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Shapes of rotating superfluid helium nanodroplets
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Rotating superfluid He droplets of approximately 1 μm in diameter were obtained in a free nozzle beam
expansion of liquid He in vacuum and were studied by single-shot coherent diffractive imaging using an x-ray
free electron laser. The formation of strongly deformed droplets is evidenced by large anisotropies and intensity
anomalies (streaks) in the obtained diffraction images. The analysis of the images shows that in addition to
previously described axially symmetric oblate shapes, some droplets exhibit prolate shapes. Forward modeling
of the diffraction images indicates that the shapes of rotating superfluid droplets are very similar to their classical
counterparts, giving direct access to the droplet angular momenta and angular velocities. The analyses of the
radial intensity distribution and appearance statistics of the anisotropic images confirm the existence of oblate
metastable superfluid droplets with large angular momenta beyond the classical bifurcation threshold.
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I. INTRODUCTION

Starting with Newton, the equilibrium shapes of rotating
classical bodies held together by gravitation have attracted
great interest [1]. It has been shown that the shapes of rotating
liquid droplets held together by capillary forces belong to the
same class of solutions and can serve as laboratory scale em-
ulations of astronomical objects [2]. Liquid drop models have
also been applied to predict the shapes of rotating atomic nuclei
[3]. Equilibrium shapes of classical rotating droplets have been
extensively studied theoretically [2,4–7] and experimentally
[7,8]. A droplet that is spherical at rest acquires an oblate
axially symmetric shape upon rotation and, with increasing
angular momentum, turns into a two-lobed figure that is
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elongated perpendicular to the rotational axis, as discussed
in more detail in Sec. IV. This paper extends the study of
equilibrium shapes of rotating liquids from classical, viscous
droplets to viscosity-free, superfluid droplets. Classical rigid
body rotation (RBR) is not feasible in a superfluid droplet,
which instead rotates through the emergence of a collection
of quantum vortices [9–12]. Each vortex is characterized by a
quantized velocity circulation κ = h/M , which is the ratio of
Planck’s constant, h, and the mass of the 4He atom, M . Thus,
the velocity field in a superfluid droplet deviates considerably
from that in RBR, which may have an impact on the droplet
shape and stability. Furthermore, viscous energy dissipation
in classical droplets facilitates shape transformations whereby
the total angular momentum is conserved but the total kinetic
energy is reduced. Negligible viscosity, therefore, may cause
some unique shapes of superfluid droplets, which are of partic-
ular interest. Vortices in helium droplets have been considered
theoretically [13–15] and were searched for experimentally by
levitating superfluid 4He droplets in inhomogeneous magnetic
fields [16]. It was also observed that charged droplets in a
rotating electric field develop pronounced deformations that
were ascribed to the excitation of capillary waves travelling
along the droplet’s equator [17].

Very recently we have shown that swiftly rotating 4He
droplets of submicrometer size may be produced from a
cryogenic jet expansion into vacuum and that the droplet
shapes can be studied via scattering of radiation from an x-ray
free-electron laser (XFEL) [18]. X-ray diffraction imaging
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FIG. 1. Diffraction images from He droplets obtained with the rear pn-CCD (1024 × 1024 pixels) detector. The logarithmic intensity color
scale is shown on the left. Images (f)–(j) in the bottom row contain streaks, whereas images (a)–(e) in the upper row exemplify patterns with
large aspect ratios devoid of any streaks. The blank horizontal stripe results from the gap between the upper and lower plates of the pn-CCD
detector. Both pn-CCD plates have a rectangular cut next to the gap to accommodate the primary x-ray beam. The vertical stripes in (a), (b),
(c), and (h) are caused by imperfect data readout for strong diffraction images. The empty regions near the top and bottom edges of the images,
which are particularly noticeable in panels (a)–(c), are the shadows of the front pn-CCD plates. All images were obtained from bare He droplets
except in panel (i), which was obtained upon doping with Xe atoms, as described in the text.

of Xe doped He droplets revealed Bragg spots, confirming
the existence of quantum vortex lattices that led to the
condensation of 100–200 Xe clusters in a periodic array
[18]. Positions and shapes of individual vortices could be
deduced from diffraction images without Bragg spots by
using a recently developed phase retrieval algorithm [19,20].
It was also found that about 50% of the droplets produce
anisotropic diffraction patterns that can be described by
concentric elliptic rings. Such elliptic diffraction patterns were
ascribed to pseudospheroidal shapes of rotating droplets with
aspect ratios (ARs) up to AR = 1.5. In addition, approximately
1% of the diffraction images exhibit streaks, i.e., pronounced
intensity anomalies radiating away from the image center
[see Figs. 1(f)–1(j)] [18]. These images cannot be described
by elliptical diffraction contours and exhibit very high ARs
(1.5 < AR < 2.3). In Ref. [18], we assigned such images
to superfluid droplets that remain axially symmetric beyond
their classical stability range, in agreement with the predicted
extended range of stability in rotating inviscid droplets [4]
and recent density functional theory (DFT) calculations [21].
However, the question remained whether prolate superfluid
droplets may exist as well for a sufficiently high degree
of rotational excitation. Here, we report on a new set of
single-shot x-ray coherent diffractive imaging experiments
to clarify these questions. The existence of prolate droplet
shapes is unambiguously demonstrated by the observation of
diffraction images with curved streaks and the appearance of
streaks in images with small ARs. A Fourier transform based
reconstruction of the droplets’ contours reveals the existence of
pronounced dimples, characteristic for prolate droplet shapes
at high angular momenta. On the other hand, the formation of
oblate helium nanodroplets beyond the stability range of their
classical counterparts was confirmed by diffraction images
with elliptical contours having AR > 1.5. The abundance
statistics of different classes of strongly deformed droplets

in the beam is in agreement with the presence of both strongly
deformed oblate as well as prolate droplets in the beam.
The diffraction images can be well described by employing
equilibrium shapes of either axially symmetric oblate or
triaxial prolate classical droplets. It follows that the shapes of
rotating submicron superfluid droplets are very similar to those
of their classical counterparts, giving access to the droplets’
angular momenta and angular velocities.

II. EXPERIMENTAL

The experiments were performed at the Atomic, Molec-
ular and Optical (AMO) Sciences Instrument of the Linac
Coherent Light Source (LCLS). In contrast to our previous
experiments (run 1) [18], which employed radiation with
λ = 0.826 nm(hν = 1.5 KeV), the latest experiments (run 2)
were performed at λ = 1.46 nm(hν = 850 eV). The x-ray
beam in experimental run 2 also had a smaller nominal focus
size of ≈2 μm as compared to ≈5μm in experimental run 1
[18]. As a result, diffraction signals at larger scattering angles
could be detected, revealing additional information on the
three-dimensional (3D) shapes of the droplets. These latest
experiments utilized the new LAMP soft x-ray endstation
[22,23]. Experiments with beams of helium nanodroplets
have been extensively documented elsewhere [24–27]. Helium
droplets with radii R = 300 − 1000 nm (NHe = 109 − 1011)
were produced upon fragmentation of liquid 4He expanding
continuously into vacuum through a 5 μm diameter nozzle
at a temperature of 5 K and a backing pressure of 20 bar
[24,28,29]. The droplets rapidly cool down via evaporation
and became superfluid at T < 2.17 K. As previously observed
[18], the droplets have considerable angular momentum,
which likely originates from the inhomogeneous flow of
helium through the nozzle during the expansion [30]. After
travelling across a distance of ≈700 mm within approximately
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TABLE I. Parameters obtained from the diffraction images in Fig. 1: a and b are the semiminor and semimajor axes, respectively, of the
droplet projections onto the diffraction plane; AR = b/a, α is the power of the intensity dependence vs scattering angle along the long axes of
the diffraction images; θMAX is the maximum scattering angle at which a discernible scattering signal was recorded. The total number of the
recorded photons is also listed.

