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Parametric pumping of the two-dimensional quantum spin liquid

A. A. Zvyagin
Max-Planck-Institut für Physik komplexer Systeme, Noethnitzer Strasse, 38, D-01187 Dresden, Germany

and B. I. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine,
Nauky Avenue, 47, Kharkov 61103, Ukraine

(Received 27 April 2016; revised manuscript received 11 January 2017; published 24 February 2017)

With the help of the exact solution of the Kitaev model the parametric pumping of the two-dimensional
quantum spin liquid under the action of the ac magnetic field is studied. In the dynamical regime the field
produces oscillations of the magnetization with the field’s frequency, modulated by the Rabi-like oscillations.
In the steady-state regime, the Rabi-like oscillations are damped. The absorption of the ac field by the Kitaev
spin model is finite and manifests resonance features. Such a behavior is generic for quantum spin liquids with
fermionic excitations, and it is different from the linear spin-wave response of magnetically ordered systems to
such a parametric pumping.
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I. INTRODUCTION

Among the large variety of magnetic materials low-
dimensional spin systems and systems with frustration demon-
strate properties of quantum spin liquids [1]. The latter are
characterized by strong spin-spin couplings; however, those
interactions cannot yield a long-range magnetic order, either
due to enhanced quantum fluctuations or due to frustrated
bonds, and the emergent excitations there are fractionalized
quasiparticles. The celebrated Kitaev spin model on the
honeycomb lattice [2] is one of the best examples of such a
system. The relative simplicity of the model permits us to look
for the new theoretical predictions for quantum spin liquids
and experimental realizations in condensed-matter physics and
ultracold atomic systems [3,4]. The realization of physics of
Kitaev’s model is related to magnetic materials, where spin
and orbital degrees of freedom are strongly coupled. Electron
spin resonance, in particular, the parametric excitation of a spin
system by the external ac magnetic field, is a powerful tool to
study dynamics of magnets. Taking into account constraints
for the inelastic neutron scattering in some realizations of
the Kitaev model (like in Ir oxides due to the strong neutron
absorption), the spin-resonance method with very good energy
resolution can be useful for the investigation of their dynamical
magnetic properties. In quantum spin liquids, in particular, the
parametric excitation by the ac magnetic field can permit us to
understand the nature of spin quasiparticles.

In this work we study the response of the spin-1/2
two-dimensional system to the parametric action of the ac
magnetic field (parametric pumping). It is a study of the
two-dimensional quantum spin-liquid system affected by the
parametric pumping that exactly takes into account the finite
Hilbert space of spins. It is shown that the ac field-induced
magnetization and absorption are finite in the considered
system, unlike the response of spin waves of magnetically
ordered systems to the parametric pumping.

II. PARAMETRIC PUMPING

Consider the spin-1/2 system on the honeycomb lattice
with the Hamiltonian [2]

H0 = −
∑

α=x,y.z

Jα

∑
α−links

Sα
j Sα

j ′ , (1)

where Jx,y,z are exchange integrals (let us, for definiteness,
consider the case with Jx,Jy,Jz � 0) and S

x,y,z

j are the
operators of the spin projections of the spins situated at
the sites j of the lattice. Spins interact if they are situated at
the neighboring sites. The special feature of the Kitaev model
is that the interactions depend on the link type (i.e., along the
links parallel to z axis only z projections of spins interact, etc.)
[2]. Consider the parametric effect of the external ac magnetic
field, polarized linearly, e.g., along the z axis, on the system.
It can be described by the Hamiltonian

H = H0 − h cos(ωt)
∑

j

Sz
j . (2)

Here we denote h = gμBh0, where g is the g factor and μB

is Bohr’s magneton and h0 > 0 and ω > 0 are the magnitude
and the frequency of the ac field. The magnitude of the ac field
is considered to be much smaller than exchange constants
and the frequency of the ac field, h � Jx,y,z ∼ h̄ω. Dynamics
of the spin system can be studied in the framework of the
Liouville-like kinetic equation [5] for the density matrix ρ,
written as

ih̄ρ̇ = [H,ρ] − ih̄γ (ρ − ρ0), (3)

where the overdot denotes the time derivative and the symbol
[·,·] denotes the commutator. Here we suppose that the linear
relaxation with the rate γ (caused by the interaction of the
studied system with the environment, e.g., with phonons) is
homogeneous and frequency independent and that possible
oscillations relax to the state ρ0, which is the Gibbs distribution
with H0, natural for h � Jx,y,z.

