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Thermal conductivity of local moment models with strong spin-orbit coupling
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We study the magnetic and lattice contributions to the thermal conductivity of electrically insulating
strongly spin-orbit coupled magnetically ordered phases on a two-dimensional honeycomb lattice using the
Kitaev-Heisenberg model. Depending on model parameters, such as the relative strength of the spin-orbit
induced anisotropic coupling, a number of magnetically ordered phases are possible. In this work, we study
two distinct regimes of thermal transport depending on whether the characteristic energy of the phonons or the
magnons dominates, and focus on two different relaxation mechanisms, boundary scattering and magnon-phonon
scattering. For spatially anisotropic magnetic phases, the thermal conductivity tensor can be highly anisotropic
when the magnetic energy scale dominates, since the magnetic degrees of freedom dominate the thermal transport
for temperatures well below the magnetic transition temperature. In the opposite limit in which the phonon energy
scale dominates, the thermal conductivity will be nearly isotropic, reflecting the isotropic (at low temperatures)
phonon dispersion assumed for the honeycomb lattice. We further discuss the extent to which thermal transport
properties are influenced by strong spin-orbit induced anisotropic coupling in the local moment regime of
insulating magnetic phases. The developed methodology can be applied to any 2D magnon-phonon system, and
more importantly to systems where an analytical Bogoliubov transformation cannot be found and magnon bands
are not necessarily isotropic.

DOI: 10.1103/PhysRevB.95.064410

I. INTRODUCTION

In recent years, the intense research activity around
topological insulators [1–4] has drawn increased attention
to the influence of spin-orbit coupling in the solid state,
and demonstrated that qualitatively new phases of band
insulators can appear [5–8]. In the limit of strong electron-
electron interactions, spin-orbit coupling can also have a
profound influence on the phase diagram of Hamiltonians
potentially relevant to correlated topological materials [9].
In the context of correlated materials with strong spin-orbit
coupling, transition metal oxides containing iridium atoms,
known as iridates, have been a focus of research [10–19]. In
particular, unusual magnetic orders have been suggested in a
number of iridates [20–38]. Due to the large cross section for
neutron absorption in iridium, neutron scattering experiments
(which can be used to determine magnetic order as well as the
magnon spectra) are especially challenging [39], and a variety
of experimental techniques have been applied to study them
[40–45]. In particular, resonant x-ray scattering is a powerful
probe of iridates [27,46–50]. The magnetic model we study in
this work is in part motivated by theoretical work on iridates.

Another area in which spin-orbit coupling has played a
leading role is spintronics [51–53], where the coupling of
spin and orbital motion allows for an electrical detection of
spin properties. Spintronic devices offer the possibility of
low-power components of computing elements, and may also
exhibit longer coherence times than conventional devices,
which may prove useful for quantum architectures [54]. In
spin caloritronic devices the additional element of a thermal
gradient is included and the relationship between thermal
gradients, spin currents, and spin-orbit induced voltages is
investigated [55–57].
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In this work, we are interested in the thermal transport
properties of a 2D strong spin-orbit driven magnetic insulator.
In these systems, the thermal transport is dominated (at low
temperatures) by magnetic and lattice excitations that carry
heat. We study these systems using local moment models that
are coupled to phonons (lattice distortions) through exchange
constants that depend on the relative distance between nearby
moments. The main role of the spin-orbit coupling is to
induce unusual and sometimes highly spatially anisotropic
magnetic orders. The thermal transport is computed within the
Boltzmann approach (in the relaxation time approximation)
which takes as inputs the magnon spectrum of the various
magnetic orders and the phonon spectrum of the underlying
lattice. For concreteness, we focus on a well-known two-
dimensional model, the so-called Heisenberg-Kitaev (HK)
model [23,25,33,40], on the honeycomb lattice. The HK model
has a rich, established magnetic phase diagram that provides a
useful starting point for investigating the magnetic fluctuations
within the 1/S expansion, where S is the magnitude of the
local moment [58]. Previous studies of thermal transport
in insulating magnetic materials indicated that the magnetic
and thermal contributions to the thermal conductivity can be
comparable [59–64]. Our main result in this work is to show
that the spatially anisotropic magnetic states that can arise from
strong spin-orbit coupling can dramatically affect the thermal
transport, or have a rather small effect depending on the relative
size of magnon and phonon thermal conductivities. In some
cases, the thermal transport may help identify the symmetries
of the magnetically ordered state if other measurements are
difficult or problematic.

