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We perform self-consistent studies of two-dimensional (2D) s-wave topological superconductivity (TSC) with
Rashba spin-orbit coupling and Zeeman field by solving the Bogoliubov-de Gennes equations. In particular, we
examine the effects of a nonmagnetic impurity in detail and show that the nature of the spin-polarized midgap
bound state varies significantly depending on the material parameters. Most notably, a nonmagnetic impurity in a
2D s-wave topological superconductor can act like a magnetic impurity in a conventional s-wave superconductor,
leading to phase transitions of the ground state as the impurity potential is varied. Furthermore, by solving
for the spin-dependent Hartree potential self-consistently along with the superconducting order parameter, we
demonstrate that topological charge density waves can coexist with TSC at half filling just as in a conventional
s-wave superconductor.
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I. INTRODUCTION

The Rashba spin-orbit (SO) interaction [1] that occurs
in materials without inversion symmetry is a key ingredient
for topological insulating or superconducting states and for
creating Majorana fermions as elementary excitation in a
wide variety of systems [2]. Two-dimensional (2D) s-wave
topological superconductivity (TSC) with Rashba SO coupling
and Zeeman field has been proposed to be realized in an
ultracold Fermi gas, where s-wave superfluidity and SO
coupling can be generated, respectively, via the s-wave
Feshbach resonance and spatially varying laser fields [3,4].
Two-dimensional s-wave TSC has also been proposed to
be achievable in a solid device made of more conventional
materials [4,5], such as a semiconductor with SO coupling
sandwiched between a conventional s-wave superconductor
and a ferromagnetic insulator [6] or a semiconductor with
Rashba and Dresselhaus coupling in proximity to an s-
wave superconductor only [7]. Furthermore, recently de-
veloped, one-atom-layer Tl-Pb compounds on Si(111) with
giant Rashba effects [8] and ionic-liquid based double-layer
transistors [9] are promising candidate systems for realizing
2D s-wave TSC [10]. In the latter system, for example, the
layered structure can consist of an s-wave superconductor
and a ferromagnetic insulator, while the electric field con-
trols the charge-carrier density as well as the Rashba SO
interaction [10].

In a 2D s-wave topological superconductor, vortices host
Majorana fermions as zero-energy bound states [6,11] and
hence obey non-Abelian exchange statistics. Therefore, cre-
ating 2D s-wave TSC in a condensed matter system, where
one has control over key parameters such as the filling factor
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and the strength of Rashba SO coupling and/or Zeeman field,
potentially leads to realization of fault-tolerant topological
quantum computation [5,12]. For setups where superconduc-
tivity is induced by the proximity effect, in general there
have been several arguments [5,13,14] that coupling to the
superconductor can renormalize the original parameters, e.g.,
on the surface of a three-dimensional topological insulator and
can even be detrimental to the other ingredients necessary for
TSC; although a self-consistent study of the proximity effect
[15] has contradicted some results in this regard in Ref. [13].
It is ideal to have an intrinsic pairing interaction in the system
that drives s-wave superconductivity or superfluidity, as in
s-wave superfluids of fermionic atoms [3], one-atom-layer
superconducting compounds [8], or electric-field double-layer
transistors [9,10].

Despite the rapid advancement in device fabrication tech-
niques and the 2D s-wave TSC model [3–7] being one of
the most promising models for platforms for topological
quantum computation, self-consistent studies of this model
are severely lacking. A few studies made so far, in which the
superconducting order parameter is solved self-consistently,
include a momentum-space study of average impurity ef-
fects [16] and studies of a single vortex [17,18] and the
vortex lattice [19] in terms of the tight-binding model [3,4]
and a study of the effects of a nonmagnetic impurity in
an s-wave superfluid [20] using the continuum model [6].
To the best of our knowledge, there has been no work
where the Hartree potential is solved self-consistently as
well.

The purpose of the present work is to perform self-
consistent studies of 2D s-wave TSC by solving the
Bogoliubov-de Gennes (BdG) equations [21,22] on the tight-
binding model of Sato, Takahashi, and Fujimoto [3,4] directly
and numerically. As a tight-binding model, it is versatile in
that band structure and the filling factor can easily be adjusted
to model real systems in terms of hopping amplitudes and the
chemical potential. Moreover, unlike the continuum model [6],
in addition to the non-Abelian phase this model can host an

2469-9950/2017/95(6)/064509(11) 064509-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.064509


S. L. GOERTZEN, K. TANAKA, AND YUKI NAGAI PHYSICAL REVIEW B 95, 064509 (2017)

Abelian phase where topological order can be realized not only
in superconducting states but also in density wave states [4]. In
this work, we examine the effects of a nonmagnetic impurity
and illustrate how the properties of the midgap bound state
vary with the material parameters—in stark contrast to the
claim made by Hu et al. [20] on “universal” midgap bound
states. In particular, we find that the midgap excitation bound
to a nonmagnetic impurity is spin polarized [23] and its spin
can flip as the impurity potential is varied. Most notably, we
find that a nonmagnetic impurity in a 2D s-wave topological
superconductor can act exactly like a magnetic impurity (clas-
sical spin) in a conventional s-wave superconductor, resulting
in phase transitions of the ground state. We also demonstrate
that the spin-dependent Hartree potential effectively reduces
the Zeeman field. Furthermore, by solving for the Hartree
potential as well as the superconducting order parameter
self-consistently, we show the existence of topological charge
density waves (TCDW) as the ground state that is degenerate
with TSC at half filling, just as in a conventional s-wave
superconductor.