Image in Fig. 1. Run number
as in the Supplemental Material [34] b(nm) a(nm) AR α θMAX (rad) Number of photons

(a) 162 339 2 419.6 379.6 1.105 3.982 0.032 4.661 × 106

(b) 155 153 6 471.6 351.9 1.340 3.985 0.038 4.314 × 106

(c) 160 315 2 503.8 372.6 1.352 3.849 0.034 3.081 × 106

(d) 160 368 0 395.6 243.8 1.623 3.909 0.027 4.761 × 105

(e) 157 772 8 469.3 331.2 1.417 4.062 0.020 3.134 × 105

(f) 157 331 2 366 229 1.597 3.662 0.039 8.453 × 105

(g) 162 443 2 553 331 1.671 3.470 0.030 3.172 × 105

(h) 158 246 4 452 236 1.920 3.192 0.129 2.070 × 106

(i) 174 451 2 550 308 1.787 3.495 0.045 1.459 × 106

(j) 162 235 2 660 398 1.659 3.702 0.032 8.502 × 105

4 ms, the droplets traversed the focus of the XFEL beam
(pulse energy Epulse ≈ 0.7 mJ, repetition rate 120 Hz). The
duration of the x-ray laser pulses (60 fs) is much shorter
than the typical droplet rotational period (>100 ns), and the
probability to find a droplet within the tight focus of the
x-ray beam at any given time is less than 10−3. Thus, every
diffraction image represents the instantaneous configuration
of a single helium droplet. The images were recorded using
two pn-charge-coupled device (pn-CCD) detectors comprising
about one million 75 × 75 μm2 pixels each that were placed
at distances of ≈370 mm (front) and ≈735 mm (rear) from
the interaction center [31–33]. Each detector consisted of
two (75 × 37.5 mm2) pn-CCD panels that were separated by
32.8 mm and 1.5 mm gaps for the front and rear detectors,
respectively, to let the primary x-ray beam pass.

III. RESULTS

Figure 1 shows some characteristic diffraction images from
He droplets obtained with the rear pn-CCD detector, which are
displayed in a logarithmic scale. The images are analyzed in
terms of the AR of the diffraction contours, which is the inverse
of the AR of the droplet’s projections onto the detector plane,
see Ref. [18] and its supplemental material. The values for the
AR as well as the corresponding major and minor semiaxis of
the droplet’s projections obtained from the images in Fig. 1
are summarized in Table I. The complete collection of images
discussed in this paper and the results of the corresponding
data analysis are presented in section S1 of the Supplemental
Material [34]. Figure 1(a) shows an image with notice-
able ellipticity of the diffraction contours, corresponding to
AR = 1.105.

Figures 1(b)–1(e) show strongly distorted images with AR
in the range of 1.3 to 1.6. Figures 1(f)–1(j) show even stronger
distorted diffraction images with AR in the range of 1.6
to 1.9. These images also reveal some pronounced streaks,
i.e., regions of high intensity along the direction of the long
axis in the diffraction image, which extend well beyond the
continuous diffraction contours. Large AR and streaks in the
diffraction images indicate some pronounced deformations
of the droplets, which are the focus of the present paper.

Figures 1(f)–1(h) and 1(j) show all four streaked events, from a
total of 447 images obtained from bare helium droplets during
experimental run 2. This ≈1% abundance of streaked images
has also been observed during experimental run 1 [18]. The
number of images obtained from experimental run 2 is smaller
than the one obtained from run 1 due to a shorter acquisition
time. Figure 1(i) shows a streaked event for Xe doped droplets.
Scattering contributions from the Xe content lead to additional
substructures in the diffraction pattern, as can be seen in the
middle of the upper and lower half-images.

While differently shaped droplets may exhibit very sim-
ilar two-dimensional (2D) projections in the detector plane,
the probability to observe, for example, a specific AR
of the projection can vary significantly. Therefore, we analyze
the statistical distribution of ARs for different classes of
diffraction images, as illustrated in Fig. 2. Figure 2 shows a
histogram of the abundance of streaked diffraction contours in

FIG. 2. Abundance of streaked (red) and large AR (blue) events
as a function of their aspect ratios. The data includes measurements
with bare droplets as well as weakly Xe-doped droplets (NHe/NXe >

1500). In total, 3140 diffraction images of bare and Xe-doped He
droplets were obtained during the two experimental runs.
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FIG. 3. Correlation between the decay exponent α of the q-
dependent scattering intensity and the AR for streaked (red) and large
AR images (blue). The solid pink curve corresponds to the expected
trend for axisymmetric classical rotating droplets imaged edge-on.
The data points measured with weakly Xe doped droplets are marked
by open circles.

experimental runs 1 and 2 as a function of AR (red bars). It also
contains the frequency count for all images with AR > 1.3 that
do not exhibit well defined streaks, such as in Figs. 1(a)–1(e)
(blue bars). In the following, these data will be referred to
as “large AR events.” About 98% of the obtained images are
characterized by 1 < AR < 1.3 and are not discussed in this
paper.

The data in Figs. 2–4 contain the results of all streaked and
large AR events from experimental runs 1 and 2 for which
ARs could be determined. It is seen that the streaked images
concentrate in the range 1.6 < AR < 2.1, and the largest
observed aspect ratio is AR = 2.39. Only two streaked images
were obtained with AR < 1.6. In contrast, the probability of
large AR events is distributed almost uniformly across a nar-

FIG. 4. Correlation between semimajor b and semiminor a axis
for images with streaks. The solid line represents a linear fit to the data
points, b = 〈AR〉 · a, giving 〈AR〉 = 1.86 ± 0.05. The data points
in red correspond to AR < 1.6 and are not included in the linear fit
calculation.

rower range of 1.35 � AR � 1.85. The different abundance
distributions of streaked and large AR events indicate that the
strongly deformed helium droplets in the beam belong to two
distinct classes of shapes.

This conclusion is further supported by the detailed analysis
of the intensity distributions within the scattering patterns.
The appearance of a streak along a particular direction
indicates that the scattering object may not be described
by a spheroid. For a fixed azimuthal angle of a diffraction
image, the scattering intensity scales as the negative power,
α, of the scattering angle, θ , i.e., I ∝ θ−α , see section S2
of the Supplemental Material [34]. Along azimuthal angles
away from the long axes of the images, the fits described
in section S2 consistently gave α ≈ 4, as expected for a
spheroid or an ellipsoid. However, along the long axis of
the diffraction images, exponents α in the range of 3–4 were
found, signifying a considerable deviation of the droplets from
ellipsoidal shapes, as will be discussed in the following.

