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Supercurrent generation by spin injection in an s-wave superconductor–Rashba metal bilayer
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The spin-galvanic (inverse Edelstein) and inverse spin-Hall effects are calculated for a hybrid system that
combines thin superconductor and Rashba metal layers. These effects are produced by a nonequilibrium spin
polarization that is injected into the normal metal layer. This polarization gives rise to an electric potential that
relaxes within some characteristic length, which is determined by Andreev reflection. Within this length, the
dissipative electric current of quasiparticles in the normal layer converts into the supercurrent. This process
involves only subgap states, and at low temperature the inelastic electron-phonon interactions are not important.
It is discussed how such a hybrid system can be integrated into a SQUID, where it produces an effect similar to
a magnetic flux.
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I. INTRODUCTION

An interplay of spin-orbit coupling (SOC), magnetism,
and superconducting correlations in some solids and their
interfaces leads to a number of electron transport phenom-
ena, which have attracted recent interest in connection with
potential spintronic applications. At the heart of the unusual
transport properties of such systems lie the direct and inverse
spin-galvanic effects (SGEs). The former produces the electric
current by polarized spins. The inverse to the SGE is also
called the Edelstein effect. These phenomena were predicted
a long time ago for normal systems [1–4]. The electric
current induced by polarized spins was first observed in a
semiconductor quantum well (QW) in Ref. [5], where spin
polarization was created by optical excitation. Closely related
to the SGE are direct and inverse spin-Hall effects (SHEs),
which convert the charge current into perpendicular spin
current and back again. For a review of the SHE in normal
systems, see Ref. [6].

There is a fundamental difference between these effects
in superconducting and normal systems. For example, in
superconductors the spin-charge conversion can occur in
thermodynamic equilibrium conditions. Thus, a spontaneous
supercurrent may be produced by an equilibrium spin po-
larization induced by a static Zeeman field [7]. That is
impossible in a normal metal. This effect, however, cannot
be observed in spatially uniform systems, because in a weak
uniform Zeeman field the so called helix phase with an
inhomogeneous order parameter is formed [7–13]. In such
a superconducting state, the electric current is absent. On
the other hand, the supercurrent may be induced in the
presence of an inhomogeneous Zeeman field [14–16]. The
equilibrium SGE, as well as the equilibrium analog of the
inverse spin-Hall effect, were also predicted in the so called
phi-0 Josephson junctions [17–23]. The supercurrent may
also be produced by subgap light illumination of a hybrid
superconductor–semiconductor system [24]. The inverse SGE
was considered for two-dimensional (2D) superconductors
and normal metal–superconductor hybrid systems, where the
supercurrent gives rise to an equilibrium magnetization by
polarizing spins of triplet Cooper pairs [7,23,25–28].

Another group of spin-charge conversion effects involves
nonequilibrium spin polarization, as well as spin current

pumped into a superconducting system by some external
source. As was shown, for SOC caused by spin-orbit impu-
rities, such a nonequilibrium spin distribution can generate
the electric current and the electric potential in supercon-
ductors [29,30]. This nonequilibrium situation bears a strong
resemblance to the analogous effects in normal systems.
In superconductors, however, the electric and spin transport
parameters are determined by quasiparticle characteristics that
are strongly renormalized by the gap in the electron energy
spectrum [29]. In addition, there are typical charge imbalance
effects for superconductors that have not been discussed yet in
this context.

In this paper, the spin-charge conversion effect will be
considered for a bilayer system consisting of a normal metal
layer with strong Rashba SOC and an s-wave superconducting
layer. Both layers are coupled through a tunneling barrier. The
nonequilibrium spin polarization is injected into the normal
layer, as shown in Fig. 1. One advantage of such a system
is that it combines the strong spin-orbit coupled electrons
of the normal metal and the correlated Cooper pairs of the
superconductor. There are good candidates for the former,
such as narrow gap semiconductor quantum wells (QWs) and
some insulator interfaces [31,32]. For example, high-quality
epitaxy-grown hybrid semiconductor–superconductor systems
have been reported recently [33,34]. In addition, niobium
or aluminum films can be employed as the superconducting
layer. The spin polarization can be injected by passing
the electric current through a ferromagnetic-paramagnetic
interface [29,35,36].

Due to Rashba SOC, in such a bilayer system the injected
spin polarization gives rise to the electric current inside the
normal layer. The mechanisms for such a transformation are
the SGE and the inverse SHE. Note that in bounded Rashba
systems, such as strips of finite width, it is impossible to
distinguish between these two effects. The electric current
created by these effects is dissipative and is carried by
quasiparticles whose energies are below the energy gap of
the superconducting layer and above the proximity-induced
minigap in the spectrum of the normal metal. Then, this
current converts into condensate supercurrent through Andreev
reflection, so that at large enough distances from the point of
injection the current is carried by the condensate. The electric
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FIG. 1. The bilayer system consists of a Rashba metal N and
a superconducting layer S. They are coupled through a tunneling
barrier. The spin polarization penetrates into the normal layer from
a nonmagnetic lead. In this lead, the polarization can be created by
spin injection from the ferromagnetic lead (not shown), or otherwise.
The superconducting layer may be connected to a superconducting
circuit, including, e.g., a flux qubit. The spin galvanic effect in the
Rashba metal gives rise to the electric current of quasiparticles above
the minigap. Due to Andreev reflection, this current transforms in the
S layer into a current of Cooper pairs

potential, which is associated with the quasiparticle’s current,
also vanishes at large distances together with this current.
Such a mechanism of charge imbalance relaxation is the most
relevant mechanism in the considered low-temperature regime.
It should be noted that in the nonequilibrium system considered
herein, quasiparticle spins play a major role in spin-charge
conversion. At the same time, in a normal Rashba metal
that comes in contact with a superconductor, the proximity
effect gives rise to triplet Cooper correlations [25,37], so
that total spins of correlated electron pairs may potentially
contribute to the spin-charge conversion effects [26,27]. The
electric current, however, can be produced only if these
spins are polarized. In the absence of a Zeeman field, they
could get some polarization from polarized quasiparticle spins
through the electron-electron exchange interaction [38]. This
presumably weak interaction will be ignored below, although
it can be important in systems with strong exchange effects.

The problem will be considered within the semiclassical
approximation. For a dirty system, the corresponding Usadel
equations will be employed for the electron Green functions. It
is important that, within the main semiclassical approximation,
the standard Usadel equations miss the charge-spin coupling,
which determines the spin-charge conversion effects. There-
fore, such a term will be derived separately as a nonclassical
correction to the Usadel equations that is linear in hF /μ � 1,
where hF is the spin-orbit splitting of the electron energy at the
Fermi level, EF � μ, and μ is the chemical potential. In this
way, the expression for the generated electric current, as well as
coupled differential equations for the order-parameter phase
and the quasiparticle distribution function, will be obtained.
In some important limiting cases, these equations will be
analyzed analytically.

