)

γmag/ν � −0.95. (58)

Although the one-loop result for γnem/ν is no longer positive,
it still represents the largest value among the four examined
here. This leads us to conclude that the runaway flow we find
for N < Nc signals the onset of the nematic instability, in
agreement with our results within the 2 + ε expansion.

V. 4 − ε EXPANSION

It has previously been shown that the properties of the
Abrikosov-Beneslavskii NFL fixed point can be assessed by
employing an ε expansion in d = 4 − ε [13,15,16]. Here we
demonstrate that the charged QCP that we found within the
2 + ε expansion (Sec. III) as well as the perturbative RG in
fixed d = 3 (Sec. IV) can similarly be examined in a controlled
way within a 4 − ε expansion. To this end, we now focus on
the nematic channel ∝g2 in Lψ [Eq. (10)] alone, which in both
above approaches turned out to be the most dominant ordering
tendency.

The quartic fermionic interaction can be traded for the cor-
responding Yukawa-type interaction by means of a Hubbard-
Stratonovich transformation [17],

Lψφ = hφaψ
†
i γaψi, (59)

where φa , a = 1, . . . ,(d/2 + 1)(d − 1), represents the tenso-
rial [48] nematic order-parameter field and h is the Yukawa
coupling. RG loop corrections will generate a kinetic term for
φ as well as bosonic self-interactions. We thus include these
terms from the outset,

Lφ = 1
2φa

(−c∂2
τ − ∇2 + r

)
φa + λφaφbφc Tr(	a	b	c),

(60)
where 	a are the generalized real Gell-Mann matrices
introduced in Eq. (6). The form of the cubic interaction
parametrized by the coupling λ is dictated by the rotational
symmetry of the model [17]. The flow of the parameter c

in front of the frequency term in Lφ is in general nontrivial
and cannot be fixed to unity by simple rescaling. The boson
mass r can be understood as a tuning parameter for the
nematic transition. The transition is signaled by a nonzero
vacuum expectation value 〈φa〉 �= 0, which is equivalent to
〈ψ†

i γaψi〉 �= 0 for some a. The energetically favored direction
of φ ≡ (φa) leads to a uniaxial nematic state with a full gap
in the fermionic spectrum [17]. In d = 3, it is given within
our conventions by 〈hφ5〉 > 0 and 〈φ1〉, . . . ,〈φ4〉 = 0 [modulo
O(3) rotations]. The resulting Gross-Neveu-Yukawa-type field
theory is defined by the Lagrangian

L = L0 + La + Lψφ + Lφ. (61)

The theory is equivalent to the four-fermion model introduced
in Eq. (11) upon identifying

g2 ≡ −h2

2r
(62)

and setting g1 ≡ 0 and g3 ≡ 0 in the four-fermion theory, as
well as setting λ ≡ 0 and taking the limit of r → ∞ with fixed
h2/r in the order-parameter theory.

The cubic coupling λ, the Yukawa coupling h, and the
charge e2 have engineering dimensions

[h2] = [λ2] = [e2] = 4 − d. (63)
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They thus become simultaneously relevant below four dimen-
sions. This suggests that the theory’s critical behavior can be
assessed within an ε expansion with small control parameter
ε = 4 − d. Higher-order interactions are perturbatively irrele-
vant near d = 4 and have for this reason been omitted in L. The
analogous Gross-Neveu-Yukawa theory with the long-range
Coulomb interaction neglected was investigated previously in
Ref. [17]. Here we generalize these results to the case in which
e2 > 0.