First, let us use the substitution ρ ′ = ρ exp(−γ t); we get

ih̄ρ̇ ′ = [H,ρ ′] + ih̄γρ0 exp(γ t). (4)

Then we use the unitary transformation ρ ′ = U1ρ1U
−1
1 , where

U1 = exp

⎡
⎣i

h

h̄ω
sin(ωt)

∑
j

Sz
j

⎤
⎦, (5)

with

ih̄ρ̇1 = [H1,ρ1] + ih̄γU−1
1 ρ0U1 exp(γ t), (6)
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where

H1 = −Jz

∑
z−links

Sz
jS

z
j ′ − i

4

⎡
⎣Jx

∑
x−links

−Jy

∑
y−links

⎤
⎦

× (S+
j S−

j ′ + S−
j S+

j ′ )

− 1

4

⎡
⎣Jx

∑
x−links

−Jy

∑
y−links

⎤
⎦

× [S+
j S+

j ′ e
i(2h/h̄ω) sin(ωt) − S−

j S−
j ′ e

−i(2h/h̄ω) sin(ωt)] (7)

and S±
j = Sx

j ± iS
y

j . Then we can use the series

exp[iz sin(ωt)] =
∞∑

n=−∞
Jn(z) exp(inωt), (8)

where Jn(z) is the Bessel function. We obtain

H1 = −Jz

∑
z−links

Sz
jS

z
j ′ − i

4

⎡
⎣Jx

∑
x−links

−Jy

∑
y−links

⎤
⎦

× (S+
j S−

j ′ + S−
j S+

j ′ ) −
∞∑

n=−∞
Jn(2h/h̄ω)

×1

4

⎡
⎣Jx

∑
x−links

−Jy

∑
y−links

⎤
⎦einωt [S+

j S+
j ′ − S−

j S−
j ′ ]. (9)

Now we take into account that h � h̄ω, i.e., z � 1. For small
z we have J0 ≈ 1 and J±1(z) ≈ ±z. It follows that

H1 ≈ H0 ∓ h

2h̄ω
e±iωt

×
⎡
⎣Jx

∑
x−links

−Jy

∑
y−links

⎤
⎦(S+

j S+
j ′ − S−

j S−
j ′ ). (10)

III. SPIN WAVE APPROXIMATION

Now we need to diagonalize the H0 part of H1. It can be
realized in two ways. If the considered system is magnetically
ordered, the standard way to study its dynamics is the
spin-wave approximation. We can use, e.g., the Holstein-
Primakoff representation of spin operators via bosonic ones
[6]. Suppose Jz > Jx,y . The operators of spin projections can
be approximately presented as

Sz
j = (1/2) − b

†
j bj , S+

j ≈ bj , S−
j ≈ b

†
j , (11)

with bj and b
†
j being bosonic operators of destruction and

creation. After the Fourier and Bogolyubov transformations
the Hamiltonian H1 (up to a constant term) has the form

H1 ≈
∑

k

{εka
†
kak + (h/h̄ω)fk[exp(iωt)aka−k + H.c.]}, (12)

where εk is the energy of a magnon, ak and a
†
k destroy and

create the magnon, respectively. and fk is the coefficient for
terms in the Hamiltonian H0, which do not conserve

∑
k b

†
kbk.

Here we drop the terms like [exp(−iωt)aka−k + H.c.], using

the so-called resonance approximation [7]. This means that
we consider exactly terms explicitly dependent on time which
produce the nonzero contribution to the linear response.
The remaining terms with an explicit time dependence can
be omitted due to the smallness of the magnitude of the
ac magnetic field (their contribution can be, in principle,
calculated in the framework of perturbation theory).