It is important to emphasize that although the strong SOC
favors the spin-charge conversion effects in a normal metal
layer, it should not be too strong in the considered case of
a disordered system. To reach an injected spin polarization
that is high enough, a quasiparticle’s spins must survive many
collisions with impurities. The corresponding regime of slow
D’yakonov-Perel [39] spin relaxation may be achieved if

the elastic scattering rate is much larger than the spin-orbit
splitting of electron energies. This regime cannot be realized,
for example, for Dirac electrons on the surface of three-
dimensional topological insulators, where SOC is comparable
to the Fermi energy, and the spin relaxation time coincides with
the elastic scattering time, because the spin is locked to the
electron momentum. For such a material, the nonequilibrium
SGE could be considered in the clean limit. However, that is
beyond the scope of this work.

The paper is organized as follows: In Sec. II, the Usadel
equation for the bilayer system, which accounts phenomeno-
logically for the coupling of the injected spin-dependent
distribution to the spin-independent Green function, will be
derived. In Sec. III, such a nonclassical spin-charge coupling
term will be calculated in the Usadel equation and in the
electric current expression. Also, charge-imbalance relaxation
will be analyzed, and the differential equation for the phase
of the order parameter will be obtained. We shall consider
the electric current generated in a closed loop and evaluate
the effective electromotive force that is produced by the spin
injection.

II. SEMICLASSICAL EQUATIONS

A. Hamiltonian, semiclassical Green functions,
and self-energies of a bilayer system

One of the most convenient tools for an analysis of electron
transport in the range of characteristic energies �μ and
lengths �1/kF , where kF is the Fermi wave vector, is a
formalism of semiclassical equations for the energy-integrated
Green functions [40,41]. This method operates with the three
functions Gr (X1,X2), Ga(X1,X2), and GK (X1,X2), where
X1 = (r1,t1) and X2 = (r2,t2) denote space-time variables.
Gr (X1,X2) and Ga(X1,X2) are, respectively, retarded and
advanced Green functions, while GK (X1,X2) is the so called
Keldysh function. The former carries information about the
energy spectrum and wave functions of an electron system,
while GK (X1,X2) depends on its statistical properties. It is
convenient to combine these functions in the 2 × 2 matrix
Ĝ, such that G11 = Gr , G22 = Ga , G12 = GK , and G21 = 0.
This function satisfies the Dyson equation that can be written
in either of two forms, namely (iτ3∂t1 − Hτ3 − �̂)Ĝ = 1̂ or
−i∂t2Ĝτ3 − Ĝ(Hτ3 + �̂) = 1̂, where H is the one-particle
Hamiltonian and �̂ ≡ �̂(X,X′) is the self-energy matrix.
An integration over intermediate space-time coordinates is
implied in the products �̂Ĝ and Ĝ�̂. The Pauli matrices τ1,
τ2, and τ3 operate in Nambu space. The Hamiltonians of the
superconducting and normal layers HS and HN have the form

HSτ3 = (εSk̂ − μS) + eφS(r) − i Re�(r)τ2 + i Im�(r)τ1,

HNτ3 = (εN k̂ − μN ) + eφN (r) + hk̂σ , (1)

where εSk̂ = k̂2/2m, εN k̂ = k̂2/2m∗, and k̂ = −i∇r. μS and
μN are the chemical potentials of electron gases in two layers
(the band offset is included). In the case when the normal
layer is a two-dimensional electron gas, the vector k in εNk
has only x and y components, which are parallel to the
interface. SOC is represented by the third term in HN , where
σ = (σx,σy,σz) is the vector of Pauli matrices. The spin-orbit
field hk = −h−k is assumed to be a linear function of k.
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This situation takes place if hk is represented by the Rashba
field [42] hk = α(ez × k), or by the linear Dresselhaus [43]
field hx = βkx,hy = −βky , as well as by their combination.
Below, for simplicity we assume the Rashba SOC. The electric
potentials φS and φN appear in Eqs. (1) due to charge
imbalance, which is caused by a conversion of the injected
spin polarization into the electric current of quasiparticles. It
should be noted that the spin injection explicitly enters only
in the quasiparticle’s distribution function, while in Eq. (1)
it is represented implicitly through the electric potential and
�. In the unperturbed state, we assume Im�(r) = 0 and
Re�(r) = �0. In principle, the injected spin polarization
might enter into Eqs. (1) as an effective Zeeman field that
is produced by polarized electrons via the electron-electron
exchange interaction, as was discussed in Ref. [38]. To evaluate
this field, let us assume that the injected spins are in a
quasiequilibrium state that is characterized by the difference
δμ between chemical potentials of two spin projections. In
this case, the effective Zeeman field is Z ∼ Gδμ, where G

is the Landau-Fermi liquid exchange parameter. For simple
metals, |G| � 1. It is even less in semiconductors, where the
Coulomb interaction effects are weaker. In such a case, the
effect of the Zeeman field may be ignored, because it cannot
compete with the much stronger effect of quasiparticle spins,
which is determined by δμ.

In the semiclassical regime, Ĝ varies slowly in both layers
as a function of the center of gravity, r = (r1 + r2)/2. At the
same time, as a function of r1 − r2 it oscillates fast, within
the Fermi wavelength. Therefore, it is convenient to Fourier
transform Ĝ with respect to (r1 − r2) and retain intact its
dependence on r. Also, in the considered stationary regime, Ĝ
depends only on the time difference t1 − t2, and hence it can be
Fourier-transformed to the frequency variable ω. Accordingly,
let us introduce the Green function as

Ĝk(r,ω) =
∫

dn(r1 − r2)e−ik(r1−r2)Ĝ(r1,r2,ω), (2)

where n is a dimension of the electron gas in a film (the labels
N and S are omitted for a while). The self-energy may be
represented in a similar way. The semiclassical Green function
gν(ω) is defined by integrating Eq. (2) over ξ = εk − μ at a
fixed direction of ν = k/k on the Fermi surface. Hence, we
have

ĝν(r,ω) = i

π

∫
dξ Ĝk(r,ω). (3)

The so defined function is normalized, such that ĝ2
ν = 1. A

procedure for obtaining the semiclassical equations for this
function is well described in the literature [41,44,45]. For each
layer, these so called Eilenberger [40] equations can be written
in the compact form

ivF∇ĝν + [ωτ3 − Hτ3 − �̂ν,ĝν] = 0, (4)

where vF is the Fermi velocity. The nonclassical term
associated with the spin-orbit part of the velocity operator
∇k(hkσ ) has been neglected in Eq. (4), because it is as small
as hk/EF . It will be included together with other nonclassical
terms in a correction to the Usadel equations in Sec. III. The
right-hand side of Eq. (4) should contain the inelastic scattering

term. For the situation considered herein, this scattering is not
important. Therefore, it was skipped.