Sau and Demler [24] have studied the effects of a nonmag-
netic impurity in a semiconductor nanowire with Rashba SO
coupling and Zeeman field in proximity to an s-wave super-
conductor [25,26], where 1D TSC as in Kitaev’s model can be
realized [5,27]. By searching for poles in the Green function,
they found no midgap excitation bound to a nonmagnetic
impurity when either one of the Rashba SO interaction and
the Zeeman field—the two ingredients required for TSC—was
missing. In TSC states, when the Zeeman field is larger than
the assumed uniform order parameter, they have found midgap
bound states whose energy can cross zero as the strength of the
impurity potential is increased. Our self-consistent results for
zero-energy crossing of the midgap excitation in a 2D s-wave
topological superconductor are similar to their findings, except
that in the 1D system, the impurity cuts the wire in half and
creates Majorana edge modes in the limit of infinitely strong
potential.

We employ the Chebyshev polynomial expansion method
[28,29] for solving the BdG equations self-consistently for
the mean fields as well as calculating the local density
of states (LDOS) after self-consistency has been achieved.
This method allows one to obtain self-consistent mean fields
without diagonalization of the BdG Hamiltonian matrix and it
can also gain significant speed-up from parallel computation. It
is thus much more efficient than the traditional way of solving
the BdG equations by direct diagonalization, especially when
the BdG matrix is spin dependent and required to be solved
for relatively large system size. We also circumvent the
high numerical demand of diagonalizing the BdG matrix
by utilizing the efficient algorithm of Sakurai and Sugiura
(SS) [30,31] to obtain the quasiparticle spectrum within
a selected energy window. This numerical technique also
benefits greatly from parallelism and, if desired, the entire
spectrum can be obtained readily by dividing the energy range
into smaller subranges and applying the SS method to each
subrange.

The paper is organized as follows. The model is
described in Sec. II, results are presented and dis-
cussed in Sec. III, and the work is summarized in
Sec. IV.

II. MODEL

We solve the BdG equations on the tight-binding model for
2D s-wave TSC [3,4] with the Hamiltonian

H =
∑
〈ij〉σ

tij c
†
iσ cjσ +

∑
iσ

(
εi − μ + hσ + V

(H )
iσ̄

)
c
†
iσ ciσ

+ α

2

[ ∑
i

(c†i−x̂↓ci↑ − c
†
i+x̂↓ci↑)

+ i(c†i−ŷ↓ci↑ − c
†
i+ŷ↓ci↑) + H.c.

]

+
∑

i

(�ic
†
i↑c

†
i↓ + H.c.) , (1)

with the Zeeman energy hσ = −h and +h for σ =↑ and
σ =↓, respectively, and σ̄ �= σ . We assume a uniform pairing
interaction Ui ≡ U that results in the s-wave order parameter
�i and the Hartree potential V

(H )
iσ :

�i = U 〈ci↓ci↑〉, (2)

V
(H )
iσ = U 〈c†iσ ciσ 〉, (3)

where the electron creation and annihilation operators at site
i with spin σ are denoted as c

†
iσ and ciσ , respectively, and

V
(H )
iσ is the Hartree potential created by the electrons with

spin σ (and felt by those with the opposite spin σ̄ ) at site i.
In the Hamiltonian (1), we consider hopping among nearest-
neighbor lattice sites 〈ij 〉 only with the probability amplitude
tij ≡ −t, μ is the chemical potential, εi is the single-particle
potential due to a nonmagnetic impurity at site i, α > 0 is
the Rashba spin-orbit coupling strength, and H.c. stands for
the Hermitian conjugate. We set the lattice constant to be unity,
and x̂ and ŷ are the unit vectors in the x and y directions.

As indicated in Eqs. (2) and (3), throughout this work we
assume the effective pairing interaction U < 0 that results in
the Hartree potential and the order parameter to be the same.
Such an effective interaction can be generated via the s-wave
Feshbach resonance in a superfluid Fermi gas [32].

Defining the average Hartree potential for each spin
component σ =↑ , ↓,

V̄ (H )
σ = 1

N

∑
i

V
(H )
iσ , (4)

where N is the total number of lattice sites, the diagonal terms
of the Hamiltonian in Eq. (1) can be written as∑

iσ

(
εi − μ̃ + h̃σ + V

(H )
iσ̄ − V̄

(H )
σ̄

)
c
†
iσ ciσ (5)

with h̃σ = −h̃ (+h̃) for σ =↑ (σ =↓). We have defined

μ̃ = μ − V̄
(H )
↑ + V̄

(H )
↓

2
, (6)

h̃ = h + V̄
(H )
↑ − V̄

(H )
↓

2
. (7)

For h > 0, typically there are more spin-up electrons than spin-
down electrons and the Hartree potential effectively reduces
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the Zeeman field. Intuitively, the average energy gain by the
pairing interaction with spin-up electrons makes the electron
having its spin down less costly in terms of the Zeeman energy.
When the system has translational symmetry, V (H )

iσ = V̄ (H )
σ ; ∀i,

the Hamiltonian (1) can be expressed in momentum space as

H = 1

2

∑
k

�
†
kH(k)�k , (8)

where �k = (ck↑ ck↓ c
†
−k↑ c

†
−k↓)T and

H(k)