Figure 3 shows the values of α along the long axis of the
images analyzed in Fig. 2. Data points from images with visible
streaks are shown as red circles, whereas the data points from
large AR events are shown as blue circles. Open circles signify
He droplets with a low level of Xe doping, while solid circles
correspond to pure droplets. Evidently, data points from bare
and slightly Xe doped droplets follow the same trends within
the scatter of the data. The large AR events concentrate in the
upper part of Fig. 3 and vary across a range of α = 4 ± 0.2.
On the other hand, the streaked events are concentrated more
toward the center of Fig. 3 with α = 3.2 − 3.7. These different
distributions again indicate the existence of the two different
classes of shapes, such as oblate and prolate, as will be further
discussed in Sec. V A.

Figure 4 shows the correlation between the semimajor
axis, b, and the semiminor axis, a, for streaked images with
discernible diffraction rings. It can be seen that streaks are
associated with droplets with semiminor and semimajor axes
in the range of 200–400 nm and 400–700 nm, respectively.
The average AR(〈AR〉 = 1.86) is indicated by a linear fit to
the data (red line). This rather tight concentration of sizes
and ARs of strongly deformed droplets in the beam remains
to be explained. In comparison, an ample amount of weakly
deformed droplets with average radii in the range of R =
100 − 300 nm and R = 500 − 1500 nm has been observed
(not shown). Additionally, five images with streaks (see section
S1 in the Supplemental Material [34]) were observed for
droplets with semiminor axes beyond 1000 nm. However the
semimajor axes of these droplets could not be determined since
the distance between diffraction contours becomes comparable
to the detector pixel size toward the corresponding azimuthal
angles.

The diffraction image in Fig. 1(h) is particularly intense and
extends to sufficiently large scattering angles such that it is also
detectable with the front CCD detector. It must stem from an
event for which the imaged droplet was very close to the center
of the XFEL beam focus. Figure 5 shows a composite image
that was obtained by combining the data from the front and
back detectors upon appropriate scaling. The data from the
rear detector [same as that in Fig. 1(h)] are contained within
the red rectangle. The streak in Fig. 5 exhibits a noticeable
curvature. In comparison, most of the other recorded streaks
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FIG. 5. Extended diffraction image derived by combining the
rear detector data of Fig. 1(h) (within the red rectangle) with the
appropriately scaled image from the front detector (outside the red
rectangle). The logarithmic intensity color scale is shown on the left.

appear as straight stripes within the accuracy of the experiment.
The average curvature, χ = �	

�s
, of the streak in Fig. 5 is

χ = 0.90 rad × m−1, where �	 is the angular deviation of the
streak from a straight line along its length �s. An additional
distinction of the image in Fig. 5 is that it exhibits nodes (weak
intensity region) between the streak and the diffraction rings,
i.e., a discontinuity of the diffraction pattern, while most of the
other observed streaks merge smoothly into the ring patterns at
small scattering angles. Moreover, two satellite streaks emerge
with increasing scattering angles in Fig. 5.

IV. SHAPES OF CLASSICAL ROTATING DROPLETS

For the purpose of assigning the observed diffraction
images to particular droplet shapes, it is instructive to review
the deformations of rotating classical droplets. The equilibrium
shape of a droplet rotating as rigid body is defined by the
balance between capillary forces from surface tension and
centrifugal forces. The stability diagram and corresponding
representative shapes for axially symmetric (D∞h) and two-
lobed (D2h) branches are shown in Fig. 6 [2,4–7]. In Fig. 6, the
reduced angular momentum, 
, and reduced angular velocity,
�, are given by


 = 1√
8 · σ · ρ · R7

· L, (1)

� =
√

ρ · R3

8 · σ
· ω, (2)

where L and ω are the angular momentum and angular
velocity, respectively, in absolute units, σ is the surface
tension of the liquid, ρ is the density of the liquid, and R

is the radius of a spherical droplet with the same volume
as the distorted droplet. Figure 6 shows that, initially, upon
increasing 
, the equilibrium shape of the droplet evolves
from spherical to oblate axially symmetric. At large 
, the
shapes show considerable flattening in the polar regions and

FIG. 6. Stability diagram for rotating droplets in equilibrium as a
function of the reduced angular velocity, �, and the reduced angular
momentum, 
 [see Eqs. (1) and (2)]. The upper branch corresponds
to oblate axisymmetric shapes, whereas the lower branch to prolate
two-lobed shapes. The bifurcation point is located at 
 = 1.2, � =
0.56 with AR = 1.48.

even depressions at 
 > 2.03. However, beyond 
 ≈ 1.2,
the axially symmetric shapes become unstable with respect
to two-lobed deformations. At 
 > 1.2, stable shapes are
described by the lower branch representing prolate triaxial
droplets, which resemble elongated pills at 1.2 < 
 < 1.6,
dumb-bell shapes at 
 > 1.6, and eventually become unstable
against fission at 
 > 2.

Cross sections containing the rotation axis of axially
symmetric droplets at various values of 
 are shown in
Fig. 7(a), as calculated from equations in Ref. [4]. The
droplets along the two-lobed branch are triaxial bodies having
D2h symmetry (a principal C2 axis, two C2 rotational axes
perpendicular to the principal axis, a horizontal mirror plane
perpendicular to the principal axis, and two vertical planes
of symmetry). The equilibrium shapes of the prolate droplets
at 1.2 < 
 < 2 were calculated numerically [5,6]. The cross
sections for the prolate shapes are shown in Figs. 7(b) and 7(c).
The rotation axis is aligned perpendicular to the figure plane
in Fig. 7(b), and it is vertically aligned in the figure plane in
Fig. 7(c). The longest semimajor axis (long axis) of the triaxial
shape is aligned horizontally in both Figs. 7(b) and 7(c). The
numerical data for the calculated oblate cross sections [4] and
prolate [5,6] 3D surfaces are described in section S3 in the
Supplemental Material [34] and tabulated in the deposited
EXCEL file. The droplets are characterized by the distance
between the center of mass and the droplet’s surface along
the three mutually perpendicular directions; a is the distance
along the rotation axis, c is the distance along the long axis,
whereas b is the intermediate distance. Corresponding ARs
[AR (c/a,b/a, and c/b)] are shown in Fig. 8(a). The axially
symmetric shape is characterized by a single AR of b/a.
Figure 8(b) illustrates the ratios of the droplet volume to the
cube of the long half axis (given as multiples of 4π/3) for
axially symmetric oblate and two-lobed prolate shapes. The
results in Figs. 8(a) and 8(b) enable attaining the values of
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FIG. 7. Calculated cross sections of rotating classical droplets for various reduced angular momenta 
, as indicated. The angular momentum
is aligned along the short a axis. The panels correspond to axisymmetric oblate shapes (a), two-lobed prolate shapes in the equatorial plane
(b), and in the plane containing the rotational axis and the long axis (c). Note the different scales in (a) and (b), (c). All droplets have the same
volume of 4π/3.

angular momentum, L, and angular velocity, ω, of the droplets
from the observed shapes.