Let us consider the self-energy term in more detail. First
of all, it contains a contribution from electron collisions
with impurities. In the Born approximation for a short-range
isotropic scattering amplitude, the corresponding self-energy
can be written as [41,44,45]

�̂(r,ω) = − i

2τsc
ĝ(r,ω), (5)

where τsc is the elastic scattering time and ĝ(r,ω) is the angular
average of ĝν(r,ω). Other contributions to the self-energy
describe couplings of 2D normal electrons to the supercon-
ductor layer and the spin injector. They will be denoted
as �NS and �NM , respectively. Within the semiclassical
approach, these self-energies are presented only in layers
carrying a two-dimensional electron gas, for example in a
semiconductor QW. At the same time, in a bulk layer, whose
thickness is much larger than k−1

F , the coupling between
layers may be taken into account with the help of boundary
conditions for ĝν . The self-energies �NS and �NM are
determined by virtual electron tunneling from the normal layer
to an adjacent layer and back. Let us assume the normal
metal–superconductor tunneling Hamiltonian in the form∑

k,k′ {tNS
k,k′ exp[i(k − k′)rNS]cNkc

†
Sk′ + H.c.}, where rNS is the

interface position in the z direction. In the x and y directions,
the interface is homogeneous, so that the parallel wave vector is
conserving. One can easily write the corresponding self-energy
in the form

�̂NS
k (r) =

∑
k′
z,qz

∣∣tNS
k,k′

∣∣2
∫

dz ĜSk′ (r,z)eiq(z−zNS ), (6)

where the vectors r and k are directed along the interface,
q and z are perpendicular to it, and k′ = k + kz, with kz

denoting a vector that is perpendicular to the interface. Within
the semiclassical approximation, the q dependence of tNS

k,k′ was
neglected, because q is small in comparison with k and k′,
which are approximately equal to the electron Fermi wave
vector. Then, one may set k = kFN

and k′ = kFS
in |tNS

k,k′ |2,
where kFN

and kFS
are the Fermi wave vectors of the normal

metal and the superconductor, respectively. By integrating G

in Eq. (6) over energy, we arrive at the simple expression

�̂NS
ν (r,ω) = −iTNSĝSν′ (r,z = zNS,ω), (7)

where TNS = (m/2kFS
)|tNS

k,k′ |2k=kFN
,k′=kFS

(cos θ0)−1 and the
polar angle of k′ and ν ′ is fixed at θ0 given by | sin θ0| =
kFN

/kFS
. The self-energy �̂NM

ν , which is associated with a
contact to the spin injector, has the same form as Eq. (7),
with ĝSν and TNS substituted for ĝMν and TNM . The tunnel
coupling with the injector is not zero only in the part of the
bilayer system where the normal layer contacts to the injector.

B. Usadel equations for a bilayer system

Equation (4) can be simplified considerably in dirty
systems where vF τsc � vF /�,vF /hkF

and other length scales
that characterize spatial variations of the Green functions
ĝS(N)ν(r,ω). In this case, these functions are almost isotropic,
and it is possible to obtain closed equations for their isotropic
parts, ĝS(N)(r,ω) [46]. The corresponding formalism can be
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found in Refs. [41,44,45]. These so called Usadel equations in
N and S layers can be written in the form

DS∇ĝS∇ĝS + i[ωτ3 + i�τ ,ĝS] = 0, (8)

DN ∇̃ĝN ∇̃ĝN + i[ωτ3 + iTNSĝS + iTNMĝM,ĝN ] = 0, (9)

where �τ = Re�(r)τ2 − Im�(r)τ1,∇̃∗ = ∇ ∗ −i[A,∗], and
the gauge-field vector components are Ax = −αmσy and
Ay = αmσx for Rashba SOC [23,47,48]. The parameters
DS and DN denote the electron diffusion coefficients in
the superconductor and normal layers, respectively. The first
equation is a standard equation of an s-wave superconductor.
The second equation contains the spin-orbit effects that are
represented by the gauge field A. This equation is written
for a 2D electron gas in the normal-metal film. If a 3D gas
occupies the film, the self-energies �̂NS and �̂NM are absent.
Instead, a contact with the superconductor and injector can
be taken into account with the help of boundary conditions
(BCs). On the interface between two dirty systems i and j ,
where i,j = S,N,M , the conventional form of the boundary
condition is [49]

Diĝi∇zĝi = γij [ĝi ,ĝj ], (10)

where the z axis is directed from i to j , and γij can be
expressed in terms of the interface resistance. It is expected
that Eq. (10) may be modified in the presence of Rashba SOC.
In the main semiclassical approximation, the modified BC
may be obtained in the same way as in Ref. [49]. As a result,
∇z is substituted for ∇̃z on the left-hand side of Eq. (10).
Both derivatives, however, are equal to each other, because
the gauge field Az = 0. The so obtained BC can, in principle,
contain nonclassical corrections ∼hkF

/EF , as was shown for
transparent interfaces in clean systems [27]. In the case of a
low transparent interface considered herein, there is no reason
to consider such small terms, and the nonclassical corrections
will be ignored.

The Usadel equation for ĝS may be further simplified
[50] by assuming that Green functions vary slowly across
a thin film, whose thickness dS is much less than the
superconductor’s coherence length

√
DS/|�|. By integrating

Eq. (8) over z and taking into account BC Eq. (10), we arrive
at the equation for ĝS(r) = (1/dS)

∫
dzĝS(r,z),

DS∇ĝS∇ĝS + i[ωτ3 + i�τ + iTSN ĝN ,ĝS] = 0, (11)

where TSN = DSγSN/dS . If the normal metal is a 3D film,
one may perform the same manipulation with a corresponding
3D equation. It should be taken into account that, according
to the chosen model, ∇̃z = ∇z. That results in the equation
of the same form as Eq. (9), with TNS = DNγNS/dN . The
parameters TNS and TSN are related to each other through the
equation dNNFN

TNS = dSNFS
TSN , where NFN

and NFS
are

3D state densities at the Fermi level in the normal metal and
superconductor (in the normal state). The same relation will be
assumed for TNS entering into the self-energy Eq. (7) of the 2D
electron gas, with dNNFN

substituted for 2D density. Such a
relation is necessary for the conservation of the charge current
through the NS interface. It should be noted that the above
relation between TNS and TSN means that the latter is much
smaller than TNS , when the N film is a semiconductor, but the

superconducting layer is a usual metal, whose state density
exceeds that of the semiconductor by orders of magnitude.

Furthermore, we will focus on some properties of Eqs. (9)
and (11) that allow us to simplify the considered problem
dramatically. First of all, we note that in the case of a
spin injector represented by a massive nonmagnetic film, to
which the spin polarization is pumped from ferromagnetic
leads, its retarded and advanced Green functions are simply
g

r(a)
M = ±τ3. This means that they are scalars in spin space.

Hence, the retarded and advanced projections of Eq. (9) are
scalars, except for terms with the gauge field A. Such terms,
however, appear only in the form of commutators of A with
spin scalars g

r(a)
N . Therefore, they vanish. By representing

ĝN(S) in the form ĝN(S) = ĝ0N(S) + ĝN(S)σ , one can see from
Eqs. (9) and (11) that gr(a)

N = gr(a)
S = 0. Furthermore, let us

consider the Keldysh projection of Eqs. (9) and (11). In
contrast to the retarded and advanced functions, the function
gK

M is spin-dependent, because it is determined by the spin-
dependent distribution function of the injector. Therefore,
g0K

N as well as gK
N are finite. At the same time, one can

see from Eqs. (9) and (11) that at gr(a)
N = gr(a)

S = 0, the
equations for g0K

N and gK
N are decoupled from each other. The

equations for the three functions gK
x , gK

y , and gK
z describe the

energy-dependent spin diffusion, the D’yakonov-Perel spin
relaxation, and the spin precession associated with the Rashba
interaction. These processes are essentially the same, and they
are described by the same parameters as in normal metals
in the absence of superconducting proximity effects. In other
words, the proximity to the superconductor results in the same
renormalization factor for all these effects. We will return to
the spin transport in Sec. II D. The independence of the charge
transport on the spin injection is the main reason why one
cannot consider the spin-charge conversion effects within the
main semiclassical approximation.