=
[
ε(k) − h̃σz + αL(k) · σ i�(k)σy

−i�(k)∗σy −ε(k)+h̃σz+αL(k) · σ ∗

]
,

(9)

with ε(k) = −2t(cos kx + cos ky) − μ̃ andL(k) ≡ (Lx,Ly) =
(sin ky, − sin kx). c†kσ and ckσ are the creation and annihilation
operators of the electron with momentum k = (kx,ky) and
spin σ , and σ ≡ (σx,σy) and σz are the Pauli matrices.
H(k) above reduces to the momentum-space Hamiltonian
given in Ref. [4] when the Hartree potential is neglected,
with μ̃ ≡ μ and h̃ ≡ h. Thus, various topological phases as
classified in Ref. [4] according to the first Chern number
or the Thouless-Kohmoto-Nightingale-Nijs (TKNN) number
[33] can be achieved by replacing the chemical potential and
Zeeman field by μ̃ and h̃, respectively, when the Hartree
potential is taken into account. Topological phase transitions
between topologically distinct phases occur when the energy
gap of the bulk quasiparticle spectrum closes [4]. Assuming an
isotropic s-wave order parameter, �(k) ≡ �0, diagonalization
of H(k) in Eq. (9) yields

E±(k) =
√

ε(k)2 + α2|L(k)|2 + h̃2 + |�0|2 ± 2ξ (k) , (10)

where ξ (k) =
√

ε(k)2α2|L(k)|2 + (ε(k)2 + |�0|2)h̃2, and the
minimum value of E±(k) is the bulk spectral gap E0. For
example, as h̃ is varied for a given set of α, μ̃, and �0,
the system transitions from one topological phase (trivial,
Abelian, or non-Abelian) to another every time E0 vanishes.
The topological invariant that classifies each phase is the
TKNN number [33] and can be calculated by [34–36]

ν = 1

8π2

∫
dkdω [ Tr(G∂kx

G−1G∂ky
G−1G∂ωG−1)

−Tr(G∂ky
G−1G∂kx

G−1G∂ωG−1) ] , (11)

where G = (iω − H(k))−1 and ν ∈ Z [37]. The system is in
trivial phase when ν = 0, and in Abelian and non-Abelian
phases, respectively, when ν is even and odd (−2 and ±1 in
this model).

In this 2D s-wave TSC model, there are two underly-

ing chiralities, η± ≡ −(Lx ± iLy)/
√
L2

x + L2
y = ±i(sin kx ±

i sin ky)/
√

sin2kx + sin2ky [38,39], as can be seen by ex-
pressing H(k) in the “chirality basis” that diagonalizes the
normal-state Hamiltonian ε(k) − h̃σz + αL(k) · σ [4,19]:

H̃(k) =
[
ε(k) + �ε(k)σz �̂

�̂† −ε(k) − �ε(k)σz

]
, (12)

where �ε(k) = sgn(h̃)
√

α2|L(k)|2 + h̃2 and

�̂ = 1

�ε(k)

[−α|L(k)|η+�(k) h̃�(k)
−h̃�(k) −α|L(k)|η−�(k)

]
. (13)

The intraband pairing in the band E+ (E−) has the chirality
of η+ (η−), while the interband pairing is purely s wave.
This is analogous to the two chiralities px ± ipy present in
the nontrivial (non-Abelian) phase of the continuum model
[7,40,41]. The two chiralities η± associated with the two Fermi
surfaces are always mixed in the Abelian phase. In contrast,
the chirality associated with the single Fermi surface can be
dominant over the other in non-Abelian phase for relatively
weak SO coupling, and which chirality is more manifest is
determined by the sign of h as well as the sign of μ [4,19,42].
When SO coupling is strong, the two chiralities can be mixed
strongly also in the non-Abelian phase [19,43].

To obtain the mean fields, we perform self-consistent
iterations up to the lth iteration step, where, e.g., the order
parameter as a complex vector �� of length NxNy satisfies

‖ ��(l) − ��(l−1)‖
‖ ��(l−1)‖ < 10−6 (14)

and similarly for each spin component of the Hartree potential
that can be regarded as a real vector of length NxNy . All
the calculation presented below has been performed for zero
temperature.

III. RESULTS

A. Self-consistency

We first illustrate how the order parameter in a uniform
system �0 ≡ �i ; ∀i varies with the strength of the pairing
interaction |U |. In our self-consistent calculation, the order
parameter is defined in terms of Eq. (2) such that �0 is positive.
Figure 1 presents the order parameter �0 as a function of
|U | both in units of t in a uniform 50 × 50-site lattice with
the periodic boundary condition (PBC), with (green squares)
and without (red circles) solving for the Hartree potential.
Without (with) the Hartree potential, μ = −3t (μ̃ = −3t),
α = 1.5t, h = 1.5t and μ = t (μ̃ = t), α = 2t, h = 1.5t for
the systems shown in Figs. 1(a) and 1(b), respectively. When
the Hartree potential is neglected, for μ = −3t (μ = t) the
non-Abelian (Abelian) TSC state with the TKNN number ν =
1 (ν = −2) is realized according to the conditions [4]

(4t − |μ|)2 + �2
0 < h2 < μ2 + �2

0 ; ν = 1 , (15)

μ2 + �2
0 < h2 < (4t − |μ|)2 + �2

0 ; ν = −2 , (16)

and the system is in the trivial phase with ν = 0 when (4t −
|μ|)2 + �2

0 > h2 (μ2 + �2
0 > h2). In both systems presented

in Fig. 1 the transition to the trivial phase will occur for �0 �
1.12t . This limits the range of the pairing interaction to |U | <

6.4t and |U | < 5.8t , respectively, for the systems shown in
Figs. 1(a) and 1(b) to stay in the nontrivial phase. As can be
seen above, the phase boundaries do not depend on the signs
of μ and h. The self-consistently obtained �0 is not affected
by the sign of μ or h either.
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(a) α = 1.5t, h = 1.5t
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FIG. 1. (a) Order parameter �0/t as a function of the pairing
interaction strength |U |/t in a uniform 50 × 50 lattice with PBC
for (a) α = 1.5t, h = 1.5t and (b) α = 2t, h = 1.5t . The chemical
potential without (with) the Hartree potential included is μ = −3t

(μ̃ = −3t) and μ = t (μ̃ = t) for (a) and (b), respectively.

