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Luttinger parameter of quasi-one-dimensional para-H2
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We have studied the ground-state properties of para-hydrogen in one dimension and in quasi-one-dimensional
configurations using the path-integral ground-state Monte Carlo method. This method produces zero-temperature
exact results for a given interaction and geometry. The quasi-one-dimensional setup has been implemented in
two forms: the inner channel inside a carbon nanotube coated with H2 and a harmonic confinement of variable
strength. Our main result is the dependence of the Luttinger parameter on the density within the stable regime.
Going from one dimension to quasi-one dimension, keeping the linear density constant, produces a systematic
increase of the Luttinger parameter. This increase is, however, not enough to reach the superfluid regime and the
system always remain in the quasicrystal regime, according to Luttinger liquid theory.
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I. INTRODUCTION

The search for a superfluid phase in molecular para-
hydrogen (p-H2) started from the theoretical proposal by
Ginzburg and Sobyanin in 1972 [1]. They suggested that
p-H2, with spin 1, should be superfluid under a transition
temperature Tλ that they estimated to be Tλ ∼ 6 K using ideal
Bose gas theory. This relatively high temperature, compared
with the well-known transition temperature in 4He [Tλ(4He) =
2.17 K], was the result of the smaller mass of p-H2. However,
this estimation is too crude because the strong interactions
between the p-H2 molecules are simply ignored. Moreover,
the transition temperature for the ideal Bose gas increases with
the density ρ as ρ2/3, whereas it is known that in superfluid 4He
it slightly decreases with ρ. Later on, Apenko [2] proposed a
phenomenological theory similar to the Lindemann criterion
for classical crystal melting. He concluded that in p-H2, Tλ

should vary between 1.1 and 1.2 K, depending on the density.
A recent path-integral Monte Carlo (PIMC) simulation of
p-H2 at low temperatures, in which it was possible to frustrate
the formation of the stable crystal, showed that superfluidity
appears at temperatures around 1 K [3].

Superfluidity in bulk hydrogen is not observed because it
crystallizes in an hcp phase at a temperature T = 13.8 K,
which is much higher than the estimated transition temperature
Tλ. The mean reason is that the intermolecular interaction is
around three times more attractive than the one between He
atoms. This enhanced attraction dominates over the positive
effect produced by the smaller mass of H2 respect to the 4He
one. There have been a number of supercooling attempts to
create a metastable liquid phase but even at T ∼ 9 K the liquid
phase freezes quickly into a crystal [4]. One of the a priori
more interesting options was to confine hydrogen in a porous
media, like a vykor glass, with pores in the nanometer scale.
However, the lowest temperature at which the system was
detected to be liquid was T ∼ 8 K and so still far from the
pursued superfluid [5].
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At present, the only experimental signatures of superfluid
p-H2 come from experiments with small doped clusters [6].
By measuring the rotational spectra of the embedded molecule
it was possible to determine the effective moment of inertia of
the cluster and thus the superfluid fraction. These experiments
show significant evidence of superfluidity in clusters made
up of N � 18 molecules. Larger clusters of up to N ∼ 104

molecules down to a temperature T = 2 K have recently been
produced but with no signature of superfluidity due to this
still too high temperature [7]. Another way of frustrating the
formation of the crystal was the generation of continuous
hydrogen filaments of macroscopic dimensions, but again
without signature of superfluidity [8].

On the theoretical side, the search for superfluidity in
p-H2 has been intense in the last decades. The well-known
radial interaction between the molecules and the progress
achieved in quantum Monte Carlo methods have allowed for
accurate results in different geometries. To frustrate the crystal
formation and reduce the strength of the interactions it was
proposed to work with a two-dimensional geometry with some
impurities arranged in a periodic lattice [9,10]. First results
obtained within this scheme found finite superfluid densities
but posterior simulations were not able to reproduce these
signatures [11–13]. The greatest effort was devoted to the
study of small clusters, both pure [14–23] and doped with
impurities [24–26]. There is an overall consensus that p-H2

becomes superfluid at temperatures smaller than 1–2 K and
that the superfluid fraction decreases fast with the number
of molecules of the cluster. For N > 18–25, the superfluidity
vanishes and solidlike structures are observed.