This paper is organized as follows. In Sec. II we introduce
the local moment model we study, and describe how the
phonons are incorporated into the exchange constants of the
model. In Sec. III the magnon spectrum for various ordered
phases of the local moment model is computed, which will
be used as an input for the thermal conductivity. In Sec. IV
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FIG. 1. Honeycomb lattice with bond labels γ = {x,y,z} used
for the Kitaev terms in Eq. (1).

the magnon and phonon scattering rates are computed, and in
Sec. V we present the results for the thermal conductivity in
various regimes and for various phases of our model. Finally,
we present the main conclusions in Sec. VI. Several lengthy
technical details are relegated to the appendices.

II. MODEL HAMILTONIAN

We consider a total Hamiltonian for local moments coupled
to the lattice as Ĥ = Ĥspin + Ĥpho, where the coupling
between spin and lattice (phonon) degrees of freedom will
be made explicit below. We study a local moment model with
an established phase diagram, the Heisenberg-Kitaev (HK)
model defined on a two-dimensional honeycomb lattice with
nearest neighbor (NN) interactions [23,25,33,40]:

Ĥspin =
∑
〈i,j〉

Ĥ
(γ )
ij =

∑
〈i,j〉

(
Jij Si · Sj + 2KijS

γ

i S
γ

j

)
, (1)

where γ = {x,y,z} labels the three distinct types of NN bonds,
as shown in Fig. 1, i and j label sites of the lattice, and S

γ

i

is the γ th component of the local moment on site i. The first
term in Eq. (1) describes a rotationally invariant (in spin space)
Heisenberg interaction between nearest-neighbor spins and the
second term is the so-called “Kitaev” term [65] that describes
bond-direction-dependent anisotropic spin interactions. One
may view it as originating from an underlying spin-orbit
coupling [21]. The exchange constants Jij and Kij describe
the relative strengths of the Heisenberg and Kitaev terms,
respectively.

The HK Hamiltonian of Eq. (1), using A = √
K2 + J 2

(where K and J are the magnitudes of the nearest-neighbor
Kitaev and Heisenberg exchange couplings), can be expressed
in terms of a parameter ϕ such that K = A sin ϕ, J = A cos ϕ,
and ϕ ∈ [0,2π ], as [23]

Ĥspin =
∑
〈i,j〉

A
(
cos ϕSi · Sj + 2sin ϕS

γ

i S
γ

j

)
, (2)

and its phase diagram is shown in Fig. 2. For fixed A (which
sets an overall energy scale), there are a wide range of magnetic
(and nonmagnetic spin-liquid) phases. In this work, we focus
on the ferromagnetic, Néel, stripy, and zigzag phases. The
presence of the Kitaev couplings additionally renders the
low-energy magnetic excitations of the various magnetically
ordered phases spatially anisotropic, as a result of which the
thermal conductivity, especially if it is magnon dominated, is

FIG. 2. Phase diagram of the Kitaev-Heisenberg model with the
parametrization of Eq. (2). A variety of magnetic and nonmagnetic
“liquid” phases are present as a function of the angle ϕ [23]. A
schematic of the various ordered states is shown. The magnetic unit
cell for the zigzag and the stripy phase is shown as a dashed rectangle.

generally expected to be different “along” the stripe (or zigzag)
compared to the direction “perpendicular” to it.