With the inclusion of the Hartree potential, μ and h in
Eqs. (15) and (16) are replaced by μ̃ and h̃. For μ̃ = −3t, α =
1.5t , and h = 1.5t , the system now transitions from the non-
Abelian to trivial phase at around |U | = 4.8t , where we have
found h̃  1.1t and �0  0.5t . The system with μ̃ = t, h =
1.5t , and α = 2t has a very narrow region of Abelian TSC
for |U | < 3.2t , where at |U | = 3.2t we have obtained h̃ =
1.03t and �0  0.27t . Thus, in general, due to the effective
reduction of the Zeeman field by the Hartree potential, one
needs not assume too strong a coupling constant for the pairing
and/or Rashba SO interaction when solving for the Hartree
potential self-consistently. What this implies in terms of real
materials is that the Pauli depairing effect of the Zeeman field
is overcome partially by the Hartree potential.

B. Effects of a single nonmagnetic impurity

In a conventional s-wave superconductor, a nonmagnetic
impurity can locally suppress the order parameter and cause
Friedel-like oscillations around it [44,45]; however, a single
nonmagnetic impurity does not bind a quasiparticle. On the
other hand, in a spin-triplet chiral p-wave superconductor, a
nonmagnetic impurity can create midgap quasiparticle excita-
tion and spontaneous supercurrent around it [46]. Furthermore,
in the px + ipy domain where the px + ipy order is suppressed
around a nonmagnetic impurity, the px − ipy order is induced
and vice versa [46,47]. It is an intriguing question as to how

nonmagnetic impurities affect 2D s-wave TSC due to the
presence of the two underlying chiralities η± (px ± ipy in
the continuum model) [16,20,23,41].

Nagai, Ota, and Machida have examined the average
effects of nonmagnetic impurities in the 2D s-wave TSC
model [3,4] by solving for the impurity self-energy and the
uniform order parameter self-consistently [16]. They have
shown that while the system in trivial phase (ν = 0) is robust
against nonmagnetic impurities, the Anderson theorem [48]
can break down in a nontrivial phase (ν �= 0) and that the
superconducting transition temperature Tc becoming sensitive
to impurity concentration is accompanied by the appearance of
midgap states. They have further studied quasiparticle bound
states around a single nonmagnetic impurity in non-Abelian
phase in terms of the BdG equations (without self-consistency)
[23] and have found that the bound-state energy decreases
with respect to the bulk spectral gap as the Zeeman field h

is increased. This is consistent with their finding of Tc being
more sensitive to nonmagnetic impurities for stronger Zeeman
field in Ref. [16] and with the picture that the intraband chiral
p-wave pairing (with chirality η+ or η− in non-Abelian phase)
dominates over the interband s-wave pairing for large |h|
[7,23].

Hu et al. [20] have obtained “universal” midgap bound
states around a nonmagnetic point (δ function) impurity in a
2D s-wave superfluid with Rashba SO coupling and Zeeman
field in a harmonic trap by solving the radial BdG equations
self-consistently. They have found for one set of parameters in
non-Abelian phase that a strong point impurity (nonmagnetic
or magnetic) results in a midgap state with the “universal”
bound-state energy ∼�2

0/EF , where �0 and EF are the
bulk order parameter and the Fermi energy, respectively.
As pointed out by Shitade and Nagai [41], this bound-state
energy is not universal as it was derived by substituting the
s-wave order parameter �0 in the formula for Majorana edge
modes in a chiral p-wave superfluid in confinement [49].
The argument made by the authors of Ref. [20] is that the
impurity site where the order parameter is suppressed to zero
acts as a singular point of vacuum and its “interface” with
the nontrivial region hosts a Majorana edge state. We note,
however, that the self-consistently solved order parameter
increases continuously from zero away from the impurity site
and there is no clear boundary with which trivial and nontrivial
regions can be defined locally.

In this subsection, we demonstrate that the effects of
a nonmagnetic impurity on 2D s-wave TSC are far from
being “universal” and depend significantly on the material
parameters (μ, α, and h). For relatively weak SO coupling in
non-Abelian phase, where one of the two chiralities η± can be
dominant over the other, we find in general that the smaller
the α, or the larger the |h|, the more p-wave-like the system
reacts to a nonmagnetic impurity. Reversing the sign of h while
keeping all the other parameters the same changes neither the
order parameter nor the excitation spectrum: Only the spin
components of quasiparticle excitation are interchanged. In
the case where one chirality is dominant over the other in
non-Abelian phase, h → −h or μ → −μ switches the major
chirality [4,19,42]. Under μ → −μ, changing the sign of the
impurity potential Vimp at the same time leaves the order
parameter and excitation spectrum virtually unchanged. In the
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FIG. 2. (a) Energy of the quasiparticle excitation bound to the
nonmagnetic impurity scaled to the bulk spectral gap E0 and
(b) the real part of the order parameter at the impurity site in units
of the bulk order parameter �0 as a function of the inverse of the
impurity potential, t/Vimp, for μ = 3.5t and h = t ; for α = 1.5t, t ,
and 0.5t , with the pairing interaction U = −4.61t, − 5.2t , and
−6.24t , respectively. �0  0.34t and ν = 1.

results presented below, h > 0 and the Hartree potential was
neglected.