C. Retarded and advanced Green functions

For spin-independent retarded and advanced functions g
r(a)
0N ,

one may substitute ∇̃ → ∇ in Eq. (9), so that the spin-charge
coupling is only implicitly represented through the phase χ (r)
of the order parameter �(r). Let us first consider the Usadel
equations for the retarded functions by neglecting a contact
with the spin injector. We also neglect for a moment the terms
containing ∇χ , which are small, because they are proportional
to the weak spin-charge coupling. In such a case, gr(a)

0N(S) do not
depend on coordinates. As a result, for the retarded functions,
Eqs. (9) and (11) reduce to[

ωτ3 + i�τ + iTSNgr
N ,gr

S

] = 0,[
ωτ3 + iTNSg

r
S,g

r
N

] = 0, (12)

where �τ = �0[cos χ (r)τ2 + sin χ (r)τ1]. A similar equation
can be written for the advanced functions. For TNS,TSN and
ω � �0, the solution of Eq. (12) is given by

g
r(a)
S = 1

�0

(
− iωτ3 + �τ + TSNωτ3√

(ω ± iδ)2 − �2
m

)
,

g
r(a)
N = ωτ3 + iTNS(�τ/�0)√

(ω ± iδ)2 − �2
m

. (13)

064517-4



SUPERCURRENT GENERATION BY SPIN INJECTION IN . . . PHYSICAL REVIEW B 95, 064517 (2017)

The small terms ∼TSN/�0 and ω/�0 have been taken into
account in g

r(a)
S because they are important in the effects

associated with the Andreev reflection. One can see that in
the quasiparticle spectrum of the normal layer, the minigap
�m = |TNS | � �0 opens, which is a common property of SN
bilayer systems [50].

Since � has a phase that is varying in space, in some cases
it is necessary to take into account corresponding corrections
to Eqs. (13). For Green functions of the superconductor,
these corrections can be easily obtained in the range of high
energies ω > |�0| by ignoring a contact with the normal
layer, whose effect is weak in this frequency range. It
is convenient to perform the unitary transformation g →
exp(iτ3χ/2)g̃ exp(−iτ3χ/2). Furthermore, by keeping only
the terms in Eq. (11) that are linear in ∇χ , we arrive at the
Fourier-transformed function g̃

r(a)
S in the form

g̃
r(a)
S = ωτ3 + iτ2�0

�
δq,0 + τ1Dq2χq�0

Dq2� + 2i�2
, (14)

where � =
√

(ω ± iδ)2 − �2
0, and q is the wave vector. As

will be seen below, this correction is important for calculating
the spin injection effect on the order parameter.

Let us now consider a contact with the injector, as a small
correction δgr(a) to the functions given by Eqs. (13). Let us
assume that in Fig. 1, the length b of the injector–normal
metal contact in the x direction is small in comparison

with the diffusion length lN = (DN/2
√

ω2 − �2
m)

1/2
(ω >

|�m|). Then, one can represent TNM (x) in Eq. (9) in the
form TNM (x) = bTNMδ(x). For the massive injector film, the
unperturbed value g

r(a)
M = ±τ3 is also assumed. By linearizing

Eq. (9) with respect to δg
r(a)
N , we arrive at

δg
r(a)
N = ∓ blN

2l2
NM

exp
−(1 + i)|x|√

2lN
g

r(a)
N

[
g

r(a)
N ,τ3

]
, (15)

where l2
NM = DN/TNM . Therefore, this correction is small at

blN/l2
NM � 1, which will be assumed in the following.

D. Distribution functions

In this section, we will consider Eqs. (9) and (11) for
Keldysh functions. These equations can be transformed to
kinetic equations for the distribution function f (r,ω), which
is defined by the equation [41,45]

gK = grf − fga. (16)

The function gK expressed in this way satisfies the proper
normalization condition grgK + gKga = 0, which is a non-
diagonal projection of the general condition ĝ2 = 1. The
distribution function, in turn, can be represented as f (r,ω) =
f0(r,ω) + f(r,ω)σ . As was noted above, the spin and charge
variables are decoupled in Eqs. (9) and (11). This means that
we have separate equations for the scalar (f0) and triplet (f)
parts of the distribution function.

1. Spin-distribution function

Let us first consider the spin-dependent triplet part. We
assume that the spin injector is a normal metal, where the spin
polarization is creating by electric current passing through

a normal metal–ferromagnet interface [35,36], or by other
means. The thermodynamic equilibrium will be assumed for
both spin projections. Hence, the spin-distribution function in
the injector is given by

fM = s
2

(
tanh

ω + μs

kBT
− tanh

ω − μs

kBT

)
, (17)

where s denotes the unit vector that is parallel to the spin
polarization, and 2μs is the difference between chemical
potentials of spin distributions corresponding to two spin
projections. It will be assumed that μs � �0. Since fM is
a scalar in Nambu space, one can expect that fN and fS are also
scalar functions. Equations for these functions are obtained
by substituting Eqs. (16) and (17) into Eqs. (9) and (11) and
taking the trace over Nambu variables. The terms containing
∇χ have been neglected. In this way, the equations for fN are
obtained in the form

0 = (−D̃N∇2 + �̃s)fN‖ + 4αm∗D̃N∇fNz

+ T̃
(1)
NS(fN‖ − fS‖) + T̃

(1)
NM (fN‖ − fM‖),

(18)
0 = (−D̃N∇2 + 2�̃s)fNz − 4αm∗D̃N∇fN‖

+ T̃
(1)
NS(fNz − fSz) + T̃

(1)
NM (fNz − fMz),

where the labels ‖ and z denote projections of the vector f onto
the x,y plane and the z axis, respectively. Apart from tunneling
terms, these equations resemble well-known spin-diffusion
equations [51–54], where spin-charge coupling effects have
been neglected. However, in Eq. (18) the spin-diffusion
and D’yakonov-Perel spin-relaxation coefficients D̃N and
�̃s , respectively, are renormalized by the superconductor
proximity effect. The renormalization factor is the same
for both transport parameters, such that D̃N/DN = �̃s/�s =
(1/4)Tr[1 − gr

Nga
N ], where DN = v2

F τsc/2 and �s = 2h2
kF

τsc.
The couplings to the superconductor and injector layers are
given by

T̃
(1)
NS = TNS

4
Tr

[(
gr

N − ga
N

)(
gr

S − ga
S

)]
,

T̃
(1)
NM = TNM

4
Tr

[(
gr

N − ga
N

)(
gr

M − ga
M

)]
, (19)

where gr
M − ga

M = 2τ3. It follows from Eqs. (17)–(19) that the
injector spin-distribution function plays the role of a source
in Eqs. (18). At low temperatures, the spectral power of this
source is distributed in the energy range ω � μs � |�|. At
these energies, the tunnel coupling between the normal and
superconductor layers is weak because gr

S − ga
S in T̃

(1)
NS is finite

only due to subgap quasiparticle states. The contribution of
these states is given by the small third term of g

r(a)
S in Eq. (13).