In this work, we are interested in the heat carried by both
magnetic and lattice degrees of freedom. We consider only
temperatures lower than the Debye temperature, and retain the
energy of the lattice displacements to quadratic order to obtain
a phonon spectrum in the standard way [66]. The generic
resulting phonon Hamiltonian (in the absence of coupling to
magnons) in second quantized form is given by

Ĥpho =
∑
q,s

h̄ωqsc
†
qscqs , (3)

where s labels the type of phonon polarization, c
†
qs (cqs)

the creation (annihilation) operator of a phonon of wave
vector q and polarization s, and ωqs is its eigenfrequency.
At temperatures much lower than the Debye temperature, we
can use the Debye model for acoustic phonons (that are of
interest in this work), which assumes that ωqs = v|q|; i.e., the
phonon dispersion is spatially isotropic. We further assume the
phonons are two-dimensional, and therefore they only disperse
within the plane of the honeycomb lattice.

The coupling between the phonons and the magnons enters
through the distance dependence of the exchange constants,
Jij = J (r i − rj ), Kij = K(r i − rj ), where r i and rj denote
the dynamic position of the ions at the ith and j th lattice
sites. Assuming a small displacement of the ions from their
equilibrium positions (long phonon wavelength approximation
consistent also with the linear isotropic phonon dispersion
given above), the exchange constants can be approximated
as [59]

Jij = J (Ri + ui − Rj − uj ) = J (Rij ) + uij · J ′
ij + · · · ,

(4)

Kij = K(Ri + ui − Rj − uj ) = K(Rij ) + uij · K ′
ij + · · · ,

(5)
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where

J ′
ij = ∇r ij

J (r ij )|r ij =Rij
, K ′

ij = ∇r ij
K(r ij )|r ij =Rij

,

are gradients with respect to r ij evaluated at the equilibrium
magnetic ion distances Rij . Here, uij ≡ ui − uj , r ij ≡ r i −
rj = Ri + ui − Rj − uj , and Rij ≡ Ri − Rj .

The ionic displacement from its equilibrium position is
expressed in terms of phonon creation and annihilation
operators as [67,68]

uiτ =
∑
q,s

√
h̄

2NMωqs

(c†−qs + cqs)e
iq·Ri êqsτ , (6)

where N is the total number of chemical unit cells, M the
mass of the magnetic atoms (assumed of the same type on
each sublattice), and êqsτ the direction of the displacement of
the magnetic ion at the ith lattice position of the τ th sublattice
(the honeycomb lattice has two sublattice sites), relative to a
phonon of polarization s and direction of propagation given
by q.

Within the long-wavelength approximation valid for the
acoustic phonons, ionic displacements from their equilibrium
positions are taken sublattice independent, and denoted as

ui = 1√
N

∑
q

eiq·Ri �uq, (7)

where Ri denotes the lattice equilibrium position of a magnetic
ion, and we have defined

�uq =
∑

s

√
h̄

2Mωqs

(c†−qs + cqs)êqs . (8)

Substituting Eqs. (4) and (5) into Eq. (1), one finds an
expansion of the magnetic part of the total Hamiltonian in
powers of phonon operators,

Ĥpho
spin = Ĥ0pho

spin + Ĥ1pho
spin + Ĥ2pho

spin + · · · , (9)

where the first term is the spin-phonon Hamiltonian with
magnetic ions at their lattice equilibrium positions, the second
term is the coupling of one power of phonon operators with
the spin system, the third term the coupling of two powers of
phonon operators with the spin system, and so on.

In the low-temperature regime and under the assumption
of weak magnon-phonon coupling, one-phonon processes are
more important than multiple-phonon processes, and therefore
we truncate the infinite expansion of Eq. (9) up to the Ĥ1pho

spin

term. More specifically, we retain the following two terms of
Eq. (9),

Ĥ0pho
spin =

∑
〈ij〉

J (Rij ) Si · Sj +
∑
〈ij〉

2K(Rij ) S
γ

i S
γ

j , (10)

Ĥ1pho
spin =

∑
〈ij〉

(uij · J ′
ij )Si · Sj + 2

∑
〈ij 〉

(uij · K ′
ij ) S

γ

i S
γ

j . (11)

In our Boltzmann approach to the thermal transport, Eq. (11)
will be treated perturbatively as a term that scatters magnons

and phonons, leading to a finite lifetime (and scattering rate)
of each.