We first illustrate the effects of the SO coupling strength
α. We place a single nonmagnetic impurity with potential
Vimp at the center of the lattice with PBC. The order parameter
acquires a small imaginary part in the vicinity of a nonmagnetic
impurity, while it remains real at the impurity site. In Fig. 2
we show (a) the quasiparticle bound-state energy in units of
the bulk spectral gap E0 and (b) the ratio of the real part of
the order parameter at the impurity site r imp to the bulk order
parameter �0 as a function of t/Vimp for μ = 3.5t and h = t ,
for α = 1.5t, t , and 0.5t . The system size is 51 × 51 lattice
sites for α = 0.5t and 1.5t and 64 × 64 for α = t . We find
that typically the disturbance of the order parameter by the
impurity is contained well within 51 × 51 lattice sites. The
coupling constant for the pairing interaction has been chosen
to be U = −4.61t, − 5.2t , and −6.24t for α = 1.5t, t , and
0.5t , respectively, such that �0  0.34t (ν = 1). The spin of
the quasiparticle excitation has been determined by identifying
the peak at the eigenvalue in the spin-resolved LDOS at the
impurity site. Consistently with the non-self-consistent results
of Ref. [23], we find that the midgap excitation is always
spin-polarized at the impurity site.
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(b)

FIG. 3. (a) Real part of the order parameter in units of the bulk
order parameter �0 and (b) the average number of spin-up and spin-
down electrons at the impurity site as a function of the impurity
potential, Vimp/t , for μ = 3.5t, h = t, α = t and U = −5.2t in a
64 × 64 lattice. �0  0.34t and ν = 1.

In these non-Abelian systems the chirality η+ is dominant
over η−, as can be apparent in the core of a vortex pinned
by a nonmagnetic impurity [19]. One can see in Fig. 2(a)
that the nonmagnetic impurity binds spin-down quasiparticle
excitation (i.e., composed of spin-down particle and spin-up
hole), which becomes more strongly bound to the impurity as
α decreases when Vimp > 0. This can be understood by the
fact that for a given h, the smaller the α, the more manifest
the major chirality becomes and the more chiral p-wave-like
the system behaves [19,41,43]. For Vimp < 0 the bound-state
energy is similar and Re �(x,y) is suppressed at the impurity
site to a similar value for the three values of α. In the range
Vimp > 0 where the bound-state energy differs substantially for
α = 0.5t, t , and 1.5t, Re �(x,y) is peaked at the impurity site,
more sharply for smaller α, as can be seen in Fig. 2(b). This is
illustrated further in Fig. 3 for α = t , where (a) Re �(r imp) and
(b) the average number of spin-up and spin-down electrons
at the impurity site are plotted as a function of Vimp. The
average number of electrons decreases monotonically as Vimp

increases, while Re �(r imp) reaches its maximum value for
Vimp  3t in this system.

The enhancement of the order parameter at the impurity
site can be understood roughly by the fact that the chemical
potential is shifted to μ − Vimp locally and this effectively
makes the site transition into the trivial phase. Although the
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FIG. 4. Real [(a) and (c)] and imaginary [(b) and (d)] parts of the
order parameter �(x,y)/t as a function of x and y for 11 � x,y � 41
with Vimp = −50t at the center of a 51 × 51 lattice for μ = 3.5t

and h = t ; for α = t (U = −5.2t) [(a) and (b)] and α = 0.5t (U =
−6.24t) [(c) and (d)]. �0  0.34t and ν = 1.

phase boundaries that separate trivial and nontrivial phases are
defined in terms of bulk μ, h, and �0, and do not directly
apply to a single lattice site, we have checked that with no
impurity and the other parameters fixed, e.g., for μ = 0.5t , the
BdG equations converge to a trivial state with uniform order
parameter similar in value to Re �(r imp) for Vimp = 3t shown
in Fig. 2(b), for α = t and 0.5t .

In Fig. 4 the order parameter �(x,y)/t is plotted as a
function of spatial coordinates x and y for 11 � x,y � 41 with
Vimp = −50t at the center of a 51 × 51-site system for μ =
3.5t and h = t , for α = t (upper graphs) and α = 0.5t (lower
graphs). The left (right) panel shows the real (imaginary) part
of the order parameter. This figure illustrates the chiral p-wave
nature of the system being enhanced for smaller α. As can be
seen in Fig. 4, the order parameter is suppressed to nearly zero
at the impurity site for both α = t and α = 0.5t . For α = 0.5t ,
however, the real part of the order parameter is enhanced at
the nearest- and next-nearest-neighbor sites to the impurity
[Re �(x,y) ≈ 0.4t]. This is reminiscent of the order parameter
of the opposite chirality induced around a nonmagnetic
impurity in a chiral p-wave superconductor [46,47]. Moreover,
the small, oscillatory imaginary part in the order parameter
indicates the presence of induced supercurrent around the
impurity, and the oscillation amplitudes are increased slightly
for α = 0.5t compared to those for α = t .