V. DISCUSSION

The shape analysis for superfluid droplets presented here
is based on small angle scattering data. The corresponding
scattering theory is discussed in section S4 of the Supplemental
Material [34]. It follows that at small angles the diffraction
from a spheroid consists of elliptical rings with constant
intensities along each specific ring. Whether a spheroidal
droplet is oblate or prolate cannot be determined from small
angle scattering experiments as the diffraction images yield
only information on the projection of the droplet onto the
detector plane. Accordingly, the reported image ARs (AR >

1) correspond to lower bounds of the actual droplet AR values.
In experimental runs 1 and 2, approximately 98% of the

obtained diffraction images from bare He droplets exhibit
round or elliptical patterns with AR < 1.3 [18]. Those
patterns were assigned to spherical or oblate spheroidal
droplets. This assignment is in agreement with the range of
stability of axisymmetric droplet shapes, whereas droplets
having angular momenta beyond the bifurcation point of


 ≈ 1.2 have ARs exceeding 1.48. Note that droplet shape
oscillations are expected to decay long before the droplets
reach the x-ray beam and are therefore unlikely candidates
for the detected deviations from spherical droplet shapes. In
the supplemental material of Ref. [18], we estimate that the
shape oscillations excited upon the creation of the droplets
decay within a drift distance of about 1 mm from the nozzle
due to viscous energy dissipation. At T < 0.9 K, the mean
free path of phonons exceeds the radii of droplets relevant to
this paper. Under these conditions, the concept of viscosity
is no longer applicable, and energy dissipation is caused by
interaction of ballistic phonons with surface ripplons. In the
molecular regime, the lifetime of surface ripplons is given by
[35]

τQ = 60 · ρ

π2 · h̄ · Q
·
(

h̄ · s

kB · T

)4

, (3)

where Q is the ripplon wave vector and s is the velocity of
sound. In the droplet, Q can be expressed in terms of the
oscillation mode multipole number l [36],

Q =
3
√

l · (l − 1) · (l + 2)

R
. (4)

FIG. 8. (a) Calculated aspect ratio, AR, vs reduced angular momentum 
 for classical axially symmetric oblate (red) and two-lobed prolate
(green, blue, and brown) droplet shapes. The color codes indicate the following aspect ratios: red: b/a; green: c/a; blue: c/b; brown: b/a.
(b) Ratio of the droplet volume to the cube of the c axis for prolate shapes and the b axis for oblate shapes in units of 4π/3. Red: axially
symmetric oblate shapes; blue: two-lobed prolate shapes.
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Thus, the lifetime of droplet’s shape oscillation is

τl = 60 · ρ · R

π2 · h̄ · 3
√

l · (l − 1) · (l + 2)
·
(

h̄ · s

kB · T

)4

. (5)

For example, for a droplet with R = 300 nm and T = 0.4 K,
the oscillation lifetime is τ2 = 6 × 10−4 s, which is negligible
compared to the time-of-flight of 4 ms to reach the interaction
volume.

A. X-ray scattering from strongly deformed He droplets

The droplets at the focus of this paper produce nonellip-
tic diffraction contours with pronounced intensity anoma-
lies, most dramatically manifested in streaks, such as in
Figs. 1(f)–1(j). The diffraction intensities I ∝ θ−α decrease
more slowly with increasing scattering angle θ along the
streaks as compared to the rest of the diffraction images.
Equations (S4.2) and (S4.3) in section S4 of the Supplemental
Material [34] entails that, for a spheroid, the diffraction
intensity scales with the scattering angle to the negative
power of α = 4 (Porod’s law), which is in agreement with the
experimental observations. The same dependence is observed
in the images with strongly deformed diffraction contours for
azimuthal angles away from the long axis. However, for these
images, the values of α are significantly smaller along the
long axis of the diffraction image, as illustrated in Fig. 3.
Along the streaks, the values of α vary between ∼3.2 and
∼3.7, signifying a considerable deviation of the droplet shapes
from an ellipsoid. In general, a streak in the diffraction pattern
emerges when rays originating from a group of points on
the droplet surface possess the same path length difference.
Examples for such groups of points are two opposite flat
surfaces of a cylinder perpendicular to its axis or from two
lines of points on the opposite sides of a cylinder parallel to
its axis, where the values of α are 2 and 3, respectively.

The shapes of the droplets are related to their diffraction
patterns via an inverse Fourier transformation (see eqs. S4.(2)
and S4.(3) in section S4 of the Supplemental Material [34]).
For small scattering angles, θ , the phase difference acquired
due to the extension of the object along the x-ray beam, z, is
described by

�φZ = π · z · θ2

λ
. (6)

For a characteristic length of z = 500 nm and a scattering
angle, θ < 0.02 rad (as in most of our images) �φZ <

0.14 · π , which is small, and the form factor in eq. (S4.3)
in the Supplemental Material [34] is well approximated by
the 2D Fourier transform of the projection of the density onto
the detector plane. Therefore, we use an inverse 2D Fourier
transform of the diffraction amplitudes in order to obtain the
corresponding droplet shapes, as described in detail in section
S5 in the Supplemental Material [34].

The shapes obtained from the diffraction images in
Figs. 1(a), 1(g), and 1(h) are outlined by red squares in
Figs. 9(a), 9(b), and 9(d), respectively. Figure 9(c) shows
the shape obtained from the streaked diffraction image in
Ref. [18]. Unfortunately, only the contours and not the entire
density distribution of the droplets could be obtained from
the diffraction data due to the lack of signals at very small

scattering angles, which fall into the central hole of the
detector. The droplet contour in Fig. 9(a) has an elliptic
shape, in agreement with the elliptic diffraction contours in
Fig. 1(a). The contours in Figs. 9(b) and 9(c) are no longer
elliptic and show pronounced regions of low curvature, where
the opposite sides of the contours run nearly parallel. This
behavior is consistent with the observed streaks, as discussed
earlier. Finally, the contour in Fig. 9(d) exhibits noticeable
depressions within the parallel surfaces.

The violet curves in Figs. 9(a)–9(d) show the results of
calculations [4] for axially symmetric oblate rotating droplets,
such as those shown in Fig. 7(a), with the experimentally
determined ARs of 1.10, 1.67, 1.93, and 1.92, respectively.
The contours represent edge-on views of the droplets, i.e.,
with the axis of rotation in the figure plane. More diffraction
images and reconstructed shapes are presented in section
S1 in the Supplemental Material [34]. Figure 9(a) shows a
good correspondence between the experimental and calculated
contours, which have approximately elliptic shapes. The
distorted experimental contours in Figs. 9(b) and 9(c) are also
in good agreement with the calculations. Experimental and
calculated contours in Fig. 9(d), however, exhibit considerable
differences in that the calculated contour does not show any
depression. The depression in the droplet manifests itself in
the appearance of multiple diffraction streaks, as discussed
in relation to Fig. 5. Besides the recently recorded image in
Fig. 5, only one additional image of the run 1 with AR = 2.39
had similar nodes (see image 104 596 57 in Supplemental
Material section S1 [34]), indicating a very small abundance
of droplets with depressions in the beam. Previously [18], we
assigned contours such as in Fig. 9(c) to axially symmetric
shapes imaged edge-on based on the close resemblance to the
expected shapes. However, axially symmetric shapes develop
depressions only at very large 
 > 2.1, and the AR for such
droplets exceeds ≈2.5 [see Fig. 8(a)]. Accordingly, axially
symmetric droplets are unlikely candidates for the contour
observed in Fig. 9(d), which has an AR of 1.92.