It turns out that the same result, i.e., Eq. (12), can be
obtained in the macroscopic approach for the magnetically or-
dered system using the spin-wave approximation [8]. Namely,
suppose that the considered spin system is magnetically
ordered. For the magnetically ordered system we can replace
the operators of spin projections in Eq. (10) by their average
values. This means that the quantum spins are replaced by
the classical vectors of the site magnetic moments (due to the
magnetic ordering), and the quantum Hamiltonian is replaced
by the classical density of energy. For positive Jα such an
ordering is ferromagnetic: All magnetic moments are parallel
to each other. This approach contradicts the exact solution
of the Kitaev model [2], which is related to the spin liquid.
Then, the dynamics of the classical vectors of the magnetic
moments (i.e., of the order parameters of the magnetically
ordered system) is described by the Landau-Lifshitz equation
of motion. There magnetic moments move in the effective field,
which is the variation of the density of the energy with respect
to related magnetic moment. This approach is equivalent to the
use of the mean-field approximation in quantum mechanics
[9]. Suppose that due to Jz > Jx,y the site magnetic moments
of the considered ordered magnetic system are directed mostly
along the z axis. Then, we can consider small deviations
of magnetic moments (i.e., spin waves) and linearize the
obtained equations of motion for those small deviations. The
density of the energy, bilinear in such small deviations, can
be diagonalized by the Fourier transform. Spin waves behave
like bosons. They are often considered to be equivalent to
magnons in magnetically ordered systems. Finally, using the
resonance approximation, we get the density of the energy
of spin waves in the same form as Eq. (12). Notice that for
classical vectors of magnetic moments in magnetically ordered
systems the number of states of their projections is infinite,
unlike the finite number for a quantum spin. This is the reason
why magnons in the magnetically ordered systems behave as
bosons.

Now we use the unitary transformation U2 = exp
[(−iωt/2)

∑
k a

†
kak], with ρ1 = U2ρ2U

−1
2 , which yields

ih̄ρ̇2 = [H2,ρ2] + ih̄γU−1
2 U−1

1 ρ0U1U2 exp(γ t),

H2 =
∑

k

[(
εk − h̄ω

2

)
a
†
kak + h

h̄ω
fk(aka−k + H.c.)

]
. (13)

It is the quadratic form of Bose operators. It follows from
the equations of motion for ak and a

†
−k that the increment

(decrement) of the time dependence of ak and a
†
−k (and hence

of the average with the density matrix or with the ground-
state wave function at T = 0 of the number of magnons a

†
kak)

depends on whether the value −[εk − (h̄ω/2)]2 + |hfk/h̄ω|2
is larger (smaller) than (h̄γ )2. In resonance we can neglect the
term [εk − (h̄ω/2)]2. Then for any γ there exists the threshold
value of the magnitude of the ac field hc: For a magnitude of the
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ac field larger than that threshold value, h > hc, the number of
magnons in the system grows with time exponentially (and the
linear relaxation cannot limit such a growth). Such a parametric
instability [8] is observed in many magnetic systems [10].

IV. ADAPTATION OF THE EXACT SOLUTION

The second (and, as we show below, the correct approach
for spin liquids) way is to diagonalize the H0 part of
the Hamiltonian H1 using the exact solution of the Kitaev
honeycomb model [2]. We rewrite the Hamiltonian H1 exactly
using the transformation to fermion operators of creation
and destruction d† and d (for our purpose it is convenient
to use the Dirac representation for fermion operators). It is
the two-dimensional generalization [11,12] of the Jordan-
Wigner transformation [13]. To represent spin operators with
spinless fermion operators we can use [11] Sz

j,l = d
†
j,ldj,l −

1/2,S+
j,l = d

†
j,l exp[

∑
i,k<j d

†
i,kdi,k + ∑

i<l d
†
i,ldi,l], and S−

j,l =
(S+

j,l)
†. Here the indexes j and l denote the column and

row of the brick lattice equivalent to the honeycomb lattice
[11]. For each pair of Dirac fermion operators d and d†

two Majorana fermion operators a and f can be defined as
aj,l = i(d†

j,l − d
†
j,l) and fj,l = d

†
j,l + dj,l when j + l is even

and aj,l = d
†
j,l + dj,l and fj,l = i(d†

j,l − dj,l) when j + l is
odd. It turns out that the values αj = ifj,lfj,l+1 defined on
each vertical bond are conserved [2,11]. The Hamiltonian H0

can be written (using more convenient enumeration of bonds
instead of the column and rows) as the Hamiltonian of the
Fermi gas on a brick lattice with the site-dependent chemical
potential