We have found curious effects of a nonmagnetic impurity
by increasing the Zeeman field h: the spin of the impurity
bound state flips as the impurity potential is varied. Two
different examples are presented below. Shown in Fig. 5 are (a)
the quasiparticle bound-state energy E/E0 and (b) the order
parameter at the impurity site Re �(r imp)/�0 as a function
of t/Vimp for μ = −3t and α = 1.5t on a 51 × 51 lattice
for h = 1.5t, 2t , and 2.5t . U = −5.1t, − 6.02t , and −7.19t

for h = 1.5t, 2t and 2.5t , respectively, that yield �0  0.34t

(ν = 1). The energy of the spin-down bound state varies in
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FIG. 5. (a) Quasiparticle bound-state energy E/E0 and
(b) Re[�(r imp)]/�0 as a function of t/Vimp for μ = −3t and α =
1.5t , for h = 1.5t, 2t , and 2.5t (U = −5.1t, − 6.02t , and −7.19t ,
respectively) in a 51 × 51 lattice. �0  0.34t and ν = 1.

a way similar to the results shown in Fig. 2(a) as t/Vimp

is decreased from the positive side, reaching a maximum
binding energy at some negative value of Vimp. The bound state,
however, disappears into the gap edge rather abruptly as t/Vimp

is decreased further and then reappears with spin up, although
for h = 1.5t it remains very close to the gap edge. In this
region, the order parameter is peaked at the impurity site, once
again due to the local shift of the chemical potential to μ − Vimp

that effectively transforms the site into another phase—either
trivial or Abelian depending on the value of Vimp.

Figure 6 demonstrates a striking example where a non-
magnetic impurity in a 2D s-wave topological superconductor
acts like a magnetic impurity (classical spin) in a conventional
s-wave superconductor. The system presented in this figure
is a 51 × 51 lattice with μ = −2t, h = 2.5t, α = 2.5t, U =
−7t , and �0  0.34t (ν = −1). A magnetic impurity in
a conventional s-wave superconductor locally breaks time-
reversal symmetry and creates spin-polarized quasiparticle
excitation (the spin direction can be defined with respect to
that of the impurity) in the energy gap [50–52] and as the
potential strength of the impurity is increased, the excitation
energy crosses zero, after which the ground state contains a
spin-polarized quasiparticle (spin-1/2 up or down, depending
on the definition) bound to the impurity and the midgap
excitation has the opposite spin as it would now remove
this extra spin from the ground state [53]. When this phase
transition of the ground state happens, the order parameter
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FIG. 6. (a) Quasiparticle bound-state energy E/E0 and
(b) Re[�(r imp)]/�0 as a function of t/Vimp for μ = −2t, h =
2.5t, α = 2.5t and U = −7t in a 51 × 51 lattice. �0  0.34t and
ν = −1.

becomes negative at the impurity site [54,55]—caused by the
sign change in the contribution from the impurity bound state
[55,56]—and vanishes in the limit of infinite potential strength
[54].

It can be seen in Fig. 6(a) that as Vimp is increased in
magnitude (either from the positive or negative side), the
energy of the spin-down quasiparticle excitation decreases
and crosses zero, at which point the quasiparticle excitation
becomes spin up and Re �(r imp) changes sign from positive
to negative, as can be seen in Fig. 6(b). As |Vimp| is
increased further, Re �(r imp) approaches zero. Since the two
limits t/Vimp → ±∞ (Vimp → 0±) should result in the same
uniform state, the impurity bound-state energy must cross zero
an even number of times [24]: This is indeed the case for the
quasiparticle excitation shown in Fig. 6(a). The zero-energy
crossing occurs at Vimp ≈ −8t and Vimp ≈ 3.8t in this system.
We have found the excitation (spin up at the impurity site) with
energy E  2.6 × 10−5t for Vimp = 3.8125t , which is not a
Majorana fermion. The spin-resolved LDOS at the bound-state
energy is plotted as a function of x and y coordinates for
the entire lattice in Fig. 7 for Vimp = −5t (upper panel) and
Vimp = 6t (lower panel), where the spin of the quasiparticle
excitation is down and up, respectively, at the impurity site.
As can be seen in Fig. 7, the spin-up (spin-down) LDOS is zero
at the impurity site for Vimp = −5t (Vimp = 6t). The diagonal
extension of the LDOS reflects ky = ±kx in the Fermi wave
vector on large portions of the squarish Fermi surface [19]. The
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FIG. 7. Spin-up [(a) and (c)] and spin-down [(b) and (d)]
components of the LDOS at the bound-state energy as a function of x

and y for the entire 51 × 51 lattice for μ = −2t, h = 2.5t, α = 2.5t ,
and U = −7t , with Vimp = −5t [(a) and (b)] and Vimp = 6t [(c) and
(d)] at the center of the lattice. �0  0.34t and ν = −1.

LDOS was calculated by using the eigenfunctions obtained by
the SS method [30,31].

We have also found the same phase transition of the
ground state in the presence of a nonmagnetic impurity in the
system with μ = −2t, h = 2.5t, α = 1.5t, U = −8.49t , and
�0  0.34t (ν = −1), where the variation of the bound-state
energy as a function of t/Vimp is very similar to that shown in
Fig. 6(a) for Vimp > 0, but the zero crossing on the negative
side occurs at Vimp ≈ −4.7t , in contrast to Vimp ≈ −8t for
the system shown in Fig. 6 (α = 2.5t). It is interesting to
note that for h = 2.5t, α = 1.5t , and �0  0.34t , the spin
of the impurity bound state flips as the impurity potential is
varied with and without crossing zero energy, respectively, for
μ = −2t (ν = −1) and μ = −3t (ν = 1) [Fig. 5(a)].