Integrating the momentum shell from 	 to 	/b leads to the
flow equations

de2

d ln b
= (z + 2 − d − ηa)e2, (64)

dc

d ln b
= (2 − 2z − ηφ)c + 2N

5
h2 + 21

4

√
cλ2

(1 + r)5/2
, (65)

dr

d ln b
= (2 − ηφ)r − 8N

5
h2 − 21

λ2

√
c(1 + r)3/2

, (66)

dh2

d ln b
= (6 − d − z − ηφ − 2ηψ )h2 + 12

5

h4

1 + r
+ 4

5
h2e2,

(67)

dλ2

d ln b
= (6 − d − z − 3ηφ)λ2 − 27

2

λ4

√
c(1 + r)5/2

− 2
√

3N

35
λh3, (68)

with the anomalous dimensions and the dynamical exponent
as

ηa = Ne2, (69)

ηφ = 44

35
Nh2 + 21

4

λ2

√
c(1 + r)5/2

, (70)

ηψ = 4

5

h2

(1 + r)3
+ 4

15
e2, (71)

z = 2 − ηψ. (72)

Here we have again employed the usual rescalings

e2	d+ηa−z−2Sd/(2π )d �→ e2, (73)

h2	d+z+ηφ+2ηψ−6Sd/(2π )d �→ h2, (74)

λ2	d+z+3ηφ−6Sd/(2π )d �→ λ2, (75)

and c	2z+ηφ−2 �→ c, 	ηφ−2r �→ r . Again we have kept the
general counting of dimensions in the couplings but have
performed the angular integrations and the traces over spinor
indices directly in d = 3. N consequently counts the number
of four-component fermions ψi . Similarly, we have fixed
the number of components of the nematic order-parameter
field φ = (φa) to be five in all dimensions, a = 1, . . . ,5. An
alternative prescription to analytically continue the theory to
noninteger dimension, in which the number of components
of (φa) depends on d leads to equivalent critical behavior, at
least when e2 = 0 and to the leading order in ε = 4 − d [17].

We have also assumed c to be small at the putative fixed
point, c∗ = O(εα) with α � 1, which turns out to be consistent
with the fixed-point values derived below. Equations (65)–(70)
and (72) reduce to the flow equations listed in [17] when setting
e2 ≡ 0. Equations (64), (71), (69), and (72) also agree with
Ref. [13] when setting h ≡ 0.

Similarly to the uncharged case [17], the QCP can readily
be identified by introducing the new variables

u = λ

c
1/4
∗

, v = h

c
1/12
∗

, (76)

with c∗ chosen such that it satisfies the fixed-point equation
for c,

0 = (2 − 2z)c∗ +
(

2

5
− 44

35
c∗

)
Nc1/6

∗ v2. (77)

We therewith find an interacting charged fixed point to the
leading order in ε = 4 − d at

e2
∗ = 15ε

15N + 4
+ O(ε2), (78)

c∗ = O(ε6/5), (79)

r∗ = 6(5N + 4)ε

15N + 4
+ O(ε6/5), (80)

u2
∗ = 4(5N + 4)ε

7(15N + 4)
+ O(ε6/5), (81)

v2
∗ = 3

√
16(5N + 4)(600N + 515)2

21N

ε

15N + 4
+ O(ε6/5),

(82)

with u∗ and v∗ having opposite signs. Note that the two fixed
points at u∗ > 0, v∗ < 0 and u∗ < 0, v∗ > 0 are physically
equivalent as the partition function is invariant under simulta-
neous sign change of both h and λ. As can be easily checked,
the above fixed point is infrared attractive in the (e2,c,h,λ)
coupling space. The only relevant direction is given by the
tuning parameter r , and the fixed point hence indeed represents
a QCP. The corresponding critical exponents read

z = 2 − 4ε

15N + 4
+ O(ε6/5), (83)

ηa = 15Nε

15N + 4
+ O(ε6/5), (84)

ηψ = 4ε

15N + 4
+ O(ε6/5), (85)

ηφ = (15N + 12)ε

15N + 4
+ O(ε6/5). (86)

The correlation-length exponent is obtained from the flow of
the tuning parameter as

1/ν = 2 + 15(5N + 4)ε

15N + 4
+ O(ε6/5). (87)

The nematic QCP that we have found within the 2 + ε

expansion at large N can hence be shown to exist also
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within the 4 − ε expansion by using a Gross-Neveu-Yukawa
reformulation of the theory, which also allows us to study
the qualitative properties of the nematic instability. This
represents the main result of this section. We do not expect,
however, that the quantitative predictions when extrapolating
our leading-order results to ε → 1 will accurately describe
the physics in d = 3. We therefore refrained from displaying
the next-to-leading order corrections ∝ε6/5, which would be
straightforwardly computable from the present one-loop flow
equations. The reason is that the QCP will interfere with the
fully attractive NFL fixed point once we go sufficiently away
from the upper critical dimension. This interplay is suppressed
for small ε, but not necessarily in d = 3, as we have seen
in Secs. III and IV, and as we will demonstrate within the
Gross-Neveu-Yukawa formulation in Sec. VI.