In bounded systems, Eqs. (18) must be appended by
boundary conditions. For example, in Fig. 1 one needs BCs
at the edges, y = ±w/2, where w is the width of the bilayer.
A generalization of BCs that takes into account Rashba SOC
has been discussed in Sec. II B. It can be achieved by the
substitution ∇y → ∇̃y in Eq. (10). By setting at the edges
γ = 0 and multiplying Eq. (10) by ĝi , we get ∇̃y ĝi = 0. Since
the y-independent retarded and advanced functions are scalars
in spin space, the latter equation may be reduced, with the help
of Eq. (16), to a set of equations for vector components of the
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spin distribution function. These equations have the form

∇yfz + 2αm∗fy = ∇yfy − 2αm∗fz = ∇yfx = 0, (20)

where all functions are taken at y = ±w/2. The same
equations take place for the spin density in normal systems
if the diffusive spin current parallel to the y axis becomes zero
at the hard-wall boundary [55–58]. Therefore, Eqs. (20) for
the distribution function seem reasonable, although this issue
deserves a separate study.

Due to spin precession in the Rashba field, the boundary
conditions Eq. (20) always mix various spin components. For
example, if the injected spin polarization in Eq. (17) is initially
oriented parallel to the y axis and homogeneous in the y

direction, it will rotate toward the z axis during propagation
along the strip. Therefore, it is impossible to observe a
pure spin-galvanic effect in bounded systems, because in the
presence of z-polarized spins the inverse spin-Hall effect also
takes place. When the strip width is much larger than the spin
diffusion/precession length, lso = 1/αm∗, one may neglect the
boundary conditions. In this case, the solution of Eq. (18) is
fNx = fNz = 0, and fNy depends only on the x coordinate if
fM is chosen in the form of Eq. (17) with s parallel to the y

axis. By assuming in Eq. (18) 2T
(1)
NM (x) = T

(1)
NM [θ (x + b/2) +

θ (x − b/2)], where θ (x) is the step function, this solution can
be obtained in the form

fNy = Aθ

(
b

2
− |x|

)
(1 − B cosh 2xκ ′)

+ABθ

(
|x| − b

2

)
κ ′

κ
sinh bκ ′e−2xκ , (21)

where A = T̃
(1)
NMfMy/(�̃s + T̃

(1)
NM ), B = κ(κ cosh bκ ′ +

κ ′ sinh bκ ′)−1, κ = 1/lso, and 4κ ′2 = 4κ2 + (T̃ (1)
NM/D̃N ). We

neglected in Eq. (21) a leakage of the spin polarization into
the superconductor. Also, it was assumed that �̃s � T̃

(1)
NS . The

opposite case of a narrow strip with w � lso is considered in
Sec. III B 2.

2. Particle distribution function

In Eq. (16), the spin-independent scalar function f0 can be
represented in the form of a diagonal matrix in Nambu space
[45]. Accordingly, we have f0 = f

(1)
0 + τ3f

(2)
0 . Let us first

consider the Usadel equation for f
(1)
0 . It is important that the

spin injector pumps into the system not only nonequilibrium
spins, but also particles that are out of thermodynamic equi-
librium. Indeed, the spin-independent distribution function in
the injector is

f
(1)
0M = 1

2

(
tanh

ω + μs

kBT
+ tanh

ω − μs

kBT

)
. (22)

This function differs from the equilibrium distribution. Such
sort of a distribution function was considered in Ref. [59].
Let us look at what happens in the bilayer geometry shown in
Fig. 1. From Eqs. (9) and (11), the Usadel equations for f

(1)
0N

and f
(1)
0S can be obtained in the form

0 = −D̃N∇2f
(1)
0N + T̃

(1)
NS

(
f

(1)
0N − f

(1)
0S

)
+ T̃

(1)
NM

(
f

(1)
0N − f

(1)
0M

)
,

0 = −D̃S∇2f
(1)
0S + T̃

(1)
SN

(
f

(1)
0S − f

(1)
0N

)
. (23)

The renormalization factor for T̃
(1)
SN is the same as for T̃

(1)
NS

in Eqs. (19). The diffusion constant in the superconductor is
given by D̃S = (DS/4)Tr[1 − gr

Sg
a
S]. The solution of Eqs. (23)

is f
(1)
0S = f

(1)
0N = f

(1)
0M . This solution is valid as long as

the inelastic scattering was ignored. If inelastic relaxation
processes are taken into account, the distribution functions
in both layers will relax to the thermal equilibrium at a large
distance from the injection point. We will assume that the
temperature is small enough such that this distance is much
larger than the spin-orbit relaxation/precession length lso and
other characteristic lengths that determine the spin-charge
conversion. Since the quasiparticle’s energy distribution in
the superconductor’s layer is different from the equilibrium
one, the gap will decrease slightly. The distribution function
in the form of Eq. (22) produces a weak effect at kBT �
� and μs � � [59]. We will assume that this effect is
included in the gap. Such a gap depends slightly on x and
relaxes together with f

(1)
0S to its unperturbed value at large

distances.
The functions f

(2)
0S and f

(2)
0N control the kinetics of the

spin-charge conversion. Within the considered model, such
a function is zero in the injector, i.e., f

(2)
0M = 0. Therefore,

according to Eqs. (8) and (9), f (2) must be zero in the
entire system. On the other hand, these equations miss the
spin-charge coupling terms that are responsible for the direct
and inverse spin-Hall and spin-galvanic effects. These terms
play the role of nondiagonal elements that couple two sets
of Usadel equations for spin-independent and spin-dependent
Green functions, g0 and g, respectively. As will be shown
in the next section, in the transport equations for the spin-
independent function gK

0N the spin-charge coupling appears
as a term that is proportional to gK . The latter, in turn, can
be expressed through the spin-distribution function f that was
considered in Sec. II D 1. As a result, the effective ω-dependent
electromotive force E , which is given by Eq. (33), appears in
the equation for f

(2)
0N . By substituting Eq. (16) into the scalar

projection of Eq. (9) and adding the spin-charge coupling E ,
the transport equations for f (2) take the form

0 = −D̃
(2)
N ∇2f

(2)
0N − jN∇f

(1)
0N − eDN∇E

+ T̃
(2)
NS

(
f

(2)
0N − f

(2)
0S

) + T̃
(2)
NMf

(2)
0N ,

(24)
0 = −D̃

(2)
S ∇2f

(2)
0S − jS∇f

(1)
0S − Rf

(2)
0S

+ T̃
(2)
SN

(
f

(2)
0S − f

(2)
0N

)
,

where the energy-dependent transport parameters are [60]

jN(S) = DN(S)

4
Tr

[(
gr

N(S)∇gr
N(S) − ga

N(S)∇ga
N(S)

)
τ3

]
,

D̃
(2)
N(S) = DN(S)