We summarize the parameter values used for Figs. 2, 5,
and 6 in the phase diagram as a function of h and μ shown in
Fig. 8, where different topological phases with ν = 0, ν =
±1, and ν = −2 are separated by the phase boundaries,
h2 = (4t ± μ)2 + �2

0 and h2 = μ2 + �2
0, with �0 = 0.34t

[4]. The system is in the trivial phase with ν = 0 when
h2 < (4t ± μ)2 + �2

0 and h2 < μ2 + �2
0. Although there is

no direct correspondence of the phase diagram to the single
impurity site, for the systems presented in Fig. 2 and for
h = 1.5t in Fig. 5, the range of Vimp where the order parameter
is peaked at the impurity site loosely corresponds to ranges of
the local chemical potential μ − Vimp where ν = 0 or −2. In
contrast, for h = 2.5t in Fig. 5 (ν = 1) and for the system
shown in Fig. 6 (ν = −1), the TKNN number associated with
the local chemical potential varies among ν = 1, − 1 and −2
and reaches ν = 0 only for |Vimp/t | � 1. Interestingly, the spin
reversal of the midgap excitation occurs for μ − Vimp ∼ 1.5t

(Vimp ∼ −4.5t) for h = 2.5t in Fig. 5 and for μ − Vimp ≈ 6t

and −5.8t (Vimp ≈ −8t and Vimp ≈ 3.8t) for the system shown
in Fig. 6, which correspond to ν = −1 and ν = 1, respectively.
Namely, the “local” TKNN number at the impurity site has
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FIG. 8. Phase diagram of the topological phases with ν = 0
(trivial), ν = ±1 (non-Abelian), and ν = −2 (Abelian), separated
by the phase boundaries, h2 = (4t + μ)2 + �2

0, h
2 = μ2 + �2

0 and
h2 = (4t − μ)2 + �2

0 as a function of h and μ with �0 = 0.34t [4].
Two values of the Zeeman field, h = 1.5t and h = 2.5t , are indicated
by dashed lines.

the opposite sign to that of the bulk TKNN number, which
is analogous to locally changing the sign of h [19] and thus
flipping the spin of the quasiparticle excitation. This does not
explain, however, the rather striking difference in the behavior

of the impurity bound state between Figs. 5 and 6, which
warrants further investigation.

Sau and Demler have found similar zero-energy crossing
of midgap excitation bound to a nonmagnetic impurity in a
1D semiconductor with Rashba SO coupling and Zeeman
field in proximity to an s-wave superconductor [24]. In this
system, the bound-state energy also crosses zero in the limit
of infinitely strong impurity potential, as it corresponds to
the system effectively cut in half by the impurity and the
zero-energy states are the Majorana fermions bound at the two
edges. Thus, in the case of a 1D topological superconductor,
there is an odd number of zero-energy crossings for finite
impurity potential.

C. Coexistence of TCDW and TSC

The 2D s-wave TSC model can also host topological charge
density waves (TCDW) [4]. With the order parameter �C ≡
〈c†k↑ck+ Q↑〉 = 〈c†k↓ck+ Q↓〉 for charge density waves (CDW)
with wave vector Q, the mean-field Hamiltonian can be written
as [4]

HCDW = 1

2

∑
k

�
†
CkHCDW(k)�Ck, (17)

where �Ck = (ck↑ ck↓ − ck+ Q↓ ck+ Q↑)T and

HCDW(k) =
[
ε(k) − h̃σz + αL(k) · σ i�Cσy

−i�Cσy ε(k + Q) + h̃σz − αL(k + Q) · σ ∗

]
. (18)

We note that the L(k + Q) term in HCDW(k) given in Ref. [4]
(h̃ ≡ h) has a wrong sign: It should be minus as above. If
Q satisfies ε(k + Q) = −ε(k) and L(k + Q) = −L(k), then
HCDW(k) is equivalent to H(k) in Eq. (9) for TSC. In our
tight-binding model, these two conditions are satisfied for Q =
(±π, ± π ) and μ̃ = 0. For μ̃ = 0, the only nontrivial phase
possible is Abelian with ν = −2. For the same h̃, α, and the
uniform order parameter �C ≡ �0, the TCDW and TSC states
then have the same quasiparticle spectrum, with two zero-
energy bound states per surface. In the TCDW state, however,
the two zero-energy surface states are equivalent to each other
due to folding of the Brillouin zone by the CDW order and
hence there is only one zero mode per surface [4]. Furthermore,
while the zero modes are each a Majorana fermion in the TSC
state, quasiparticle excitation in the TCDW state is not and
possesses U (1) charge [4].

We have solved the BdG equations with the Hamiltonian in
Eq. (1) self-consistently for each spin component of the Hartree
potential with PBC, no impurity, and the superconducting
(SC) order parameter set to zero, and have found uniform
TCDW states with Q = (±π, ± π ) and μ̃ = 0. For example,
α = t, h = 1.5t , and U = −4t on a 64 × 64 lattice yield the
TCDW state with �C = 0.67504t , the effective Zeeman field
h̃ = 0.96135t , and ν = −2. In real space, the CDW order
parameter is the deviation of the Hartree potential from its
average value, which alternates between +�C and −�C from
one site to its nearest-neighbor site, in each spin component.

The average electron density (number of electrons per site) is
exactly 1.0. This confirms the fact that μ̃ = 0 in the presence
of Rashba SO coupling and Zeeman field corresponds to half
filling, as in the tight-binding system for conventional s-wave
superconductivity (with nearest-neighbor hopping only).

We show in Fig. 9 the (a) spin-up and (b) spin-down
components of the LDOS as a function of excitation energy
at lattice sites (x,y) = (1,1), (2,1), (1,2), and (2,2) in the
above TCDW state for α = t, h = 1.5t , and U = −4t on a
64 × 64 lattice. The LDOS was calculated using the Lorentz
kernel [28,57] with the corresponding Lorentzian smoothing
width of 0.0005t . The CDW order is such that the electron
density n↑(i) = 0.803424 (0.465904) and n↓(i) = 0.534096
(0.196576) at sites (1,1) and (2,2) [(2,1) and (1,2)]. These
density modulations are reflected in the LDOS, showing more
hole and electron excitations available for (1,1) and (2,1),
respectively, for both spin components.