Recently, there has been interest in the study of p-H2 in
quasi-one-dimensional environments [27–29]. Again, the idea
is to reduce dimensionality to soften the intermolecular attrac-
tion. Quantum Monte Carlo calculations of hydrogen adsorbed
inside narrow pores of different size and nature have been
performed showing, in some cases, the existence of inner chan-
nels which behave as effectively one-dimensional systems.
Interestingly, a recent ground-state quantum Monte Carlo
calculation [28] has shown that the inner channel of p-H2 ad-
sorbed inside a (10,10) armchair carbon nanotube is superfluid.

In the present work, we study the one-dimensional character
of narrow channels of p-H2 and determine the Luttinger
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parameter [30–32] as a function of the linear density. Our
method is the path-integral ground state (PIGS), a zero-
temperature approach, which is able to generate exact results
for the ground-state of the system [33]. We have studied three
different cases: a purely 1D array of molecules, p-H2 inside a
(10,10) carbon nanotube coated with an incommensurate layer
of hydrogen, and p-H2 confined harmonically to move in a
channel of different widths. Our results show that moving from
1D to quasi-1D reduces effectively the interaction producing
an increase of the Luttinger parameter. However, this slight
increment is not enough to achieve the superfluid-like behavior
within Luttinger theory. The system breaks its homogeneity
when crossing the spinodal point and this happens clearly
before of getting superfluity, in contradiction with the recent
findings of Ref. [28].

The rest of the paper is organized as follows. In the next
section, we briefly discuss the method used in our analysis and
describe the properties of the three different studied setups.
Our results are reported in Sec. III, mainly the dependence of
the Luttinger parameter with the density, within the stability
regime of the quasi-1D system. Finally, an account of the main
conclusions is given in Sec. IV.

II. METHOD

The ground-state energy and structure properties of quasi-
one-dimensional p-H2 have been studied using the path-
integral ground-state (PIGS) method [33]. For bosons and
a given interaction, this method is exact within controlled
statistical noise. The ground-state wave function of the N -body
system is obtained from

�(R) =
∫

G(R,S,τ )ψm(S)dS , (1)

with R = {r1, . . . ,rN }, G(R,S,τ ) the Green’s function in
imaginary time τ , and ψm(R) a model wave function with
the proper Bose symmetry. Obviously, the Green’s function
for a generic time τ is not known in general but one can
build G from its knowledge at short times and then apply its
convolution property to arrive to the desired total time τ . This
is, in fact, the same method used at finite temperature (the
path-integral Monte Carlo method (PIMC)) just changing the
imaginary time to inverse of temperature and closing the paths
instead of being open as in PIGS.

In our simulations, we approximate the Green’s function
at short time using the fourth-order splitting proposed by
Chin and Chen [34], which in previous calculations has
shown high accuracy [35]. The trial wave function ψm(R)
in Eq. (1) plays the role of boundary condition of the open
paths. As we simulate a Bose system it has to be symmetric
under exchange of particles but its specific shape is rather
irrelevant, its effect being mainly on the total imaginary time
to project out the ground-state wave function [36]. In the
present work, we have used a Jastrow model with McMillan
correlation factors, ψm(R) = ∏

i<j exp[−0.5(b/rij )5], with

b = 3.71 Å. It is worth noticing that PIGS provides pure
(unbiased) estimators of diagonal and nondiagonal operators
Ô by calculating them in the center of a symmetric chain with
ψm at both extremes, that is,