III. MAGNONS AND SCATTERING AMPLITUDES

The phase diagram of Eq. (1) and its extension, Eq. (2), has
been obtained previously in the literature [23,25,33,40]. Here,
we are interested in the magnetic excitations above the ground
state, which are needed to compute the thermal transport due to
the magnetic degrees of freedom. To the best of our knowledge,
only for some phases of the NN HK model have the magnon
spectra been previously obtained [73].

We compute the magnon spectrum by representing the three
Hermitian spin operators Si = (Sx

i ,S
y

i ,Sz
i ) with Bose operators

using the Holstein-Primakoff (HP) representation [58] (see
below) which employs a Taylor expansion in powers of 1/S in
the spin operators around the classical ground state, as a result
of which the Ĥ0pho

spin and Ĥ1pho
spin terms are decomposed as

Ĥ0pho
spin = Ĥ0pho

0mag + Ĥ0pho
1mag + Ĥ0pho

2mag + · · · , (12)

Ĥ1pho
spin = Ĥ1pho

0mag + Ĥ1pho
1mag + Ĥ1pho

2mag + · · · . (13)

In Eq. (12) the first term represents a classical spin background,
and the rest of the terms are one-magnon, two-magnon (and so
on) terms. In Eq. (13), the first term represents the propagation
of one power of phonon operator in a classical spin background
(this term is zero), the second term the coexistence of one
phonon and one magnon (that for noncollinear phases leads to
magnon-phonon hybridization), the third term the coexistence
of one phonon and two magnons, and so on.

At temperatures much lower than the magnetic transition
temperature (which we assume throughout our analysis), the
linear spin wave approximation for the magnon energies can
be used. The terms trilinear, quadrilinear, and higher order
in the magnon operators lead to a renormalization of the
magnon bands via magnon-magnon interactions in Eq. (12),
and are assumed to be negligible in the low-temperature limit.
Furthermore, due to the smallness of the magnon and phonon
populations in the temperature regime of interest, we similarly
discard terms of higher order in the magnon operators in
Eq. (13). We further note that the Ĥ0pho

1mag and Ĥ1pho
1mag terms

are zero for collinear magnetic orders (all the magnetic orders
in Fig. 2 are collinear), which can be seen straightforwardly by
using the HP representation in the the linear spin wave approx-
imation. Therefore, the remaining dominant interaction term
is Ĥ1pho

2mag.
Since the magnetic phase diagram of our spin Hamiltonian

includes only collinear states, we define a positive z direction
(choice is arbitrary) for the ordered moments, and in the
linear spin wave approximation, local moments that are in
the positive direction are expanded as

S
||
i = S − a

†
i ai, (14)

S+
i ≈

√
2Sai, (15)

S−
i ≈

√
2Sa

†
i , (16)
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while local moments that lie in the opposite direction are
expanded as

S
||
i = −S + b

†
i bi, (17)

S+
i ≈

√
2Sb

†
i , (18)

S−
i ≈

√
2Sbi, (19)

where a
†
i ai creates a spin deviation of the local moment

that lies along the positive z direction and is located at the
ith lattice position, at the a sublattice, and correspondingly
for b

†
j bj , which refers to a local moment aligned along the

negative z direction. We can switch to a k-space (momentum
space) representation by using the following Fourier transform
conventions:

ai =
√

4
N

∑
k

ei�k·�α0ak, a
†
i =

√
4
N

∑
k

e−i�k·�α0a
†
k, (20)

bj =
√

4
N

∑
k

ei�k· �β0bk, b
†
j =

√
4
N

∑
k

e−i�k· �β0b
†
k, (21)

where �α0, �β0 are the equilibrium positions of the magnetic ions
on the ath and bth sublattices, and we take into account the fact
that we have four magnetic sublattices for the stripy and the
zigzag phases, each of N/4 magnetic ions, and two magnetic
sublattices for the Néel and the ferromagnetic phases, each of
N/2 magnetic ions [in which case the prefactor in Eqs. (20)
and (21) is

√
2/N ], given that the Néel and the ferromagnetic

phase have a magnetic unit cell that is the same as the chemical
unit cell of the honeycomb lattice whereas the magnetic unit
cell of the stripy and the zigzag phases is twice the size of the
chemical unit cell of the honeycomb lattice.