We must therefore consider shapes along the two-lobed
family in more detail. The presence of such shapes in the
beam is consistent with the observation of the curved streak in
Fig. 5. In the 2D approximation, diffraction by a homogenous
body of any shape gives rise to centrosymmetric diffraction
images. The curved streak, therefore, signifies a departure
from the 2D approximation and indicates that the phase
acquired along the z direction cannot be neglected [see Eq. (6)]
[37]. Diffraction images from tilted axially symmetric shapes
obtained by 3D Fourier transforms are presented in section S6
in the Supplemental Material [34]. It follows that diffraction
with curved streaks could not be produced from an oblate
axisymmetric shape at any tilt angle. On the other hand, curved
diffraction streaks may naturally originate from prolate shapes
that are tilted such that the x-ray beam is not contained in any
of the object’s planes of symmetry.

In order to gain more insight into the diffraction that can
arise from two-lobed shapes, a large number of diffraction
images have been calculated for each of the representative
two-lobed shapes illustrated in Figs. 7(b) and 7(c). For this
purpose, the shapes were tilted around the a or b axis, and 3D
Fourier transforms were calculated and presented in section S7
in the Supplemental Material [34]. The calculations indicate
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FIG. 9. Droplet contours obtained by inverse Fourier transformation of the diffraction images in Figs. 1(a), 1(g), and 1(h) are outlined by
red squares in (a), (b) and (d), respectively. (c) The inverse Fourier transform of the diffraction image in Fig. 2C of Ref. [18]. Violet curves are
calculated contours for axially symmetric shapes with the same aspect ratio as found experimentally. The green contour in (c) is the result of
a calculation for a two-lobed shape with 
 = 1.3 and a 9° tilt of the rotation axis relative to the detector plane, whereas the one in (d) is the
result of a calculation for a two-lobed shape with 
 = 1.5 and a 45° tilt.

that the triple streak, as observed in Fig. 5, is consistent with
droplets marked by small depressions and a reduced angular
momentum of 
 = 1.50 ± 0.05. Shapes with 
 < 1.5 have
no depression and produce a single streak. Shapes with

 > 1.5 have large depressions and produce multiple streaks

or even X-shaped streaks in the diffraction patterns, which
were not observed in the experiment. The closest match
with the experimental diffraction image is produced by a
two-lobed droplet shape with 
 = 1.50, with c = 550 nm,
and a = 230 nm tilted out of plane around the a axis by π /4.

FIG. 10. (a) The image is reproduced from Fig. 5. (b) A simulated diffraction image obtained from a two-lobe shape in (c), with

 = 1.5,c = 550 nm, and a = 230 nm tilted out of plane around the a axis by π/4. The x-ray beam enters perpendicular to the plane of the
figure. See the text for more details.
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Figure 10 shows a comparison of the measured and the
simulated diffraction images, demonstrating very good agree-
ment. The corresponding contour is shown by a green curve
in Fig. 9(d), which is in very good agreement with the
experimental data. Figure 9(c) also shows the contour of the
prolate droplet having the same AR with 
 = 1.30, which is
tilted around the a axis by 9°. It is seen that the contours from
axially symmetric oblate and prolate droplets both represent
the experimental contour in Fig. 9(c) equally well. Therefore,
the contours alone could not be used to discriminate between
oblate and prolate droplets.

B. Oblate and prolate shapes of rotating droplets

The curved streaks in Figs. 5 and 10(a) provide direct
evidence for the existence of prolate shapes in the droplet
beam. However, at the wavelengths used in the LCLS ex-
perimental runs 1 and 2 (λ = 1.46 and 0.826 nm), the vast
majority of images, such as in Fig. 1, appear centrosymmetric.
In particular, most of the streaks do not exhibit any curvature
within the accuracy of the measurements. Note that this may
reflect our inability to accurately determine streak curvatures
at small scattering angles. The limited 3D shape information
provided by the vast majority of the recorded small angle
scattering data results in a significant uncertainty regarding
the shapes of most droplets associated with streaked diffraction
patterns. The results in sections S6 and S7 of the Supplemental
Material [34] show that in addition to the axially symmetric
oblate droplets, the diffraction images with single streaks
[without side maxima, such as in Figs. 5 and 10(a)] could also
originate from prolate shapes with 1.3 < 
 < 1.5. Contours
such as in Figs. 9(c) and 9(d) would then be reproduced if
one takes into account a possible tilt of the prolate shapes
relative to the detector plane. Therefore, we need to reevaluate
our previous assignment of the streaked diffraction images to
axially symmetric oblate shapes [18]. Here, we analyze the
appearance statistics of streaked images, which may contain
information on the abundance of oblate and prolate shapes in
the beam. The analysis is based on the fact that the appearance
probability of streaks differs for oblate and prolate shapes at
different tilt angles, which translates into different probabilities
for the observation of streaks as a function of the shape AR.
In the case of oblate axially symmetric shapes, streaks are
observed only for very high ARs and only if a droplet is
imaged (nearly) edge-on with a tilt angle of no more than
≈10 − 15◦. As a result, no streaks are expected for oblate
droplets producing diffraction images with AR < 1.6. Vice
versa, images with large AR devoid of any streaks will result
from tilted axially symmetric oblate shapes. For prolate shapes,
however, streaks may be observed at tilt angles as large as 80°,
even in images with a small AR ≈ 1.1, as documented in
section S7 of the Supplemental Material [34].

Upon tilting a prolate droplet around the a axis, its
projection AR in the detector plane changes from its maximum
value [when the droplet is viewed perpendicular to its long axis
as in Fig. 7(c)] to nearly 1 when the droplet is viewed along
its long axis. Figure 11 shows the calculated probability to
observe a streaked image with an AR between 1.0 and 2.6
(binned into intervals of 0.2) for randomly oriented two-lobed
droplets with 
 = 1.3, 1.4, or 1.5 (yellow). All three values

FIG. 11. Probability to observe streaked images with a certain
aspect ratio for randomly orientated prolate droplets with 
 =
1.3, 1.4, or 1.5 (yellow). The three values of 
 have been assigned
the same probability. The experimentally observed streaked events
(red) are the same as in Fig. 2 but are sorted into larger bin sizes of
0.2.

of 
 have been assigned the same probability. From Fig. 11
(yellow), it is seen that there is a considerable probability of
∼31% to find a diffraction pattern with a streak and a small
AR < 1.6 (based on the estimate that the vast majority of
diffraction patterns from randomly oriented prolate droplets
contain streaks, see section S7 in the Supplemental Material
[34]). This prediction may be compared with the experimental
results in Fig. 11 (red). If all of the streaked images would
stem from prolate droplets, the total of 14 streaked images
with AR > 1.6 should be complemented by about six streaks
with AR < 1.6, whereas only two are observed. Although
the number of counts is relatively modest, this discrepancy
indicates that prolate shapes alone cannot account for all of
the experimental deficiency of small AR events in streaked
images. Consequently, in addition to prolate shapes, the
distribution may contain axisymmetric oblate shapes, as we
have previously postulated [18].