〈Ô〉 = N−1 〈ψm|G(τ ) Ô G(τ )|ψm〉 , (2)

with N a normalization constant.
The Hamiltonian of the system is

H = − h̄2

2m

N∑
i=1

∇2
i +

N∑
i<j

V (rij ) +
N∑

i=1

U (ri) , (3)

with V (r) the intermolecular interaction and U (r) the confin-
ing potential in the quasi-1D simulations. Upon the condition
of moderate pressures, it is justified to use a radial interaction
between p-H2 molecules because in the para state the
H2 molecule is in the J = 0 rotational state. We use the
semiempirical Silvera-Goldman potential [37], which has been
extensively used in the past. When the system is not strictly
1D, we include an external potential U (r) which confines in
the radial direction. In particular, for the quasi-1D calculations,
we have worked on two cases. In a first one, we study the inner
channel inside a (10,10) carbon nanotube of radius R = 6.80 Å
coated with an incommensurate lattice of p-H2 of density

σ = 0.112 Å
−2

. This configuration is very close to the one
obtained in Ref. [28] for the same nanotube. In our case, we
obtain the potential U (r) as a sum of the interaction that an H2

molecule located at an r distance to the center would feel due
to the C atoms of the nanotube and the H2 molecules of the
inert layer. At difference with other approaches, which used
the potential inside the nanotube by direct integration of the
Lennard-Jones potential [38,39], we include here explicitly the
real positions of the atoms and then summed up all to give the
total interaction. The C-H2 potential is of Lennard-Jones type,
with the same parameters than in Ref. [27]. The second model
to study the effects of departing from a strictly 1D geometry
is a harmonic potential U (r) = h̄2/(2mr4

0 ) (x2 + y2), with r0

a parameter which controls the strength of the confinement.
A similar harmonic model was used recently in a PIMC
simulation [29].

We used N = 30 in the major part of our simulations; partial
runs with larger number of particles were also performed
but the results were not significantly different, almost for
the quantities of our interest. The time step was �τ =
10−3 K−1 and convergence was achieved at imaginary times
τ � 0.25 K−1.

III. RESULTS

The energy per particle as a function of the linear density
ρ is shown in Fig. 1 for the three studied systems: 1D,
(10,10) carbon nanotube (NT), and harmonic confinement
(HC). We adjusted the parameter r0 in the HC case to be
close to the particle density profile of the NT case. By taking
r0 = 0.51 Å, we obtain in fact very similar density profiles,
as shown in Fig. 2. Coming back to the energy results,
one can see that near the equilibrium point the equations
of state are rather similar (in the NT and HC cases, we
have subtracted to the energy per particle the energy of a
single molecule in the same environment). The equilibrium
densities ρ0 for 1D, NT, and HC are 0.218(2), 0.224(2), and

0.221(2) Å
−1

, respectively (numbers within parenthesis are the
statistical errors). The possibility of movement in the radial
direction makes that the quasi-1D configuration equilibrates
at a slightly larger density with respect to the 1D limit. On
the other hand, the spinodal point ρs , defined as the point
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FIG. 1. Energy per particle of p-H2 as a function of the density.
The insert shows the same values around the equilibrium density.
Harmonic case with r0 = 0.51 Å.

where the speed of sound becomes zero, appears in quasi-1D
at densities statistically indistinguishable of the 1D limit,

ρs = 0.208(3) Å
−1

. However, the most significant effect of
opening the radial direction is produced at large densities in
which the growth of the energy with the density is clearly
steeper in 1D than in the NT and HC cases.

In 1D systems with gapless excitation spectrum, ε(k) = h̄kc

when k → 0, one can make use of the Luttinger liquid theory.
This phenomenological theory predicts the large-distance
(small momenta) of the distribution functions. Within this
model, the results are universal in terms of the Luttinger
parameter K . In a homogeneous system, like the one we
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FIG. 2. Radial density profile for NT and HC quasi-1D systems
at the equilibrium density. Harmonic case with r0 = 0.51 Å.

are studying here, K is determined by the Fermi velocity
vF = h̄kF/m and the speed of sound through the relation
K = vF /c. In 1D, the Fermi momentum is kF = πρ. The
estimation of K for different densities requires of a full
many-body calculation since the speed of sound depends
strongly on the intermolecular interaction.