H0 =
∑

j

[Jx(d†
j + dj )(d†

j+x̂ − dj+x̂) + Jy

×(d†
j + dj )(d†

j+ŷ − dj+ŷ) + 2Jzαj (2d
†
j dj − 1)], (14)

where j stands for the position of the z bond, ŷ connects
two z bonds and crosses a y bond (a similar definition holds
for x̂), and αj = ±1 (αj commutes with dj ′ and d

†
j ′ for any j

and j ′). Notice that a similar result (with different notations)
was obtained in the original paper [2]; that is, the result does not
depend on the numeration, as it must be. This transformation
is exact (unlike the approximate Holstein-Primakoff one used
above), and it is valid for any Jx,Jy,Jz. In the sectors with fixed
αj the diagonal form of the Kitaev model can be obtained after
the Fourier and Bogolyubov transformations. It has a BCS-like
form with the energy

Ek =
√

ε2
k + �2

k, (15)

where εk = ±Jz + Jx cos kx + Jy cos ky and �k=Jx sin kx +
Jy sin ky . The spectrum is gapless for |Jx − Jy | � Jz � Jx +
Jy and gapped otherwise.

Then our goal is to treat H0 in Eq. (10) exactly, i.e., to use
the exact excitations of the Kitaev model in the fixed αj sector
(taking into account the change of sign). The Hamiltonian H1

can be written as

H1 ≈
∑

k

{
Ekc

†
kck + |�k| h

h̄ω
[c−kck exp(iωt) + H.c.]

}
. (16)

Here c
†
k and ck are Dirac fermion operators, in which H0 is

diagonal for the fixed αj sector. Notice that the pumping term
related to the operator

∑
j Sz

j can change homogeneously the
sign of αj of the original Hamiltonian [14]. The summation
is over all k belonging to the subset of the Brillouin zone
such that −k is out of that subset [12]. Again, we used
the resonance approximation; that is, we consider exactly
only terms explicitly dependent on time which produce the
nonzero contribution to the linear response. Equation (16) is
the Hamiltonian H1; that is, it is the Hamiltonian H0 plus
the time-dependent term (linear in h/h̄ω). The Hamiltonian
H0 is given by Eq. (14). We diagonalize the fermionic H0 in
the sector with the fixed αj by the Fourier and Bogolyubov
transformation, i.e., consider H0 exactly there. Then the
time-dependent part of H1 is written in terms of normal modes
of the Hamiltonian H0. After the Fourier and Bogolyubov
transformation it is related to the nondiagonal quadratic
form of operators c−kck and c

†
kc

†
−k (considered resonance

conditions). In the resonance approximation terms propor-
tional to [c−kck exp(−iωt) + H.c.] are dropped because their
contribution is small (they are in the antiresonance). Then we
use the unitary transformation U2 = exp[(−iωt/2)

∑
k c

†
kck],

with ρ1 = U2ρ2U
−1
2 , which yields

ih̄ρ̇2 = [H2,ρ2] + ih̄γU−1
2 U−1

1 ρ0U1U2 exp(γ t),

H2 =
∑

k

[(
Ek − h̄ω

2

)
c
†
kck + h

h̄ω
|�k|(ckc−k + H.c.)

]
.