We now show that the NFL fixed point can also be
rediscovered within the present formulation. This is achieved
by employing a change of variables according to Eq. (62),

g = −h2

2r
, α = r

1 + r
, (88)

with g � 0 and 0 � α � 1. (Here we suppress the index of
g ≡ g2 for simplicity.) The upper bound α ↗ 1 corresponds
to the limit of large boson mass r → ∞, in which the
order-parameter field decouples. α � 1 defines the quantum
critical region with strong order-parameter fluctuations. From
Eqs. (66) and (67) we find the flow equations in the new
variables as

dα

d ln b
= (1 − α)

[
(2 − ηφ)α + 16N

5
gα

−21(1 − α)5/2 λ2

√
c

]
, (89)

dg

d ln b
= (z − d)g − 24

5
αg2 + 4

5
e2g − 16N

5
g2

+ 21
λ2

√
c

(1 − α)5/2

α
g, (90)

which exhibit a charged fixed point at α∗ = 1, g∗ = 0, and
e2
∗ = 15ε/(15N + 4). The fixed point is fully attractive in

all directions in coupling space, in particular, both g − g∗
and α − α∗ are irrelevant perturbations near the fixed point.
The dynamical exponent is z = 2 − 4ε/(15N + 4) and the
Coulomb anomalous dimension is ηa = 15Nε/(15N + 4), in
precise agreement with the 4 − ε expansion results for the
Abrikosov-Beneslavskii NFL fixed point given in Ref. [13].

We conclude that the present Gross-Neveu-Yukawa for-
mulation of the theory allows us to study the charged QCP
and the NFL fixed point on an equal footing within an ε

expansion around the upper critical spatial dimension of four.
To the leading order in ε = 4 − d, we find that both fixed
points persist at real couplings for all N � 1. However, as we
shall see in the next section, once we go sufficiently away
from the upper critical dimension, the two fixed points will
approach each other upon lowering N with d held fixed (or
equivalently upon lowering d with N held fixed). Eventually,
at some critical fermion number Nc(d) [equivalently, some
critical dimension dc(N )] the fixed points will merge and

h h

h h

h h

h h

FIG. 6. Feynman diagrams that generate four-fermion interac-
tions from the Yukawa interaction at one-loop order. Solid (dashed)
lines correspond to fermion (order-parameter) propagators.

annihilate. As a consequence, the flow from the weak-coupling
regime with small e2 > 0 and h2/(2r) ≈ 0, λ ≈ 0 is “bended”
from the NFL regime towards the symmetry-broken regime in
which r < 0, leading to a nonvanishing vacuum expectation
value 〈φa〉 �= 0.

VI. FRG WITH DYNAMICAL BOSONIZATION

In order to arrive at the Gross-Neveu-Yukawa field theory
in the previous section, we have traded the four-fermion
term g2(ψ†

i γaψi) for a Yukawa vertex hφaψ
†γaψ . While this

allowed us to eliminate the four-fermion interaction at the
ultraviolet scale, such terms will inevitably again be generated
during the RG flow. At one loop, this happens by means
of the box diagrams displayed in Figs. 3 and 6. Within
the 4 − ε expansion, these terms can be safely neglected as
irrelevant, as done in the above. However, if we want to make
contact with the results from 2 + ε expansion, these terms
have to be taken into account, as they become marginal in
d = 2 and therefore potentially relevant at an interacting fixed
point in 2 < d < 4. Fortunately, their influence can effectively
incorporated into the present formulation by means of the
so-called “dynamical bosonization scheme” [49]. The idea
is to perform a Hubbard-Stratonovich transformation after
every RG step, such that newly generated four-fermion terms
are always again converted into Yukawa interactions at each
scale. In this section we implement this strategy entirely on
the level of the standard Wilsonian momentum-shell RG. We
understand it as a functional RG approach in the sense that
perturbatively irrelevant operators are taken into account. In
very much the same way, it can be implemented on the level
of the flowing effective action [50].