Another important piece of information on the abundance
of different shapes is provided by analyzing the power depen-
dence of the diffraction intensity along the streaks as quantified
by the decay exponents, α, in Fig. 3. Figure 12 summarizes
the calculated values of α for prolate and oblate shapes with
various ARs and orientations with respect to the x-ray beam.
Square symbols show (AR, α) pairs calculated for shapes with

 = 1.23, 1.26, 1.3, 1.35, 1.4, 1.5, 1.6, 1.7, and 2.0, as shown
in Figs. 7(b) and 7(c). For each shape, three differently colored
squares indicate three different orientations of the shape with
respect to the x-ray beam: orange—long axis, c, parallel to the
x-ray beam; green—intermediate axis, b, parallel to the x-ray
beam; brown—short (rotation) axis, a, parallel to the x-ray
beam. The lines in Fig. 12 connect data points for shapes with
the same value of 
 = 1.23, 1.26, 1.3, 1.35, 1.4, and 1.5. The
resulting triangles approximately delimit the locus of (AR,
α) points that may be obtained from a given shape with a
particular 
 and at an arbitrary orientation with respect to the
x-ray beam. Data points for 
 = 1.6, 1.7, and 2.0 are shown

064510-9



CHARLES BERNANDO et al. PHYSICAL REVIEW B 95, 064510 (2017)

FIG. 12. Calculated values of decay exponent α vs AR for axially
symmetric droplets imaged edge-on (pink curve) and for two-lobed
shapes imaged along their semi-axes a, b, and c [see Figs. 7(b) and
7(c) for axis orientations]. The calculated two-lobed shapes have

 = 1.23, 1.26. 1.3, 1.35, 1.4, 1.5, 1.6, and 1.7 in order of increasing
AR. Points corresponding to the same shapes are connected with
lines, i.e., each triangle corresponds to one shape imaged along three
different axes.

for additional reference but are not connected by lines, since
no indication for corresponding droplet shapes were detected
experimentally (see below). The continuous pink curves in
Figs. 3 and 12 indicate the computed (AR, α) relationship
for classical axisymmetric shapes placed with their short axis
perpendicular to the x-ray beam (edge on), with 
 varying
from 0 to 2. As discussed earlier, upon a 10–15° tilt of the
axially symmetric oblate shapes, the streaks in the diffraction
patterns disappear, the values of α approach 4 (as indicated by
the horizontal pink dashed line in Figs. 3 and 12), and the AR
decreases. Therefore, the (AR, α) points for axially symmetric
shapes at arbitrary orientations fill the space between the pink
continuous curve and the pink dashed line at α = 4. In contrast,
Fig. 12 shows that the (AR, α) points for prolate shapes reside
mainly below the pink continuous curve. These differences
can be utilized to classify the observed diffraction events into
axially symmetric oblate or two-lobed prolate droplets.

A closer inspection of Fig. 3 shows that a number of (AR,
α) values for streaked events are well below the axisymmetric
curve and are consistent with values expected for two-lobed
shapes having 
 in the range 1.26–1.5. At larger 
 = 1.6
and 1.7 (unconnected squares in Fig. 12), the droplets have
some pronounced depressions, leading to multiple streaks in
the diffraction patterns (see section S7 in the Supplemental
Material [34]). Such diffraction images, however, were not
recorded experimentally, suggesting that the probability for
formation of droplets with 
 > 1.5 in the presented exper-
iments is very low. On the other hand, Fig. 3 indicates a
large number of events with AR in the range of 1.5–1.85,
and α ≈ 4 within an uncertainty of about ± 0.2. These points
are located significantly higher in the (AR, α) correlation
plot than the range expected for prolate shapes. The ARs

of these events are beyond those of stable, axially symmetric
shapes with 
 = 1.2, AR = 1.48 (see Fig. 6). Therefore, these
points indicate the existence of axially symmetric shapes
with 
 = 1.2 − 1.5, which are beyond the stability range
of classical rotating droplets, as discussed previously [18].
Finally, the origin of the points in Fig. 3 with AR > 1.9
remains uncertain. These points are located far away from
the range expected to contain two-lobed shapes. However, the
absence of large AR events in Fig. 3 with AR > 1.9 makes
axially symmetric shapes unlikely candidates for these points.

As discussed in Sec. V A, the full 3D shapes of the imaged
droplets could not be reconstructed from the small angle
scattering data presented in this paper. Therefore, oblate
droplets may also deviate from axial symmetry; the extent
of these deviations, however, cannot be quantified. More
accurate information on the droplet shapes could be obtained
from measurements at large scattering angles, where the
deviation of the diffraction images from centrosymmetric
patterns may be used to quantify the droplet’s shape. This,
however, would require using a much longer wavelength
of radiation of about 12 nm (100 eV) to assure sufficiently
strong scattering at large angles. This long wavelength regime
is not available at LCLS but is common at the FLASH and
FERMI free electron lasers [38,39]. A recent XFEL based
wide angle x-ray scattering study of Ag nanoparticles enabled
the reconstruction of their 3D shapes [37]. Very recently, wide
angle scattering from He droplets in the extreme ultraviolet
(XUV) regime has been studied [40].

The good agreement between the experimental and cal-
culated droplet contours in Fig. 9 and diffraction patterns
in Fig. 10 indicates that the classical calculations give a
reasonable representation of the shapes of superfluid helium
droplets. From the shapes, the angular velocity, ω, and the
angular momentum, L, of the droplets can be estimated using
Eqs. (1) and (2) and Figs. 6 and 8. For example, the diffraction
pattern in Fig. 10 likely stems from a prolate shape with 
 ≈
1.5 and a semimajor axis a ≈ 550 nm, as discussed earlier.
The resulting values of ω, L, as well as other parameters of
the droplet are presented in the second column of the Table II.
For comparison, the same parameters have been calculated for
axially symmetric droplets of the same volume rotating with

 = 1.5 (unstable) and 
 = 1.2 (boundary stable/unstable).
Table II also lists the values of L in units ofh̄ per droplet as well
as per He atom in the droplet. These estimates show that the
rotating droplet is marked by a very large angular momentum
of ≈58h̄ per single He atom and thus must contain a large
number of quantum vortices. Obtaining the precise number
of vortices, NV , in a droplet of a given shape and angular
momentum requires sophisticated calculations that are beyond
the current state-of-the-art [21,41–43]. Therefore, we estimate
NV based on a 2D model. Within this model, the number
density of vortices is nV = 2·ω

κ
, and the number of vortices

can be estimated as NV = nV · A, where A is the area of the
equatorial cross section of the droplet (see Table II). This
expression likely underestimates NV because vortices near the
equator are shorter than those in the interior and thus carry
smaller angular momentum [13,15].

In general, in the presence of a large number of vortices, the
equilibrium shapes of rotating superfluid droplets are expected
to resemble classical droplets rotating at the same ω due to the
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TABLE II. Parameters of a prolate shape with 
 = 1.5 and axisymmetric oblate shapes with 
 = 1.2 and 
 = 1.5 having the same
volume of 1.63 × 108 nm3(NHe = 3.56 × 109,Rspherical = 339 nm).