(17)

The Hamiltonian H2 has no explicit dependence on time.
Hence, we can use the last unitary transformation U3 =
exp[−itH2/h̄], with ρ2 = U3ρ0U

−1
3 . The solution for the time

dependence of the density matrix is

ρ = V (t)ρ0V
−1(t) exp(−γ t), t � γ −1,

ρ = γV (t)
∫ 0

−∞
dt ′V −1(t ′)ρ0V (t ′)eγ (t ′−t)V −1(t),

t � γ −1, (18)

where V (t) = U1(t)U2(t)U3(t). The dynamics of the system
in the dynamical regime for t � γ −1 is determined by the first
line of Eqs. (18), and in the steady-state regime for t � γ −1

it is determined by the second line of Eqs. (18).
It is interesting to mention that one can obtain a similar

result if instead of the unitary transformation U1 one uses
the diagonalization of the Hamiltonian H0. Then, writing
the term h cos(ωt)

∑
j Sz

j in terms of operators, in which
H0 is diagonal, we use the resonance approximation. It
produces a Hamiltonian H2 similar to the one in Eq. (17)
with the replacement (h/h̄ω) → (h/2Ek). In resonance (where
h̄ω = 2Ek) both approaches yield similar results.

V. RESULTS

Let us calculate the contribution to the magnetization per
site of the model caused by the ac field in the ground state
(for the sector with all αj = −1 [2,12,15]). It is related to the
positive sign in front of Jz in εk. The homogeneous change of
the sign of αj due to the pumping can produce the negative sign
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of Jz (homogeneously). In the following we will consider the
response of the system to the pumping for the fixed sign of Jz.

Obviously, in the zero-temperature limit the density ma-
trix ρ0 is reduced to the ground-state wave function. To
calculate the ac field-induced magnetization of the Kitaev
system, we use the following relation. For spin operators
in the neighboring sites j and j ′ of the lattice it is easy
to show that (1/2)(Sz

j + Sz
j ′ ) = 2[

√
2 + 2αj + 2(

√
2 − 2αj −√

2 + 2αj )d†
j dj ′ ]. The proof of the relation uses the definition

of spin operators and properties of the fermionic Majorana
and Dirac operators. We get �Mz = Mz

d exp(−γ t) in the
dynamical regime and �Mz = Mz

s in the steady-state regime,
where �Mz = (gμB/N )

∑
j 〈�Sz

j 〉,N is the number of sites,
the averaging with the density matrix (or with the ground-state
wave function at T = 0) is used, and �Mz is the part of
the magnetization of the Kitaev honeycomb spin-1/2 model,
which depends on h. We obtain

Mz
d = gμBh

π2h̄2ω

∫ π

0
dkx

∫ π

−π

dky

× |�k|2
Ek
k

{
sin(ωt) sin(2
kt) + 2Ek − h̄ω

h̄
k
cos(ωt)

×[1 − cos(2
kt)] − hεk

2h̄2ω
k
[1 − cos(2
kt)]

}
. (19)

Here the notation h̄
k = [(Ek − h̄ω/2)2 + (h/h̄ω)2|�k|2]1/2

is used. In the steady-state regime we obtain

Mz
s = gμBh

2π2h̄3ω

∫ π

0
dkx

∫ π

−π

dky

|�k|(
γ 2 + 
2

k

)

×|�k|
Ek

[
2Ek − h̄ω

2
cos(ωt) + h̄γ sin(ωt) − hεk

2h̄ω

]
. (20)

It is also possible to calculate the power of the ac magnetic
field, absorbed by the Kitaev spin model in the ground state.
It is determined by

Q ≡ 〈Ḣ〉av = h0ω〈sin(ωt)�Mz〉av, (21)

where

〈A(t)〉av = lim
τ→∞

∫ τ

0
〈A(t)〉dt. (22)

We see that in the dynamical regime t � γ −1 the magnetiza-
tion of the spin chain is finite; it oscillates with the frequency ω

of the ac field, modulated by the Rabi-like low frequencies 
k
(in resonance h̄
k ∼ h). On the other hand, in the steady-state
regime t � γ −1, the relaxation “smears out” the Rabi-like
oscillations, with only high-frequency oscillations (with ω)
remaining. The average value, about which the pumping-
caused contribution to the magnetization oscillates, is small
because it is proportional to (h/h̄ω)2 in both the dynamical and
steady-state regimes. In the dynamical regime the absorption
is obviously zero because no energy is taken from the system
to the environment, and spins only oscillate. On the other hand,
in the steady-state regime, due to the relaxation, we get

Q = h2γ

8π2h̄2

∫ π

0
dkx

∫ π

−π

dky

|�k|2
Ek

(
γ 2 + 
2

k

) . (23)

One can see that the absorption (as well as the magnetization)
of the honeycomb Kitaev spin-1/2 model is also finite for any
parameters of the model and frequency of the ac field.