To be explicit, let us write down the effective action after
integrating out a thin momentum shell between 	 and 	/b,

S< =
∫

�k,ω

1

2
(r + δr)φ2

a +
∫

�k1,�k2,ω1,ω2

(h + δh)(φaψ
†
i γaψi)

+
∫

�k1,�k2,�k3,ω1,ω2,ω3

δg(ψ†
i γaψi)

2 + · · · , (91)

where
∫

�k,ω
≡ ∫ 	/b

0
d�k

(2π)d
∫ ∞
−∞

dω
2π

, etc. The ellipsis represents the
kinetic terms of ψ , a, and φ, as well as the other interaction
terms discussed in the previous sections, all of which do not
play a direct role in the present discussion and as such are
not explicitly displayed for notational simplicity. δr = O(ln b)
and δh = O(ln b) denote the explicit loop corrections to the
tuning parameter and the Yukawa vertex. They lead to the
standard loop contributions to the flows of r and h, as shown
at one-loop order in Eqs. (66) and (67). δg = O(ln b) describes
the newly generated four-fermion term, which arises from
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the diagrams in Figs. 3 and 6 and is assumed to be of the
type corresponding to the proposed nematic instability. The
partition function reads

Z =
∫
DψDψ†DaDφ e−S<(ψ,ψ†,a,φ). (92)

For any given configuration of ψ , ψ†, and a we can shift φa in
the inner functional integral

∫
Dφ e−S< as

φa �→ φa + δω ψ†γaψ, (93)

with arbitrary δω = O(ln b). Then, for ln b � 1 the partition
function becomes

Z =
∫
DψDψ†DaDφ exp

{
−

∫
�k,ω,...

[
1

2
(r + δr)φ2

a

+ (h + δh + rδω)(φaψ
†
i γaψi)

+ (δg + hδω)(ψ†
i γaψi)

2 + · · ·
]}

. (94)

Thus, if we choose

δω ≡ −δg

h
, (95)

the newly generated four-fermion terms will be exactly
canceled in Eq. (94). At the same time, the Yukawa-coupling
flow is modified as

dh2

d ln b
= (6 − d − z − ηφ − 2ηψ )h2 + 2h

∂ δh

∂ ln b
− 2r

∂ δg

∂ ln b
.

(96)

In the above equation, the second term represents the standard
contribution from the explicit vertex renormalization, whereas
the last contribution arises from the dynamical bosonization.
By computing the box diagrams in Figs. 3 and 6 we find the
modified flow

dh2

d ln b
= (6 − d − z − ηφ − 2ηψ )h2 + 12

5

h4

1 + r
+ 4

5
h2e2

+ 13

10

rh4

(1 + r)2
+ re4

10
, (97)

while the flow equations for e2, c, r , and λ, as well as the
anomalous dimensions ηa , ηφ , ηψ and the dynamical exponent
z remain the same as in Eqs. (64)–(72).

Near the upper critical dimension of d = 4, the additional
two terms in Eq. (97) as compared to Eq. (67) are of
subleading order both at the charged QCP as well as the NFL
fixed point. Consequently, the fixed-point structure found in
the previous section carries over completely to the present
FRG approach when d ↗ 4. Let us demonstrate that the
dynamically bosonized flow coincides also with the flow as
obtained within the 2 + ε expansion (Sec. III) in the limit
d ↘ 2. To this end, we again introduce the variables g and α

as in Eq. (88), leading to the modified flow equation

dg

d ln b
= (z − d)g − 24

5
αg2 + 4

5
e2g − 16N

5
g2

+ 21
λ2

√
c

(1 − α)5/2

α
g − 13

5
α2g4 − e4

20
, (98)

TABLE I. Fixed-point values and critical exponents at the QCP
for different N from functional RG.