4
Tr

[
1 − τ3g

r
N(S)τ3g

a
N(S)

]
,

R = DS

4
Tr

[(
gr

S + ga
S

)
�τ

]
. (25)

The tunneling parameters are given by

T̃
(2)
AB = (TAB/4)Tr

[(
τ3g

r
A − ga

Aτ3
)(

gr
Bτ3 − τ3g

a
B

)]
, (26)

where A and B take the values N , S, or M . In Eqs. (24), the
terms with the spectral supercurrents jN(S) are small because
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∇f
(1)
0N(S) are inversely proportional to the large inelastic

relaxation length, as follows from the above analysis. The
spectral supercurrents jN(S) are also small because they are
proportional to ∇χ . The latter is determined by the weak
spin-charge coupling. Therefore, these terms will be neglected.
Furthermore, the coupling to the injector may also be neglected
because the function f

(2)
0N changes its sign in the range of the

injector, which makes a leakage of f
(2)
0N into the injector at

b � lNM very inefficient.
The transport parameters in Eqs. (24) can be calculated

by using Eqs. (13) and (25). By taking into account only the
leading terms at ω � |�0|, we obtain

D̃
(2)
N = DNω2

ω2 − |�m|2 , D̃
(2)
S = DS, R = 2�0 exp iχ,

T̃
(2)
NS

TNS

= T̃
(2)
SN

TSN

= 2TSNω2

�0(ω2 − |�m|2)
. (27)

With these parameters, the kinetics of the charge imbalance
relaxation, which is controlled by Eq. (24), becomes clear.
Indeed, in the normal metal layer the electromotive force E
generates the nonzero f

(2)
0N . The latter, in turn, is related to the

electric potential according to the equation [45]

eφ = −1

8

∫
dω Tr

[
τ3

(
gr

N − ga
N

)]
f

(2)
0N . (28)

This potential implies the presence of a charge imbalance
that relaxes through electron tunneling into the adjacent
superconducting layer, where f

(2)
0S becomes zero relatively

fast due to the quasiparticle’s absorption by the condensate.
According to Eqs. (24) and (27), the characteristic relaxation
length of f (2) in the superconductor is the smallest one of lR
and lSN , which are given by

lSN =
√√√√ D̃

(2)
S∣∣T̃ (2)
SN

∣∣ = 1√
2ω|TSN |

√
|�0|DS

(
ω2 − �2

m

)
,

lR =
√

D̃
(2)
S

|R| =
√

DS

2�0
. (29)

It is seen from this equation that, except for a narrow region of
energies close to �m, the distribution function f

(2)
0S vanishes

within the superconductor’s coherence length lR . At the same
time, f

(2)
0N decreases in space only due to a slow leak into

the superconductor, within the length lNS = (D̃(2)
N /T̃

(2)
NS)1/2 =

(DN�0/TSNTNS)1/2, which is assumed much larger than lR .
Therefore, lNS determines the charge-imbalance relaxation in
the whole system. This mechanism is different from the well-
known charge-imbalance relaxation at superconductor–normal
metal interfaces, which involves inelastic electron-phonon
scattering [61–63]. A relaxation of the electric potential
is accompanied by a transformation of the electric current
of quasiparticles into the supercurrent. This issue will be
discussed in more detail in Sec. III B.

III. CALCULATION OF THE SPIN-CHARGE COUPLING
TERM IN USADEL EQUATIONS

A. Quantum corrections to the Usadel equations
and electric current

As was shown in the previous section, the Usadel equa-
tions, which were obtained within the main semiclassical
approximation, are decoupled into two independent sets of
equations for spin-singlet and spin-triplet Green functions. In
this section, the quantum correction, which leads to a mixing
of these two sets, will be calculated in first order with respect
to α/vF ∼ hkF

/μ. It follows from Sec. II that, as long as the
Fermi liquid effects are ignored, the retarded and advanced
functions stay scalar in spin space. Therefore, let us focus on
the Keldysh function. We start from the Dyson equation

(ωτ3 − HNτ3)GK
N = �r

N ◦ GK
N + �K

N ◦ Ga
N. (30)

In this equation, the Green function and self-energy depend on
two spatial coordinates, and “◦” denotes the integration over
an intermediate coordinate. Equation (30) can be simplified
by taking into account that the self-energies Eqs. (5) and
(6) are local functions of r and can be expressed through
the semiclassical angular averaged Green functions. Also,
one should take into account that G

r(a)
N depend weakly on

coordinates, as was discussed in Sec. II. By combining the first
term on the right-hand side of Eq. (30) with the expression on
the left, one may express the perturbed part of the Keldysh
function in the form GK = Gr ◦ �K ◦ Ga . Furthermore, by
transforming GK to the mixed representation Eq. (2) and
integrating it over k, the Fourier-transformed spin-independent
part of gK (q) can be expressed as

gK
0N (q) = 1

2

∑
k

Trσ
[
Gr

Nk+ q
2
�K

N (q)Ga
Nk+ q

2

]
. (31)

One may obtain the Usadel equation (9) for the Keldysh
function by expanding G

r(a)
Nk± q

2
in q, ω, and hk and performing

the integration over k within the main semiclassical approx-
imation. That means that all slowly varying entries in the
integral are evaluated at k = kF . Since we are interested in
quantum corrections, such terms have to be expanded near
kF . The task, however, is not so vast, because the goal is
to calculate only the terms that couple the spin-independent
and spin-dependent functions gK

0N and gK
N . Therefore, only the

spin-dependent part of �K
N (q) will be taken into account in

Eq. (31). Furthermore, contributions to �K
N (q) that are caused

by electron tunnelings to the injector and superconductor are
much smaller than the self-energy associated with the elastic
impurity scattering. Therefore, they will be ignored below.

At the small frequency ω � �0, the retarded and advanced
functions are obtained from Eqs. (1) and (5) in the form

G
r(a)
Nk = 1

4

∑
σ=±1

[
g

r(a)
N + 1

λ� − ξσ

+ g
r(a)
N − 1

λ� + ξσ

]
[1 + σ (nσ )], (32)

where ξσ = ξ + σhk, n = hk/hk, � =
√

(ω ± iδ)2 − (�m)2,
and the factor λ is given by λ� = � + iω/2τsc|ω|. The
functions g

r(a)
N in this equation are given by Eq. (13), where

the phase factor in the order parameter is ignored, so that
�τ = �0τ2. This simplification is dictated by the accuracy of
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nonclassical corrections, which must be linear in hkF
/μ. Since

the phase is small on this parameter, one must neglect it in
g

r(a)
N . For the same reason, the electric potential φN should

also be neglected. In view of the relatively large scattering
rate 1/τsc, the calculation of the integral over ξ in Eq. (31)
can be performed by expanding the denominators in Eq. (32)
with respect to hk , �, and q. Also, hk±q/2, nk±q/2, and ξk±q/2

should be expanded with respect to q. It is also crucial to
take into account the k dependence of hk near the poles of
Eq. (32). Some details of such a calculation may be found in
Ref. [14]. A lengthy algebra yields the leading term for the
quantum correction of the order of (q/kF )(hkF