 = 1.5 (prolate) 
 = 1.2 (oblate) 
 = 1.5 (oblate)
Half major axis (nm) 550 372 387
Moment of inertia (kg × m2) 4.061 × 10−30 1.846 × 10−30 2.050 × 10−30

L (h̄) 2.064 × 1011 1.651 × 1011 2.064 × 1011

L(h̄)/NHe 58 46 58
ω (rad/s) 1.028 × 107 1.245 × 107 1.409 × 107

Number of vortices 122 108 133
Equatorial area (nm2) 5.939 × 105 4.347 × 105 4.705 × 105

similarities of the velocity fields far away from the vortex
cores. For example, the shape of a rotating superfluid in a
cylindrical container adopts a parabolic shape similar to that
of a classically rotating liquid [10,11]. However, the question
remains how accurately the classical shapes and the obtained
classical ω describe rotating superfluid droplets. The relation
between kinetic energy and angular momentum is different
for classical droplets executing RBR and superfluid droplets
containing a collection of vortices, which will most likely re-
sult in some differences of the droplets’ shapes. For example, a
droplet with R = 340 nm containing a single central rectilinear
vortex will have an AR = 1.0022 [15]. For comparison, a clas-
sical droplet with same angular momentum will have a smaller
AR = 1.000 24. This effect can be rationalized in terms of
the filament tension; in order to minimize the lengths of the
filaments, superfluid droplets adopt somewhat flatter shapes in
the polar regions. Evidently, the distortions of droplets relevant
to this paper and containing a single vortex are negligible and
are currently below the detection limit of the method (∼ 1%).
The deviations between classical and superfluid droplet shapes
for droplets containing multiple vortices cannot be estimated in
a straightforward manner because the shape and the configura-
tion of vortices are interrelated. It would be desirable to obtain
the shapes of superfluid droplets and the corresponding vortex
configurations as a function of L and NHe in order to assemble
the stability diagram for superfluid droplets, as has been estab-
lished for their classical counterparts (see Fig. 6). Our measure-
ments [18] indicate that in axially symmetric pseudospheroidal
droplets, vortices form an equilateral triangular lattice similar
to those observed in Bose-Einstein condensates [12,44]. In
the future, similar measurements may help evaluating the
arrangement of vortices in strongly deformed helium droplets.

C. Formation of rotating droplets in the free jet

In this section, we discuss possible origins of the angular
momentum and shape deformations in helium droplets. The
droplets are produced upon expansion of liquid helium at
T0 = 5 K and P0 = 20 bar into vacuum through a nozzle
with a nominal diameter of d = 5 μm and a channel length
of 2 μm. During the expansion of the fluid through the
nozzle, its temperature and pressure drop and the liquid is
accelerated from rest to about 170 m/s, as experimentally
determined [29]. If the fluid phase persists while reaching
the vacuum, a jet is formed that boils vigorously, giving rise
to the formation of droplets. Estimates based on the rate
of evaporative cooling show that a droplet with a 500 nm
radius passes the superfluid phase transition within less than

≈1 μ s and continues to cool to ∼0.4 K [45,46] well before
reaching the x-ray focal point after about 4 ms time-of-flight.
During the passage of the fluid helium through the nozzle,
it interacts with the channel walls and acquires vorticity,
which is eventually transferred to the droplets. The precise
form of the vorticity field in the nozzle is unknown. For
example, it is conceivable that classical vortices are formed
during the expansion. The magnitude of the vorticity may
also depend on the unknown microscopic structure of the
nozzle channel, which is manufactured (Plano) by mechanical
drilling and may have some roughness on a submicron scale.
While different nozzles were used during experimental runs
1 and 2, similar abundances for large AR and streaked events
have been observed, indicating that the microscopic details of
the nozzle channel may not play a dominant role. Thus, the
order of a magnitude of the droplets’ angular velocity may
be estimated based on the nozzle diameter of 5 μm and the
measured terminal droplet velocity. Assuming that the fluid
at the center of the nozzle moves with v = 170 m/s, whereas
it is at rest at the walls, the average velocity gradient gives
an upper boundary for the droplet’s angular velocity of about
ω = v/d ≈ 3 × 107s−1. The angular momentum of a spher-
ical droplet of radius R is L = (8/15) × π × ρ × R5 × ω

= 9 × 10−2 × R(nm)5(h̄). This value can be compared
with the critical angular momentum for disintegration of
the droplets [6] LCRIT ≈ 2 × (8 × σ × ρ × R7)1/2 = 410 ×
R(nm)7/2(h̄). It follows that droplets with R > 300 nm cannot
sustain the maximum vorticity and will undergo fission. Here,
we have used the density ρ = 145 kg/m3 [47] and surface
tension σ = 3.54 × 10−4 N/m [47] of liquid helium at low
temperatures. The relevant temperature in the nozzle expan-
sion is likely about 4 K with a smaller σ = 1.1 × 10−4 N/m
[47], which will further reduce the estimated value of R. As
discussed previously [29], at T0 ≈ 5 K the fluid may separate
into large droplets and a dense gas inside the nozzle, which
continues to expand along the nozzle channel. Thus, if the
droplets are produced before exiting from the nozzle, collisions
with walls may contribute to the calculus of the droplet’s
angular momentum. It follows that the observed vorticity in
a droplet is the result of a complex process that may include
fission and collisions of the droplets.

The spontaneous formation of vortices during the rapid
superfluid transition in bulk liquid He has attracted consid-
erable attention as a model of the creation of cosmic strings
during the early expansion of the Universe. [48] This so-called
Kibble-Zurek mechanism was later supported by experiments
in superfluid 3He (see Refs. [49] and [50] and references
therein). In this paper, however, in view of the preceding
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discussion, the vorticity is more likely acquired during the
flow of normal fluid helium through the nozzle channel.

In vacuum, the droplets experience extensive evaporation.
For example, cooling of a droplet from 4 K to 0.4 K results in
the evaporation of about 30% of its atoms. The effect of the
evaporation on the droplet’s angular momentum remains to be
studied. In a classical droplet, the surface has higher angular
momentum per atom, thus evaporation will likely lead to the
reduction of the angular momentum per atom upon cooling.
Nevertheless, the estimated maximum angular velocity of
about ≈3 × 107s−1 has the same order of magnitude and
is slightly larger than the values obtained from the shapes
of strongly distorted droplets of ≈107s−1 (see Table II). We
also note that about 90% of the droplets in the beam have
AR < 1.1 and must predominantly originate from axially
symmetric oblate droplets with 
 < 0.2.

D. Quadrupolar deformations and shapes of the rotating
droplets

The analysis of the strongly deformed diffraction images in
Sec. V B indicates the presence of the oblate droplets, which
were identified with metastable axially symmetric shapes
beyond the bifurcation point. Such shapes correspond to the
dashed section of the upper branch in the stability diagram in
Fig. 6. At AR > 1.48, the stable solutions correspond to two-
lobed prolate shapes along the lower branch of the diagram in
Fig. 6, which have lower rotational energy (EROT = ω × L/2).
The transition from the upper to the lower branch requires
energy dissipation, which in classical droplets is facilitated
by viscosity. On the other hand, in superfluid droplets at
low temperatures, energy transfer due to viscosity may be
negligible, and axially symmetric shapes may persist longer
than the time-of-flight of the droplets of about 4 ms, as
predicted previously [4].