Our total Hamiltonian Ĥ = Ĥ0 + Ĥint decomposes into
the noninteracting part Ĥ0 = Ĥ0pho

0mag + Ĥ0pho
2mag + Ĥpho and the

lowest order interacting term Ĥint = Ĥ1pho
2mag, where Ĥpho is

given by Eq. (3), Ĥ1pho
0mag = 0 (from the conventional phonon

theory), and Ĥ0pho
0mag = Hclassical . The nondiagonal two-magnon

part of Ĥ0 in the compact Nambu representation (that takes
into account four magnetic sublattices) is given by

Ĥ0pho
2mag = S

2

∑
k

	†(k)M(k)	(k). (22)

The sum in Eq. (22) extends over all wave vectors k in the
first magnetic Brillouin zone, and by definition it is 	†(k) =
[a†

k b
†
k c

†
k d

†
k a−k b−k c−k d−k], with a

†
k (ak)

creating (annihilating) a plane-wave magnon mode on sub-
lattice a and so on, and M(k) is an 8×8 (or 4×4 in the
case of the Néel and ferromagnetic phases) matrix containing
information about the spin wave modes of each magnetic phase
(see Appendix A).

In the same magnon operator representation, the interacting
Hamiltonian for the one phonon-two magnon processes is
written as

Ĥ1pho
2mag = S

2
√

N

∑
k,q

	†(k)
(k,q)	(k − q), (23)

for phonons with wave vector q and magnons with wave
vectors k and k − q, respectively, where momentum conser-
vation has been taken into account, and 
(k,q) is an 8×8
(or 4×4 for the Néel and ferromagnetic phases) matrix that
contains information about the magnon-phonon interaction
[it encompasses the gradient terms appearing in Eqs. (4)
and (5)]. To switch from the nondiagonal Hamiltonian
S
2

∑
k 	†(k)M(k)	(k) of Eq. (22) to a diagonal one that uses

noninteracting magnon modes, we symbolically introduce a
Bogoliubov-Valatin transformation [69],

	(k) = U (k)�(k), (24)

where

�†(k) = [α†
k β

†
k γ

†
k δ

†
k α−k β−k γ−k δ−k].

(25)

The 8×8 (or 4×4 in the case of the Néel and ferromagnetic
phases) coefficient matrix U (k) of Eq. (24) satisfies the
following properties for all momenta in the first magnetic
Brillouin zone,

U †(k)M(k)U (k)

= Diag{ω1(k), . . . ,ω4(k), − ω5(k), . . . , − ω8(k)},
where ω5 = −ω1, ω6 = −ω2, ω7 = −ω3, ω8 = −ω4, and

U †(k) I− U (k) = I−,

I− =
[
I4×4 04×4

04×4 −I4×4

]
, I =

[
I4×4 04×4

04×4 I4×4

]
.

That is, U (k) acts as a unitary transformation that diagonalizes
the M matrix, and it also preserves the bosonic nature of the
magnon operators.

Under the symbolic Bogoliubov-Valatin transformation of
Eq. (24) the Ĥ0pho

2mag term becomes

Ĥ0pho
2mag = S

2

∑
k

	†(k)M(k)	(k)

= S

2

∑
k

�†(k)U †(k)M(k)U (k)�(k)

= S
∑

k

(ω1(k)α†
kαk + ω2(k)β†

kβk + ω3(k)γ †
k γk

+ω4(k)δ†kδk + ω1(k)α†
−kα−k + ω2(k)β†

−kβ−k

+ω3(k)γ †
−kγ−k + ω4(k)δ†−kδ−k), (26)

where ωi(k), i = {1, . . . ,8} (or i = {1, . . . ,4} for the Néel and
ferromagnetic phases) are the solutions of the secular equation
|D(k) − ω(k)I | = 0, in which