According to Luttinger theory [30–32], the pair distribution
function in one dimension behaves at large distances as

g(z) = 1 − K

2(kFz)2
+

∞∑
l=1

Al

cos(2lkFz)

|kFz|2l2K
, (4)

which is a sum of oscillating terms modulated by a power-
law decaying amplitude. The exponents of the attenuation are
only dependent on the Luttinger parameter K , whereas the
amplitudes Al of each term of the sum are not determined
within the Luttinger theory. The oscillations in g(z) (4) can
produce divergences at momentum values k = 2lkF. This can
be observed in the static structure factor S(k) = 〈ρ̂(k)ρ̂(−k)〉,
with ρ̂(k) = ∑

i exp(−ikz). In fact, the height of the l peak in
S(k) is given by

S(k = 2lkF) = AlN
1−2l2K , (5)

which diverges with the number of particles N for values
K < 1/(2l2). In particular, the first peak diverges when K <

1/2. In Luttinger theory, this regime is termed quasicrystal for
the resemblance to Bragg peaks in two and three dimensions.
However, a true crystal in 2D and 3D shows real Bragg peaks in
which the height of the peak increases linearly with N whereas
in 1D this only happens when asymptotically K → 0.

In Fig. 3, we report results for the static structure factor
S(k) at different densities. From the low-k linear behavior of
S(k) we can obtain the speed of sound c,

S(k → 0) = h̄k

2mc
, (6)
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FIG. 4. Luttinger parameter K for the three systems under study
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and, from it, the Luttinger parameter K . The dependence of
K with the density is shown in Fig. 4. It has a value K � 0.25
at the equilibrium density and decreases monotonically with
ρ. The spinodal point is quite close to ρ0 and thus 1D p-H2

remains always in the quasicrystal regime. The limit of stability
of the homogeneous phase, signaled by the spinodal point,
is clearly shown in the results of S(k) contained in Fig. 3.
As one can see, below the spinodal, and when k → 0, the
static structure factor shows an anomalous behavior, the linear
behavior is lost, and the signal of a divergence is observed.
Snapshots of configurations generated along the PIGS runs
also show this break of homogeneity.

Results for S(k) along the z direction in the quasi-1D NT
case are shown in Fig. 5. Above the spinodal point, the behavior
of S(k) is very similar to the purely 1D case shown in Fig. 3,
with a clear linear phononic behavior when k → 0. From this
behavior, we estimate the speed of sound and the Luttinger
parameter K . One can check that the Luttinger liquid theory
applies to this quasi-1D system by checking if the asymptotic
behavior of the computed g(z) is well reproduced by Eq. (4)
using the K value obtained from the low k linear behavior of
S(k). As one can see in Fig. 6, the agreement with Luttinger
theory is excellent, confirming our premises.

Results obtained for K as a function of the density are
shown in Fig. 4. At equal linear density, the K values in the
NT configuration are systematically larger than in purely 1D
due to the effective reduction of the intermolecular interaction
produced by the opening of radial movements. However, it
still remains K < 1/2, i.e., in the quasicrystal regime. When
the density is lowered below the spinodal point the system
breaks its homogeneity. As in the previous analyzed 1D case,
this instability is clearly shown in the results of S(k) (Fig. 5).
In spite of having larger statistical noise than in 1D, due to
the radial degree of freedom, one can see as the linear k

dependence at low k is lost and a tendency to divergence is
observed.
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FIG. 5. Static structure factor for quasi-1D H2 in the NT case at

different densities (in Å
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).