By solving for the SC order parameter self-consistently
along with the Hartree potential for the same set of input
parameters, we have also obtained the TSC state with the
uniform electron density of 1.0 with �0 = 0.67504t (�C = 0)
and a mixed TSC+TCDW state with �0 = 0.42169t and �C =
0.52712t , both with h̃ = 0.96135t . The three (pure TCDW,
pure TSC, and mixed) states have exactly the same ground-
state energy and excitation spectrum with the spectral gap
E0  0.247t . Thus, the TSC and TCDW states are degenerate
ground states at half filling, as in the attractive Hubbard model
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FIG. 9. (a) Spin-up and (b) spin-down components of the LDOS
as a function of excitation energy E/t at lattice sites (x,y) = (1,1),
(2,1), (1,2), and (2,2) in the pure TCDW state for α = t, h = 1.5t , and
U = −4t at half filling in a 64 × 64 lattice with PBC. �C  0.675t

and ν = −2.

for conventional s-wave superconductivity [44]. Hence any
linear superposition of the TSC and TCDW states is also a
ground state with ν = −2 and the two topological orders can
coexist.

By introducing surface boundaries, we have also confirmed
the existence of zero-energy bound states in our self-consistent
solutions. We have obtained the pure TCDW state at μ̃ = 0
for α = 2.5t, h = 1.5t , and U = −4t on a 80 × 80 lattice with
surface edges at x = 1 and x = 80 and PBC in the y direction.
A cross section of the (a) spin-up and (b) spin-down electron
density is plotted as a function of x � 40 at y = 40 and y = 41
in Fig. 10. The presence of an edge affects only few lattice sites
close to the edge and we observe perfect (±π, ± π ) CDW in
the bulk of the system, where �C  0.338t . The effective
Zeeman field is h̃ = 0.9552t . The excitation spectrum is
presented in Fig. 11, where the abscissa is an index numbering
the eigenvalues, clearly showing the existence of zero-energy
states (E  10−6t). We have also found the pure TSC state in
which the SC order parameter is enhanced significantly at and
very near x = 1 and x = 80, but with �0  0.338t in the bulk
and two Majorana bound states per surface with E  10−6t .
Moreover, a mixed state has been found where the SC order
parameter has the same overall structure as in the pure TSC
state, but with �0  0.174t along with �C  0.29t in the bulk.
For both pure TSC and mixed states, h̃ = 0.9552t as for the
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FIG. 10. (a) Spin-up and (b) spin-down electron density as a
function of x at y = 40 and y = 41 in the pure TCDW state
for α = 2.5t, h = 1.5t , and U = −4t at half filling on a 80 × 80
lattice with open boundaries at x = 1 and x = 80. �C  0.338t and
ν = −2.

pure TCDW state. The mixed state also hosts two zero modes
per surface with E  10−6t .
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FIG. 11. Excitation spectrum in the pure TCDW state for α =
2.5t, h = 1.5t , and U = −4t at half filling on a 80 × 80 lattice
with open boundaries at x = 1 and x = 80. The index numbers the
eigenvalues. �C  0.338t and ν = −2.
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IV. CONCLUSIONS

In summary, by solving for the superconducting order
parameter self-consistently, we have found that the effects
of a nonmagnetic impurity in a 2D s-wave topological super-
conductor can vary significantly depending on the material
parameters. In particular, the weaker the Rashba SO coupling,
or the stronger the Zeeman field, the more p-wave-like
the system reacts to a nonmagnetic impurity. The midgap
excitation bound to the impurity always carries down spin
at the impurity site, i.e., spin antiparallel to the direction of the
Zeeman field. For relatively strong Zeeman field, however,
the spin of the midgap excitation can flip as the impurity
potential is varied. We have found two such cases: In one
case, the midgap excitation disappears into the gap edge and
reappears with opposite spin, and in the other the system
undergoes a phase transition of the ground state, whereby
the spin-down quasiparticle is bound to the impurity in the
ground state and thus the midgap excitation becomes spin up.
In this case, a nonmagnetic impurity in a 2D s-wave topological
superconductor acts exactly like a magnetic impurity (classical
spin) in a conventional s-wave superconductor. The spin flip
of the quasiparticle excitation can be understood partially in
terms of the TKNN number that corresponds to the shifted
chemical potential at the impurity site having the opposite
sign to that of the bulk TKNN number.

We have also shown by solving for each spin component
of the Hartree potential as well as the order parameter self-
consistently that the Hartree potential effectively reduces the
Zeeman field. Furthermore, we have demonstrated in terms
of our self-consistent solutions the coexistence of TCDW and
TSC in the Abelian phase at half filling. This is analogous
to the CDW and uniform superconducting states being the de-

generate ground states at half filling in the tight-binding model
for conventional s-wave superconductivity: The presence of a
nonmagnetic impurity, however, lifts this degeneracy in favor
of CDW [44].

In this work, we did not solve for the Hartree potential
self-consistently when studying the impurity effects. When
the Hartree potential is included, the TSC states presented
in Sec. III B will require weaker pairing interaction and/or
SO coupling. Further studies of the effects of nonmagnetic
impurities and their influence on possible interplay of TCDW
and TSC in a 2D s-wave topological superconductor will
be presented in a future publication [58]. Finally, removing
the assumption that the effective pairing interaction for the
Hartree potential is the same as for the superconducting
order parameter—as the two effective interactions differ in
general—is an interesting topic to explore, especially in regard
to the coexistence of TCDW and TSC.
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