N Ne2
∗ r∗ Nh2

∗ ηa ηφ 2 − z 1/ν

1.856 0.87 12.75 1.45 0.87 1.82 0.13 0.00
2 0.88 8.24 1.38 0.88 1.73 0.12 0.26
3 0.92 4.12 1.22 0.92 1.53 0.08 0.58
4 0.93 3.08 1.12 0.93 1.41 0.07 0.68
5 0.95 2.58 1.06 0.95 1.34 0.05 0.74
10 0.97 1.81 0.93 0.97 1.17 0.03 0.86
25 0.99 1.46 0.85 0.99 1.07 0.01 0.94
100 1.00 1.32 0.81 1.00 1.02 0.00 0.99
∞ 1 14

11
35
44 1 1 0 1

and (dα)/(d ln b) as in Eq. (89). For α → 1 we find that
the above flow equation for g agrees with Eq. (14) upon
setting g ≡ g2 and g1 = g3 = 0. We therefore conclude that
the approximation scheme is under perturbative control both
near d = 2 and near d = 4.

We now turn to the physically interesting case of d = 3. In
the limit of large N , the fixed-point equations can be solved
analytically. In this limit, we recover both the QCP and the
NFL fixed point. The former is located at

QCP: (Ne2
∗,c∗,r∗,Nh2

∗,Nλ2
∗) = (

1, 7
22 , 14

11 , 35
44 , 105

85 184

)
+ O(1/N). (99)

From this we find −h2
∗/(2r∗) = −5/(16N ) + O(1/N2), which

agrees with the result of the fermionic formulation [Eq. (45)]
upon recalling the identification given in Eq. (62). The above
fixed point has exactly one RG relevant direction, with the mass
r of the order-parameter field φ being the tuning parameter for
the nematic transition. The NFL fixed point is located in the
large-N limit at

NFL:
(
Ne2

∗,c∗, r∗
N

,Nh2
∗,Nλ2

∗
) = (

1, 7
44 , 175

11 , 35
22 , 21

13 310

)
+ O(1/N). (100)

Note the different scaling of r∗ with N as compared to the QCP:
While the QCP is located at some finite r∗ = O(1), the mass
parameter at the NFL fixed point becomes large, r∗ = O(N ).
Consequently, fluctuations of the order-parameter field are
suppressed at the NFL fixed point for large N . (However,
we shall see below that this is not necessarily the case for
small N .) At the NFL fixed point we have −h2

∗/(2r∗) =
−1/(20N2) + O(1/N2), which again precisely agrees with
the large-N result of the fermionic formulation, Eq. (44). The
NFL fixed point is RG attractive in all directions, with the
corrections-to-scaling exponent ω that is determined by the RG
flow in the “least-irrelevant” direction being ω = 1 + O(1/N).

For finite N we have solved the coupled system of fixed-
point equations for e2, c, r , h, and λ numerically. The results
for the location of the fixed points and the corresponding
universal scaling exponents are given for various N in Tables I
and II. Note that the Coulomb anomalous dimension ηa in each
case fulfills the exact relation, Eq. (22), as it should be. With
decreasing N , we find that the mass of the order-parameter field
at the NFL fixed point rapidly decreases, thereby progressively
enhancing fluctuations in the nematic channel. The QCP and
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TABLE II. Fixed-point values and scaling exponents at the NFL
fixed point for different N from functional RG.

N Ne2
∗ r∗/N Nh2

∗ ηa ηφ 2 − z ω

1.856 0.87 6.87 1.45 0.87 1.82 0.13 0.00
2 0.88 9.81 1.49 0.88 1.88 0.12 0.27
3 0.92 13.33 1.54 0.92 1.94 0.08 0.62
4 0.94 14.29 1.56 0.94 1.96 0.06 0.74
5 0.95 14.74 1.56 0.95 1.97 0.05 0.80
10 0.97 15.43 1.58 0.97 1.98 0.03 0.91
25 0.99 15.74 1.59 0.99 1.99 0.01 0.96
100 1.00 15.87 1.59 1.00 2.00 0.00 0.99
∞ 1 175

11
35
22 1 2 0 1

NFL fixed point approach each other in coupling space, and
eventually merge when N ↘ Nc with

Nc = 1.856. (101)