D(k) = I−M(k) (27)

is the so-called dynamical matrix of Ref. [69].
The multiplication with the I− matrix is necessary in

order to preserve the Bose commutation relations for the
new magnon operators. We mention just for comparison
that in the case of Fermi systems, where anticommutation
relations are used, this is not necessary because the latter are
satisfied automatically, and the dynamical matrix for fermions
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is equal to the M matrix, rendering the diagonalization
process easier since M is always a Hermitian matrix (as is
the original Hamiltonian), while the dynamical matrix is not
guaranteed to be Hermitian in all cases since it differs from the
original Hamiltonian [69]. The unitary transformation U (k) is
constructed by taking the eigenvectors of the dynamical matrix
[υ(ωi(k))]1×8 and using them as column vectors as below [69],

U (k) = [υ(ω1(k)), . . . ,υ(ω4(k)),υ(ω5(k)), . . . ,υ(ω8(k))]8×8.

(28)

We next express the interaction Hamiltonian Ĥint in terms
of the new magnon quasiparticle operators [by applying the
Bogoliubov-Valatin transformation of Eq. (24)] as

Ĥ1pho
2mag = S

2
√

N

∑
k,q,s

√
h̄

2Mωqs

(c†−qs	
†(k)
′(k,q)	(k − q)

+ cqs	
†(k)
′(k,q)	(k − q))

= S

2
√

N

∑
k,q,s

√
h̄

2Mωqs

(c†−qs�
†(k)U †(k)
′(k,q)

×U (k − q)�(k − q) + cqs�
†(k)U †(k)
′(k,q)

×U (k − q)�(k − q)), (29)

where the matrix 
′(k,q) and the matrix 
(k,q) of Eq. (23)
are related as


(k,q) =
∑

s

√
h̄

2Mωqs

(c†−qs + cqs)

′(k,q). (30)

The Hamiltonian of Eq. (29) describes interactions between
noninteracting magnons and noninteracting phonons. For later
convenience we define the 8×8 magnon-phonon scattering
matrix (4×4 for the Néel and ferromagnetic phases),

T (k,q) = S

2

√
h̄

2NMωqs

U †(k)
′(k,q)U (k − q). (31)

The magnon-phonon scattering matrix can be partitioned
as

T (k,q) =
[

[T+−(k,q)]4×4 [T++(k,q)]4×4
[T−−(k,q)]4×4 [T−+(k,q)]4×4

]
8×8

, (32)

where the submatrices

T+−(k,q) = [magnon creation + annihilation]4×4,

T++(k,q) = [two-magnon creation]4×4,

T−−(k,q) = [two-magnon annihilation]4×4,

T−+(k,q) = [magnon annihilation + creation]4×4

are related to the Feynman diagram processes discussed in the
next section.

As seen from Eqs. (29) and (32) one-phonon two-magnon
processes can be classified into two main categories: (a) radi-
ation processes (denoted as R processes) and (b) conversion
processes (denoted as C processes), where the R processes
are described by the submatrices T+−(k,q) and T−+(k,q)
in which two magnons of the same or different branch, of
the same or different valley, are involved (one created, one

FIG. 3. Lowest order magnon-phonon scattering diagrams used
for the calculation of the transport relaxation times in the regime in
which thermal transport is phonon-dominated. Wavy lines represent
phonon propagators whereas straight lines are magnon propagators.
Panel (a) represents C processes which involve two magnon creations
or annihilations, whereas panel (b) represents R processes that involve
phonon emission or absorption.

annihilated), whereas the C processes are described by the
submatrices T++(k,q) and T−−(k,q) in which two magnons
of the same or different branch, of the same or different valley,
are either created by a phonon or annihilated into a phonon.
Processes described by three boson creation or annihilation
operators are not taken into account as they do not conserve
energy, which is assumed to be exchanged only between the
magnons and the phonons (or they could belong to higher
order magnon phonon processes). Concluding this section,
it should be noted that the summations over the phonon and
magnon wave vectors in the previous equations extend over the
corresponding first Brillouin zones [but in the low-temperature
regime the main contributions come from the regions around
the valleys (minima) of the phonon and the magnon bands],
and that only normal processes are taken into account
(see Ref. [68], Sec. 6.2.4).