Several limiting cases can be considered. It is important to
obtain the one-dimensional limit of the Kitaev honeycomb spin
model. It is related to one of Jα equal to zero, in which case
the Hamiltonian H0 describes the set of noninteracting spin
chains. For example, for Jy = 0 we get εk = ±Jz + Jx cos kx

and �k = Jx sin kx , with Ek = [J 2
x + J 2

z ± 2JxJz cos kx]1/2,
which is equivalent to the Ising spin chain in the effec-
tive transverse field ±Jz. Then the integration over ky in
Eqs.(19)–(23) is trivial, and we obtain the result for the
response of the Ising spin-1/2 chain to the ac field
(cf. Refs. [16–18]). Similar results can be obtained for the
limiting cases Jx = 0 and Jz = 0.

Also, it is interesting to consider the case in which we av-
erage the time dependence of the change of the magnetization
with respect to the high-frequency oscillations ω � 
k. In
that case we get for ωt � 1 and 
kt ∼ 1

Mz
d = − gμBh2

π2h̄4ω2

∫ π

0
dkx

∫ π

−π

dky |�k|εk|�k|
Ek


2
k

sin2(
kt) (24)

and

Mz
s = − gμBh2

2π2h̄4ω2

∫ π

0
dkx

∫ π

−π

dky

|�k|(
γ 2 + 
2

k

) εk|�k|
Ek

. (25)

These expressions show that in the dynamical regime the low-
frequency addition to the magnetization of the Kitaev model
due to the ac field oscillates with the Rabi frequency, while in
the steady-state regime the oscillations are “smeared out” by
the linear relaxation.

If we take into account that in the steady-state regime

lim
(h̄γ )→0

(h̄γ )

[(h̄
k)2 + (h̄γ )2]
= πδ(h̄
k), (26)

one of the the integrations (e.g., in ky) in Eq. (23) can be
realized. Notice that the argument of the δ function is 
k, not
k. This is why we need to use the change in variables for this
integration. For small h/h̄ω we can obtain the approximate
value of the integral (the Jacobi determinant of the change in
variables for the integration is equivalent to the density of states
of the Hamiltonian of free fermions with the energy Ek). That
density of states has features at the edges of the band. We get

Q ≈ h2ω
[
(h̄ω)2 − 4

(
J 2

x + J 2
y − J 2

z

)]
16πh̄J 2

z

∣∣J 2
x − J 2

z

∣∣
×

[
4JxJz + (

J 2
x − J 2

z

)
ln

(
Jx − Jz

Jx + Jz

)2]

[2(Jx + Jy + Jz) −h̄ω][h̄ω − 2 min(|Jx − Jy − Jz|,
|Jz − Jx − Jy |,|Jy − Jx − Jz|)]. (27)

Here (x) are the Heaviside step functions. They show
that the resonance absorption can happen only if the half
frequency of the ac magnetic field is between the upper and
lower boundaries of the zone of fermion excitations Ek of the
Kitaev model. The asymmetry of the expression for Q with
respect to Jx,y,z is due to the ac field, which distinguishes the
directions. Notice that expression (27) is valid only for Jα = 0
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FIG. 1. The contribution of band excitations to the normalized
absorption of the ac magnetic field by the Kitaev honeycomb spin-1/2
model (the gapless case |Jx − Jy | � Jz � Jx + Jy) as a function of
the frequency ω of the ac field and the coupling Jz. We used the
parameters Jx = 1,Jy = 0.5.

due to the above approximations. We point out that the result
does not depend on the sign of Jz, i.e., on the sign of αj .