For N < Nc and small initial couplings h2/(2r)|UV ≈ 0,
λ|UV ≈ 0, and 0 < e2|UV � 1, the RG flow is always towards

the regime in which r < 0, signaling the nematic transition
and the spontaneous breakdown of the rotational symmetry.
The RG flow for different values of N above, at, and below Nc

is visualized in Fig. 7.
The fixed-point equations can be solved numerically for

all N in any given dimension 2 < d < 4. We have displayed
the result in terms of the critical fermion number Nc(d) in
Fig. 1. As evident there, the FRG estimate approaches the
result from the 2 + ε expansion for d ↘ 2, as expected. With
the FRG, we can also estimate the critical dimension dc below
which the fixed-point annihilation occurs for fixed N = 1. This
way we find dc(N = 1) = 3.21 and thus close to the value
of dc = 3.26 found within the perturbative RG approach for
N = 1 [16]. For d ↗ 4, we have explicitly checked that the
scaling exponents for both the QCP and the NFL fixed point
numerically coincide with their counterparts from the leading-
order 4 − ε expansion. We reiterate that the FRG approach
within the dynamical bosonization scheme becomes one-loop
exact both in d = 2 + ε as well as in d = 4 − ε, and smoothly
interpolates between these two perturbatively accessible limits
for intermediate dimension.

0 1 2 5 10 20 50 100 ∞0

1

2

3

N
h

2

r

(a) N = 10

QCP

NFL

QCP
NFL

0 1 2 5 10 20 50 100 ∞0

1

2

3

N
h

2

r

(b) N = 2

0 1 2 5 10 20 50 100
0

1

2

3

N
h

2

r

(c) N = 1.856

QCP/NFL

0 1 2 5 10 20 50 100 ∞0

2

4

6

N
h

2

r

(d) N = 1

FIG. 7. RG flow diagram in d = 3 for N = 10, 2, 1.856, and 1 in r-h2 plane from functional renormalization group, displaying the quantum
critical fixed point (QCP) and the fully attractive non-Fermi liquid fixed point (NFL). Arrows point towards infrared. To visualize the flow, the
remaining couplings c, e2, and λ have been fixed at their values at the QCP. (For N = 1, for which the QCP does not exist, we have chosen their
large-N predictions.) The horizontal axis has been rescaled by r/(1 + r) for reasons of clarity. For N > Nc [(a) and (b)] a weakly correlated
material with initially small coupling h2/(2r)|UV � 1 flows to the fully attractive non-Fermi liquid (NFL) fixed point. A (hypothetical) strongly
correlated material with h2/(2r)|UV > [h2/(2r)]c would flow to negative r , indicating a continuous [17] phase transition towards a nematic
state, with the critical behavior governed by the QCP. At N ↘ Nc = 1.856 (c) the NFL fixed point merges with the QCP, such that for N < Nc

(d) the flow is always towards the nematic state, even for small initial coupling.
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VII. CONCLUSIONS

In conclusion, we have studied the zero-temperature ground
state of gapless semiconductors with quadratic Fermi nodes
and weak long-range Coulomb interaction in 3D. We have
confined ourselves to a model in which the full rotational
symmetry and the particle-hole symmetry is imposed from
the outset, leaving the discussion of the subtle effects of
these perturbations for a separate publication [31]. The present
model serves as the minimal effective low-energy description
of the electronic behavior of weakly correlated 3D gapless
semiconductors such as HgTe and α-Sn [6], and possibly also
certain pyrochlore iridates of the form R2Ir2O7 (with R being
a rare-earth element) [7,8,13], as well as some half-Heusler
compounds [10–12]. In order to gain analytical control over
the low-temperature physics, we have extended the model by
allowing a general number N of fermion species (which may
be understood as the number of QBTs at the Fermi level),
as well as by generalizing to arbitrary spatial dimensionality
2 < d < 4. Our main results are the following:

(1) At large N , the system has a scale-invariant gap-
less ground state which is characterized by anomalous
low-temperature power laws of various thermodynamic
observables—a 3D non-Fermi liquid. The specific heat, for
instance, would scale in this state as

CV ∝ T d/z, (102)

with nontrivial dynamical exponent 1 < z < 2. The emer-
gence of the scale-invariant ground state can be traced back
to the existence of a fully infrared stable NFL fixed point.
We have computed the universal exponents in this state
by employing 2 + ε expansion, perturbative RG in fixed
d = 3, 4 − ε expansion, and functional RG in the dynamical
bosonization scheme. The results are consistent with the earlier
works [13,15].