The characteristic time for developing prolate shapes in
rotating classical droplets may be estimated from the results
of recent numerical Navier-Stokes calculations [6]. In these
calculations, a spherical droplet of radius R was assumed to
have a specific angular momentum, and the time evolution of
its shape was calculated while keeping the angular momentum
constant. The calculations are valid for droplets with an

Ohnesorge number Oh = η
√

ρ

2·σ ·R � 1, which corresponds

to the range of overdamped oscillations [6]. Here η is the
kinematic viscosity of the liquid. The calculations indicated
that a rotating droplet at 
 > 1.2 first develops an axially
symmetric oblate deformation, which remains metastable for
a time τ1. At later times, the droplet becomes noticeably
triaxial and eventually reaches a stationary prolate two-lobed
shape at τ2. Using Oh = 1,R = 300 nm,ρ = 145 kg/m3, and
σ = 3.5 × 10−4 N/m, characteristic time scales of τ1 ≈ 7 ×
10−7 s and τ2 ≈ 3 × 10−6 s are obtained, which are of the
same order of magnitude as the quadrupole oscillation damp-
ing time τQ = R2

5·η = 2 × 10−6s. In comparison, the period
for an underdamped quadrupole oscillation in R = 300 nm
droplets is 2.3 × 10−7 s. Unfortunately, similar calculations
could not yet be performed for Oh = 0.008 as in helium
droplets, which follows using the kinematic viscosity of liquid
helium at T = 1.3 K of about η = 10−8 m2 /s [47]. Similar
magnitudes of τ1,2 and τQ are not surprising because the

deformation of an axially symmetric droplet involves coupling
of the rotational motion with the quadrupolar deformation
mode [4]. One can speculate that even at Oh � 1, the
timescale for developing a prolate shape will be of the same
order of magnitude as τQ, which is much shorter than the time
of flight of the droplets from the nozzle to the x-ray interaction
point. Thus, classical calculations are unlikely to explain the
observation of oblate droplets with AR > 1.5 in this paper.

The theory of quenching/development of shape deforma-
tions in this regime remains to be developed. In addition,
quantum vortices in rotating superfluid droplets may lend
additional stability to axially symmetric shapes, as indicated
by recent DFT calculations [21]. Therefore, the classical
Navier-Stokes equations may have limited applicability for
the description of deformation kinetics in superfluid droplets.

VI. CONCLUSIONS

This paper reports the first systematic study of centrifugal
deformations in submicrometer sized superfluid 4He droplets
by x-ray coherent diffractive imaging. Strongly deformed
droplets with ARs up to 2.4 have been identified. The
analysis of the images shows that in addition to axially
symmetric oblate shapes, some droplets have triaxial prolate
shapes. The obtained images can be well modeled by
simulated x-ray diffraction patterns of classical droplet
equilibrium shapes that belong to the axially symmetric
and the two-lobed shape families. It follows that the shapes
of rotating submicron superfluid droplets are very similar
to their classical counterparts, which enables quantitative
estimates for the angular momenta and angular velocities
of the studied droplets. The results confirm the existence
of oblate metastable superfluid droplets with large angular
momenta beyond the stability range of classical droplets.

Since the measurements in this paper were performed at
small scattering angles, the full 3D droplet shapes could
not be attained. Instead, the diffraction patterns allow only
the reconstruction of the contours of the projection of the
droplets onto the detector plane. On the other hand, classical
calculations indicate that oblate axially symmetric droplets and
nonaxially symmetric prolate droplets may have very similar
contours. Moreover, the degree of possible deviations from
axial symmetry in the oblate droplets cannot be quantified. As
a result, the distinction between oblate and prolate droplets
is based on differences in the power law that describes the
scattering-angle dependent diffraction intensity as well as on
statistical arguments. More accurate information on the droplet
shapes may be obtained based on measurements at large
scattering angles, where the deviation of diffraction images
from centrosymmetric patterns may be used to quantify the
droplet shapes. This, however, would require using a much
longer wavelength of radiation of about 12 nm (100 eV), which
has not been available for the presented experiments.

The interpretation of the results in this paper is based on
calculations of the equilibrium shapes of classical droplets
rotating as rigid bodies. In superfluid droplets, the liquid is
not stationary in the rotating frame because its motion is
determined by a collection of quantum vortices. The presence
of quantum vortices should cause a deviation of the droplet
shapes from their classical counterparts, which remains to
be quantified. In the future it would be desirable to obtain
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the shapes of superfluid droplets and the configurations of
vortices as a function of angular momentum and droplet size
in order to assemble a stability diagram for superfluid droplets,
as has been established for their classical counterparts. Our
measurements [18] indicate that in axially symmetric oblate
droplets, vortices form equilateral triangular lattices similar
to those observed in Bose-Einstein condensates [12,43].
Similar measurements may help evaluating the arrangements
of vortices in strongly deformed prolate helium droplets.
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[31] L. Strüder, S. Epp, D. Rolles, R. Hartmann, P. Holl, G. Lutz,
H. Soltau, R. Eckart, C. Reich, K. Heinzinger, C. Thamm,
A. Rudenko, F. Krasniqi, K. U. Kühnel, C. Bauer, C. D.
Schroter, R. Moshammer, S. Techert, D. Miessner, M. Porro
et al., Large-format, high-speed, x-ray pnCCDs combined with
electron and ion imaging spectrometers in a multipurpose
chamber for experiments at 4th generation light sources, Nucl.
Instrum. Meth. A 614, 483 (2010).

[32] T. Gorkhover, M. Adolph, D. Rupp, S. Schorb, S. W. Epp, B.
Erk, L. Foucar, R. Hartmann, N. Kimmel, K. U. Kühnel, D.
Rolles, B. Rudek, A. Rudenko, R. Andritschke, A. Aquila,
J. D. Bozek, N. Coppola, T. Erke, F. Filsinger, H. Gorke
et al., Nanoplasma Dynamics of Single Large Xenon Clusters
Irradiated with Superintense X-ray Pulses from the Linac
Coherent Light Source Free-Electron Laser, Phys. Rev. Lett.
108, 245005 (2012).

[33] C. Bostedt, J. D. Bozek, P. H. Bucksbaum, R. N. Coffee,
J. B. Hastings, Z. Huang, R. Lee, W. S. Schorb, J. N. Corlett, P.
Denes, P. Emma, R. W. Falcone, R. W. Schoenlein, G. Doumy,
E. P. Kanter, B. Kraessig, S. Southworth, L. Young, L. Fang, M.
Hoener et al., Ultra-fast and ultra-intense x-ray sciences: First
results from the linac coherent light source free-electron laser,
J. Phys. B 46, 164003 (2013).

[34] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.95.064510 for compilation of the measured
diffraction images (Sec. 1); description of the fitting of power
dependence of the diffraction intensity (Sec. 2); explanation for
the data files for the two-lobed shapes (Sec. 3); theory for the
x-ray scattering from spheroidal droplets (Sec. 4); description
of the shape reconstruction via inverse Fourier transform (Sec.
5); simulated diffraction images for axially symmetric oblate
droplets (Sec. 6); and simulated diffraction images for two-lobed
shapes (Sec. 7). Numeric data for the axially symmetric and two
lobed shapes at different values of reduced angular momentum
are compiled in the EXCEL files: Data Files for Axisymmetric
Shapes.xlsx and Data Files for the Two-Lobed Shapes.xlsx.

[35] P. Roche, M. Roger, and F. I. B. Williams, Interpretation of
the low damping of subthermal capillary waves (ripplons) on
superfluid He-4, Phys. Rev. B 53, 2225 (1996).

[36] H. Lamb, Hydrodynamics, 6 ed. (Dover, New York, 1945).
[37] I. Barke, H. Hartmann, D. Rupp, L. Flukiger, M. Sauppe,

M. Adolph, S. Schorb, C. Bostedt, R. Treusch, C. Peltz, S.
Bartling, T. Fennel, K. H. Meiwes-Broer, and T. Möller, The
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