IV. TRANSPORT RELAXATION TIMES

As mentioned previously, in this work we study two distinct
thermal transport regimes depending on whether the magnon
or the phonon energy scale dominates. In either case, given
the matrix elements of the two-magnon, one-phonon scattering
processes, Eq. (31), one can proceed to calculate the respective
transport relaxation times using Fermi’s golden rule for each
(bare) interaction vertex

τ−1
I→F = 2π

h̄

∑
F

|〈F |Ĥint|I 〉|2δ(EF − EI ), (33)

where |I 〉 and |F 〉 denote the initial and the final state. In the
following, we will repeatedly refer to the diagrams of Figs. 3
and 4, denoting a phononic channel as (q,s), and two distinct
magnonic channels as (k,λ) and (k′,λ′). The final state |F 〉 for
a two-magnon annihilation C process is

|F 〉 = |. . . ,ns(q) + 1, . . .〉
⊗ | . . . ,nλ(k) − 1,. . . ,nλ′ (k′) − 1, . . .〉, (34)

and for a two-magnon creation C process is

|F 〉 = |. . . ,ns(q) − 1, . . .〉
⊗ |. . . ,nλ(k) + 1,. . . ,nλ′ (k′) + 1, . . .〉, (35)

whereas for a phonon annihilation R process is

|F 〉 = |. . . ,ns(q) − 1, . . .〉
⊗ |. . . ,nλ(k) − 1,. . . ,nλ′ (k′) + 1, . . .〉, (36)
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FIG. 4. Lowest order magnon-phonon scattering diagrams used
for the calculation of the transport relaxation times in the regime
in which thermal transport is magnon-dominated. Straight lines
represent magnon propagators whereas wavy lines are phonon
propagators. Panels (a) and (b) represent R processes which involve
phonon emissions or absorptions. Panel (c) represents C processes
which involve phonon emission or absorption.

and for a phonon creation R process is

|F 〉 = |. . . ,ns(q) + 1, . . .〉
⊗ |. . . ,nλ(k) − 1,. . . ,nλ′ (k′) + 1, . . .〉, (37)

where λ and λ′ denote the same or different magnon
bands/branches, s represents any of the two-dimensional
acoustic phonons, and finally, momentum conservation (not
momentum equivalence as in the umklapp processes) is applied
to each interaction vertex.

In the rest of this section, the transport relaxation times
for phonons and magnons are calculated, and are afterwards
used in the calculation of the diagonal components of the
phonon and magnon conductivity tensors, respectively. In this
study, we focus only on two relaxation mechanisms appearing
during the thermal transport: the magnon-phonon scattering
mechanism and the always existent boundary scattering (for
either the phonons or the magnons). Depending on the
relative strength of the characteristic energy scales of the
two types of heat carriers, we further distinguish between
two limiting thermal transport regimes, the phonon dominated
and the magnon dominated, which in turn consist of three
subregimes each, the diffusive, the intermediate, and the
ballistic subregimes.

1. Transport relaxation times for magnon-dominated
thermal transport

In the case in which the magnon characteristic energy
dominates, phonons play the role of a bath, and given
the assumed weak magnon-phonon coupling, the problem
translates into a problem of a system weakly interacting with
a bath. The lowest order nonequivalent Feynman diagrams to
be used for the calculation of the transport relaxation times
are those appearing in Fig. 4, and focusing on the magnonic
channel (k,λ), their total contribution is (s = 1, since as
discussed in Sec. V B 2 below, only the longitudinal acoustic
phonon is of interest)

1

τλ(k)