(2) Upon lowering N , the NFL fixed point approaches
another, quantum critical, fixed point. At some critical Nc, the
NFL fixed point and the QCP merge and eventually disappear
for N < Nc into the complex-coupling plane. As a conse-
quence, the electronic system with a small number of QBTs
at the Fermi level is unstable to weak long-range interactions.
Such fixed-point annihilation scenario was proposed earlier in
the context of a 1/N expansion in fixed d = 3 [18] as well as a
one-loop RG for fixed N = 1 and varying dimensionality [16].
In both these earlier approaches, however, the fixed-point
annihilation occurs outside the regime in which the expansion
is under control, and one may wonder whether higher loop
orders may qualitatively change the conclusion. In the present
work, we have demonstrated that the scenario can be described
in a fully controlled way by employing an expansion around
two spatial dimensions. On that point, we have exploited
the fortunate fact that for small ε = d − 2 the fixed-point
annihilation occurs at large N , thereby pushing the interesting
physics entirely into the perturbative domain. This proves the
existence of a phase boundary between the NFL phase at large
N and a novel symmetry-broken phase at small N in the d-N
plane, see Fig. 1.

(3) Using a susceptibility analysis in d = 2 + ε dimen-
sions, we find that the instability for N < Nc is towards a ne-
matic state in which the rotational symmetry is spontaneously

TABLE III. Critical fermion number Nc in d = 3 spatial dimen-
sions from different approaches.

Method Reference Nc(d = 3)

2 + ε expansion Sec. III 2.56
RG in fixed d = 3 Sec. IV 2.10
Functional RG Sec. VI 1.86
1/N expansion in d = 3 Ref. [18] �2.6(2)

broken. This result is in agreement with all other approaches
employed here, as well as with the previous work [16]. The
low-N quantum ground state has a full, but anisotropic gap
and converts the semimetal into a topological Mott insulator.

(4) We have employed a variety of different approaches to
gain a reasonable estimate of the critical fermion number Nc

in the limit of d = 3. The results are summarized in Table III.
All estimates obtained so far consistently place the physical
situation for N = 1 into the Mott insulating regime. Gapless
semiconductors with one quadratic Fermi node in 3D, such as
clean HgTe and α-Sn, should therefore suffer from a transition
towards a nematic state in which an interaction-induced gap is
dynamically generated. For such weakly correlated materials
the relevant energy scale at which interaction effects become
important is ε∗ = 1–10 meV [6,16]. From this and Eq. (42) we
estimate the size of the Mott gap � for Nc ≈ 2 and z ≈ 1.7 as

� ≈ 10−2ε∗ ≈ 0.01–0.1 meV. (103)

As function of temperature, we correspondingly expect the
Mott transition to occur at a critical temperature Tc of the order
Tc ≈ 0.1–1 K, in agreement with [16]. Besides the opening
of the Mott gap, the transition reveals itself experimentally
through a thermodynamic singularity at Tc, as measurable, for
instance, in the specific heat. Below the jump at Tc, the specific
heat is exponentially suppressed,

CV ∝ e−�/(2kBT ), (104)

while for T > Tc it is expected to resemble the NFL behavior
with nontrivial exponents as in Eq. (102), see Ref. [16].
The Hall coefficient should exhibit a similar temperature
dependence [18]. The effects are experimentally accessible
if the sample can be prepared sufficiently pure.

To approach the complex physics in the pyrochlore iridates,
the nontrivial interplay of the (itinerant) iridium electrons
with the (local) rare-earth magnetic moments should be
investigated [8]. A separate paper [31] will present a detailed
discussion of the effects of deviations from the spherical and
particle-hole symmetries which may also be important for this
class of materials [42,51].
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