The behavior of the absorbed power is shown in Fig. 1 for
the fixed values of two exchange constants as a function of the
third one and the frequency of the ac field for Ek gapless. The
main contribution to the absorption comes from the region of
parameters |Jz| ∼ Jx . On the other hand, the gapped situation
is shown in Fig. 2. The absorption for the gapless case, unlike
the gapped one, is possible downward to the lowest values
of the frequency. It differs from the known earlier cases (see
[8,16–18]), where the parametric pumping existed only in spin
systems with gapped excitations.

Finally, Fig. 3 describes the frequency dependence of
the absorbed power of the parametric pumping by the band
states of the Kitaev spin model for the point Jx = Jy = 1
and Jz = 0.5. It is different from the situation studied in
Refs. [16–18], where the absorption of the parametric pumping
is possible only for Jx = Jy [14]. Spin-spin interactions in the
Kitaev model in that sense are similar to the magnetic dipole-
dipole interaction, where the conservation of the projections
of the total spin moment depends on the spatial orientation
of bonds between spins. The dependence of the absorption on
frequency is nonmonotonic, with two maxima, unlike the case
of the gapped excitations.

It is interesting to notice that the absorption is maximal at
the upper edge of the band both for the gapped and gapless
cases.

In the present study we have taken into account only fermion
excitations of the Kitaev honeycomb model. However, it is
known that other (topological) excitations can exist at nonzero
temperatures. In the ground-state dynamical response, the
higher-energy (topological) states can also contribute. The
analysis of the dynamical structure factors [19] implies that

FIG. 2. The frequency dependence of the absorbed power of
parametric pumping by band states of the Kitaev honeycomb model
for the gapped case with the coupling Jz > Jx + Jy with the
parameters Jx = 1,Jy = 0.5, and Jz = 2.

there can be a contribution from the bound state [20] caused
by topological excitations with the change of the sign of αj .
The local level of such a bound state is situated much lower
[19] than the lower edge of the band Ek for the gapped Ek.
If the half frequency of the ac field is equal to the energy

FIG. 3. The frequency dependence of the normalized absorbed
power of the parametric pumping by the band states of the Kitaev
honeycomb model for the case Jx = Jy = 1 and Jz = 0.5 (gapless
excitations).
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of that state, the resonance absorption due to that bound
state, generally speaking, can contribute at low frequencies
to the total absorption of the Kitaev system with gapped
fermions. However, the absorption due to that local level also
cannot produce parametric instability in the Kitaev spin model.
Similar “low”- (with low frequency) and “high”-frequency
modes were observed in electron-spin-resonance experiments
(although in the standard circular polarization geometry of the
ac field and in the ordered phase) in Ir oxide, which has the
essential spin-orbit coupling [21], like in Kitaev’s model. It
turns out that in the one-dimensional limit with one of the
exchange constants equal to zero, there is no such bound state
for the change in the sign of αj .

VI. SUMMARY

In summary, we have shown that the response of the
two-dimensional quantum spin-liquid system with fermionic
excitations to the parametric pumping of ac magnetic field is
finite. The result is obtained by adapting the exact integrability
of the Kitaev honeycomb model, which permits us to take
into account exactly the finite Hilbert space of quantum spins
there. Namely, fermionic excitations of the quantum spin
liquid, which distinguishes the latter from the magnetically
ordered system, are the reason for the absence of accumulation

of excitations of the studied system in resonance under
parametric pumping. It is different from the linear spin-wave
approach within the macroscopic description for magnetically
ordered systems [7,8], where the absorption grows with time
exponentially because of the accumulation of spin waves
(bosons) in resonance under the parametric pumping; that is,
the spin-wave approximation cannot be used directly for the
description of the parametric pumping of the Kitaev model.
We expect the finite response to the parametric pumping to
be generic for two-dimensional quantum spin-liquid systems
with fermionic excitations, as well as for one-dimensional
[16–18,22] and even three-dimensional [23] systems with the
quantum spin-liquid behavior with fermionic excitations. This
prediction can be checked in experiments with the parametric
effect of the ac magnetic field on quantum spin systems with
Kitaev-like features of their behavior [24].
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