τsc)3. In turn,
the “electromotive” force E in Eq. (24) is given by

eE = h2
kF

τ 2
sc

2DN

∇kTr
[
τ3hkgK

N

]
. (33)

A similar expression controls the spin-galvanic effect in
Josephson junctions [20] and normal systems [64]. In the latter
case, gK

N should be substituted for the spin density.
In addition to the Usadel equations, the nonclassical

corrections also appear in the electric current. The current
is expressed from Eqs. (30) in the form

J(q) = ie

4

∫
dω

2π

∑
k

Tr
[
vkτ3G

K
Nk(q)

]

= ie

4

∫
dω

2π

∑
k

Tr
[
vkτ3G

r
Nk+ q

2
�K

N (q)Ga
Nk+ q

2

]
, (34)

where vk = ∇k(εNk + hkσ ). The sought-after nonclassical
correction Jnc can be obtained from the spin-dependent part
of �K

N (q), similar to the above calculation of the correction to
the Usadel equation. In the coordinate representation, it takes
the form

Jnc(r) = eτscNFN

4

∫
dωTr

[
�s∇k

(
hkτ3gK

N

)
− 2DNα2m∗(ez × ∇r)τ3g

K
Nz

]
. (35)

The first term in the integrand represents the spin-galvanic
effect. In the case of Rashba SOC, this term gives rise to
the electric current in the x direction if spins are polarized
parallel to the y axis. The corresponding example of spin
injection was considered in Sec. II D. The second contribution
to the current stems from spins polarized in the z direction.
This is the inverse spin-Hall effect. It has been noted above
that in bounded systems, whose size is comparable to lso, it is
difficult to distinguish these two effects, because gK

Nz and gK
Ny(x)

are coupled to each other via the boundary conditions. This
situation will be analyzed in more detail in the next section.

The total current J(q) consists of Jnc and the usual diffusion
currents [41,44,45] of quasiparticles in the normal metal and
superconductor, as well as supercurrents due to the order-
parameter phase gradient in both layers. We thus obtain for
the current density in the bilayer

J = Jnc + e

∫
dω

(
NFN

D̃
(2)
N ∇f

(2)
0N

+ dSNFS
D̃

(2)
S ∇f

(2)
0S

) +
(

enS

2m
+ enN

2m∗

)
∇χ, (36)

where nS = 2πmDSdSNFS
�0 tanh(�0/2kBT ) and nN =

2πm∗DNNFN
�m tanh(�m/2kBT ) are 2D densities of super-

conducting electrons in the normal and superconducting layers
[45]. Note that NFN

is the state density of a 2D gas. The 2D
density of states in the superconductor film is given instead by
dSNFS

. In Eq. (36), the supercurrent in the normal layer may
be neglected, because �m � �0. Moreover, one should expect
that dSNFS

� NFN
if the superconducting film is thick enough,

or if the normal system is a 2D electron gas in a semiconductor
quantum well. The phase of the order parameter can be found
from the continuity equation ∇J = 0. When the operator ∇
is applied to Eq. (36), one should take into account Eq. (24),
Eq. (26), and the relations between the tunneling parameters
TNS and TSN , which were discussed below Eq. (11). Also,
Eqs. (33) and (35) give

∇Jnc = σN

2

∫
dω ∇E, (37)

where σN = 2e2DNNFN
is the conductivity of the normal

metal. In this way, the equation for the phase can be obtained
in the form

edSNFS

∫
dω Rf

(2)
0S − enS

2m
∇2χ = 0. (38)

The above equation has been obtained from the charge
conservation. It is instructive to derive it in a different way,
such as directly from the gap equation. The latter has the form

�

λ
= 1

8

∫
dω Trτ

[
τgK

0S

]
= 1

8

∫
dω Trτ

[
τ
(
gr

S − ga
S

)
f

(1)
0S + τ

(
gr

S + ga
S

)
f

(2)
0S

]
, (39)

where λ is the electron-electron pairing constant. The first
term in the integrand is determined by quasiparticle energies
above the gap where, as shown in Sec. II D 2, at kBT � �0

and μs < �0 the distribution function f
(1)
0S = tanh(ω/2kBT ),

while the retarded and advanced Green functions are given
by Eq. (14) (in the rotated representation). The integral of
the unperturbed function, which is given by the first term in
Eq. (14), cancels with the left-hand side of Eq. (39), while
the second term in Eq. (14) gives (1/dS�0)(enS/2m)∇2χ . By
taking into account Eq. (25), it is easy to see that Eq. (39)
coincides with Eq. (38).

B. Electric current induced by spin injection

1. Current in a wide strip

Let us consider a simple situation of a wide enough strip,
such that boundary effects at y = ±w/2 may be neglected.
Also, the injected spin polarization will be assumed uniform
in the y direction. In the case of Rashba SOC, this example
was considered in Sec. II D 1 with spins polarized in the y

direction. Hence, in Eq. (35) only the first term in the integrand
contributes to Jnc. From Eq. (33) the current density Jnc in the
x direction can be expressed in terms of the “electromotive
force,”

Jnc = σN

2

∫
dω E . (40)

064517-8



SUPERCURRENT GENERATION BY SPIN INJECTION IN . . . PHYSICAL REVIEW B 95, 064517 (2017)

As seen from Eq. (33), Eq. (21), and Sec. II D 1, spatial
variations of Jnc are determined by the larger of the Dyakonov-
Perel spin-relaxation length lso and the size of the injector. In
turn, both lengths have been assumed much smaller than other
characteristic lengths of the system, such as lNS , lSN , and lR .

Let us consider a solution of Eqs. (24) that vanishes at large
x. This takes place in a situation when the length of the strip in
Fig. 1 is larger than all characteristic lengths, and an external
bias is absent. By substituting this solution into the second
term of Eq. (36) and combining it with Jnc, we obtain the
dissipative quasiparticle current Jd in the form

Jd = σN

2

∫
dωU ir1r2

r1 − r2

(
ei

√
r1|x|

√
r1

− ei
√

r2|x|
√

r2

)
, (41)

where U = ∫
dx E , and r1 and r2 are given by

r1 = i

l2
R

(
l2
R + il2

NS − l2
NSl

2
Rl−2

SN

)
(
l2
R + il2

NS

) ,

r2 = − 1

l2
NS

(
l2
R + il2

NS + l2
NSl

2
Rl−2

SN

)
(
l2
R + il2

NS

) . (42)

In Eq. (41), the signs of
√

r1(2) are chosen such that
Im(

√
r1(2)) > 0. Since lR � lNS and lSN , we have r1 � i/ l2

R

and r2 � i/ l2
NS , so that r1 � r2. Hence, at a large distance

the quasiparticle current is given by the second term in the
parentheses in Eq. (41), which in turn is determined by the
Andreev reflection.