A similar analysis has been carried out in the case of a
quasi-1D system with harmonic confinement HC. The PIGS
results for S(k) are shown in Fig. 7 at several densities. The
observed behavior is quite close to the NT case since the
density profiles in both cases are very similar (Fig. 2). One
observes the break of homogeneity at the spinodal point and
the results for K in this case are also very similar to the NT
case. These are shown in Fig. 4; close to the equilibrium density
K in HC is slightly smaller than in NT but then both results
converge to common values when the density grows.
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FIG. 6. Two-body distribution function for the NT configuration
at the equilibrium density. The red line is the PIGS result and the black
one corresponds to the asymptotic behavior predicted by Luttinger
theory (4) with K derived from the low − k behavior of S(k).
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The quasi-1D results for the Luttinger parameter show an
enhancement of its value with respect the purely 1D geometry.
An interesting question is to know if this increase could be
even larger if one releases slightly the radial confinement,
producing setups that depart more from the 1D constraint. We
have explored this possibility by tunning the strength r0 of the
harmonic confinement HC. In Fig. 8, we show results of S(k)

for the HC model at a fixed density ρ = 0.22 Å
−1

and varying
the parameter r0 in the range 0.26-3.83 Å. When the Gaussian
potential is narrow enough, r0 � 1.28 Å, the static structure
factor is very similar to the 1D case, with a linear slope at low
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k and with a strength of the peak decreasing slightly with r0.
However, when r0 � 2 Å S(k) shows an anomalous behavior,
with a main peak located at very small k. This reflects that the
system breaks its homogeneity. In fact, we observe in snapshots
of the simulations as the system aggregates in clusters of larger
density.

In Fig. 9, we show results for K within the HC model
as a function of the strength of the confinement r0. They are

obtained at the same linear density ρ = 0.22 Å
−1

and within
the r0 range in which the system is stable. We observe a linear
increase of K with r0 up to r0 � 1 Å and then it tends to
flatten. At r0 = 1.28 Å, we obtain K = 0.35 a value which is
significantly larger than in 1D at the same density (K = 0.25),
but still below the threshold for reaching the quasisuperfluid
regime.

IV. CONCLUSIONS

By means of the path-integral ground-state Monte Carlo
method, we have studied the ground-state (zero temperature)
properties of 1D and quasi-1D p-H2. For the quasi-1D case,
we have used two models: the inner channel inside a (10,10)
carbon nanotube coated with H2 and a radial harmonic
confinement with variable strength. The calculation of the
equations of state in the three cases has allowed for an accurate
determination of the equilibrium densities of the three systems.
As expected, ρ0 increases slightly when radial direction opens
because the strong H2-H2 interaction is effectively reduced.
The effect is, however, quite small. The spinodal point of
the three problems is indistinguishable within our numerical
resolution and remains very close to ρ0.

From the low-k behavior of the static structure factor,
we estimate the speed of sound, and from it, the Luttinger
parameter K . In this way, we report results for the evolution
of K with the density. K decreases monotonically with ρ

in all cases. In all the density regime in which the system
is stable, K < 1/2 and thus, according to Luttinger theory
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p-H2 is a quasicrystal. For a particular density, we observe
as K increases going from strictly 1D to quasi-1D but
the effect is not large enough to surpass the quasicrystal
threshold.

Our results disagree with the recent findings of Ref. [28]
using the same (10,10) nanotube studied here. In that work,
the quasi-1D problem is mapped onto a purely 1D one by
constructing an effective potential built from the obtained
density profiles. The resulting effective potential is more than
three times less attractive than the Silvera-Goldman H2-H2

potential and thus their calculation leads to the possibility of

getting the quasisuperfluid regime because the spinodal density
of this effective model is much smaller. Our present results
show that this effective potential is not very realistic since a
full quasi-1D calculation, accounting for the real interactions
C-H2 and H2-H2 shows that the system breaks close to the
equilibrium density by spinodal decomposition [40].
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