To determine the total current, one needs a boundary
condition for the order parameter at a large distance. For this,
let us assume that the wire has the form of a closed loop with
length L. A change of the phase χ on this length is 2πn,
where n is a whole number. By integrating the current density
Eq. (36) over the strip area and taking into account that the
total current I is constant and the distribution functions are
periodic, we obtain

nw
πenS

m
+

∫
dx dy Jnc = IL, (43)

where the integral of Jnc can be obtained from Eq. (40). It
should be noted that Eq. (43) is valid at an arbitrary relation
between L and the relaxation length lNS of the quasiparticle
current. If L � lNS , most of the current is formed by the
condensate, while in the opposite case the current is produced
by quasiparticles. In the former case, the second term in
Eq. (43) plays the role of an effective magnetic flux through the
loop, similar to the equilibrium magnetoelectric effect induced
by the Zeeman field [14]. In the latter case, the electric current
has a mostly dissipative nature, and it is more reasonable to
describe the effect in terms of an effective electromotive force,
which is associated with a nonequilibrium spin polarization,
as in the case of the spin-galvanic effect in normal metals.
The number n in Eq. (43) must be chosen to minimize the
energy of the moving condensate, similar to the Little-Parks
effect [65]. It is likely that the strong enough spin-galvanic
effect might cause a sort of Little-Parks oscillations in the case
of L � lNS . A more realistic possibility, given a weakness
of the effect, might be a measuring of a shift in Little-Parks
oscillations produced by an external magnetic field. Also, the
time-modulated spin injection can significantly affect a flux

FIG. 2. The effective electric voltage induced by the spin injection
as a function of the chemical potential difference of two injected spin
projections. The voltage is given in units of the effective voltage,
which is calculated for a normal metal without the superconducting
proximity effect (see the text). The chemical potential is measured in
units of the minigap in the spectrum of the normal layer. The curves
(from top to bottom) are calculated at 2TNM/�s = 0.005, 0.01, 0.05,
and 0.1.

qubit when the qubit’s resonance frequency coincides with the
modulation frequency. In this case, the spin-injection effect
will be similar to an oscillating magnetic flux [66].

Note that in superconducting systems, the spin-galvanic
effect is very similar to the equilibrium magnetoelectric effect,
which is produced by a Zeeman field. In particular, in both
cases they result in an effective magnetic flux [14]. There is,
however, a fundamental difference. The Zeeman field gives rise
to triplet Cooper pairs, whose dynamics in the Rashba field and
conversion to singlet pairs lead to the magnetoelectric effect.
In contrast, the spin injection does not produce any changes
in the condensate wave function. It modifies the quasiparticle
distribution function only.

The spin-injection effect becomes stronger at large SOC.
Within the considered theory, a strength of this coupling is
restricted only by the smallness of the semiclassical parameter
α/vF . Also, the effect increases with the larger contact size b of
the injector. Therefore, the most interesting case corresponds
to b � lso in Eq. (21). In Fig. 2, the electromotive voltage U ,
which is defined as U = ∫

E dx dω, is shown as a function
of the injection strength μs at various TNM/�s . In the normal
layer at small temperature, this voltage is a linear function of
μs , namely UN = 4(b/lso)(TNM/μN )μs . In Fig. 2, this value is
used as a normalization factor. The nonlinear dependence of U

on μs in Fig. 2 is associated with the presence of the minigap in
the quasiparticle spectrum. By taking b/lso = 5, TNM/μN =
10−3, and μs = 10−4 eV, we obtain U ∼ UN ∼ 10−6 V. The
above evaluation of U is mostly restricted by limitations of
the theory, which does not allow us to take larger TNM , μs ,
and α. One cannot exclude the possibility that larger U may
be reached within a more general theory.
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2. Current in a narrow strip

As noted in Sec. II D 1, in bounded systems SOC may
strongly modify the spatial distribution of the injected spin
polarization. In the case of a narrow strip, whose width is less
than the spin-relaxation length, one must take into account
the boundary conditions Eq. (20). The importance of such an
analysis becomes evident from Eq. (35) for the nonclassical
electric current. Indeed, in the case of Rashba SOC this current
can be written in the form

J x
nc = eτscDNNNF

2m∗l2
so

∫
dω Tr

[
2αm∗τ3g

K
Ny + ∇yτ3g

K
Nz

]
. (44)

Since, according to Eq. (16), gK ‖ f, one can apply the
boundary conditions Eq. (20) to the integrand of Eq. (44).
As a result, J x

nc vanishes at the strip boundaries y = ±w/2,
because just the expression 2αmfNy + ∇yfNz enters in the
integrand of Eq. (44). Hence, in the case of a narrow strip,
whose width w � lso = 1/αm∗, one could expect that J x

nc is
small inside the strip. On the other hand, the Dyakonov-Perel’
spin-relaxation time increases dramatically in narrow wires
[51,67]. Therefore, the spin accumulation in the strip increases
and may compensate for a cancellation of the two terms in
Eq. (44). To check that such a compensation indeed takes
place, let us assume that the injector width b is small (b � lso).
Also, in the case of a weak metal-injector coupling, one may
neglect the back flow of spins from the normal layer. This
means that only fM must be retained in the tunnel coupling
term T̃

(1)
NM (fN − fM ) in Eqs. (18). A weak coupling to the

superconductor will also be neglected. It is easy to calculate the
area integral of J x

nc, which enters in Eq. (43). After integration
of Eqs. (18) over x, the remaining equations may be solved by
expanding fyN and fzN in power series in y, while fxN = 0. In
this way, we obtain∫

dx dy(2αmfNy + ∇yfNz) = −2bαm∗ T̃
(1)
NM

�s

fyM. (45)

Let us compare this result with the similar integral obtained in
the case of a wide strip. For such a strip, fNz may be neglected,

while fNy is given by Eq. (21). By expanding this expression
with respect to small b/lso, we obtain the same result as
Eq. (45). Therefore, there is no difference between wide and
narrow wires. On the other hand, in narrow wires the slower
spin relaxation causes an enhanced leak of the spin polarization
into the injector and the superconductor. Consequently, such
an effect may become important at larger b and TNM .

IV. CONCLUSION

It has been shown that the spin-galvanic effect in a
hybrid superconductor–Rashba metal bilayer system also has
a hybrid character. The injected spin polarization induces both
a dissipative quasiparticle current in the normal layer and a
supercurrent in the superconducting layer. It depends on the
size of the system, and which of the two effects dominates.
There is some characteristic length where a conversion
of the quasiparticle’s current into the supercurrent through
the Andreev reflection occurs. In either of the two cases,
the current of quasiparticles is strongly influenced by the
proximity-induced minigap in the electron spectrum.

It should be noted that in bounded systems, one cannot
observe a pure spin-galvanic effect that is produced by in-plane
polarized spins. In such systems, Rashba SOC always rotates
these spins toward the z axis. The out-of-plane polarization, in
turn, gives rise to the inverse spin-Hall effect. Therefore, there
is always a combination of the two effects. A special case of a
narrow strip has been considered, whose width is much smaller
than the spin precession length in the Rashba field. In such a
situation, the spin-galvanic and the inverse spin-Hall effects
tend to cancel each other. Due to the enhanced spin relaxation
time in such a narrow wire, the overall effect, however, turned
out to be the same as in a wide strip.

Since the spin-galvanic effect in the superconducting
condensate can be interpreted as an effective magnetic flux, it
adds a new functionality to superconducting quantum circuits,
and it creates a bridge between magnetic and superconducting
circuits.
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