∣∣∣∣
mp

= 2π

h̄

∑
q,λ′

{|T λλ′
−+(−k, − q)|2(nq + nk−q,λ′ + 1)δ(εk−q,λ′ + h̄ωq − εk,λ) + |T λλ′

−+(−k,q)|2(nq − nk+q,λ′)δ(εk+q,λ′

+h̄ωq − εk,λ) + |T λλ′
−−(k, − q)|2(nq−k,λ′ − nq)δ(h̄ωq − εq−k,λ′ − εk,λ)}, (38)

where the first term on the right-hand side of Eq. (38)
corresponds to the Feynman diagram of Fig. 4(a), the second
term to the Feynman diagram of Fig. 4(b), and the last term to
the Feynman diagram of Fig. 4(c), and for the magnon-phonon
scattering matrix elements we used the convention that follows
Eq. (32). Notice that the above result is directly related to
the collision integral of the semiclassical Boltzmann transport
theory as applied to the system of the magnons within the
relaxation time approximation [see Eq. (B12)].

The calculation of the right-hand side of Eq. (38) proceeds
by turning the summation over the phonon wave vectors into an
integral using the well-known formula (A stands for the area)

1

A

∑
q

F (q) =
∫

d2q
(2π )2

F (q).

It should be noticed though that the highly anisotropic nature
of the magnon band structure (as opposed to the phonon
band structure) precludes the analytical solution of the energy
constraints imposed by the presence of the Dirac δ functions
in Eq. (38), and one can proceed with the calculation by taking
advantage of the δ function to reduce the dimensionality
of the integral by 1, by employing the well-known result
that

∫
V

f (r)δ[g(r)]d r = ∫
S

f (r)
|∇g(r)|dσ , where S is the

(n − 1)-dimensional surface inside the n-dimensional volume
V , defined by the constraint g(r) = 0, under the condition that
∇g(r) �= 0. This way, the aforementioned two-dimensional
integrals turn into one-dimensional integrals over the lines that
satisfy the energy constraints imposed by the respective Dirac
δ functions. These calculations require a numerical treatment,
since neither the Bogoliubov-Valatin transformation nor the
energy constraints admit an analytical solution. For more
details the reader is referred to Appendix C.

In Eq. (38) it was implicitly assumed that the different
scattering events, represented by the nonequivalent Feynman
diagrams of Fig. 4, proceed independently. Including fur-
ther the effect of the boundary scattering of the magnons
and assuming that the magnon-phonon scattering processes
proceed independently of the boundary scattering, the total
probability of scattering for the magnonic channel (k,λ) obeys
the following Matthiessen rule [66]:

1

τλ(k)
= 1

τλ(k)

∣∣∣∣
mp

+ 1

τλ(k)

∣∣∣∣
b

, (39)

where the boundary scattering transport relaxation time (for
the magnons) was defined as 1

τλ(k) |b = |�υλ(k)|
L

, where L is the
length of the crystal and �υλ(k) the group velocity of the (k,λ)
magnonic channel. Notice that λ (or λ′) is {1, . . . ,4} for the
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zigzag and the stripy phases, and {1,2} for the Néel and the
ferromagnetic phases.

2. Transport relaxation times for phonon-dominated
thermal transport

In the case in which the phonon characteristic energy
dominates, magnons play the role of a bath, and we again

have a problem of a system weakly interacting with a bath.
The lowest order nonequivalent Feynman diagrams to be used
for the calculation of the respective transport relaxation times
are those appearing in Fig. 3, and focusing on the phononic
channel q (no band index is used here since we focus only on
the transverse acoustic phonon, i.e., s = 1, and the justification
for focusing on the transverse acoustic phonon only is given
in Sec. V B 1 below), their total contribution is

1

τ (q)

∣∣∣∣
mp

= 2π

h̄

∑
k

∑
λ,λ′

{|T λλ′
++(k,q)|2(nk,λ + nq−k,λ′ + 1)δ(εk,λ + εq−k,λ′ − h̄ωq)

+ |T λλ′
−+(−k,q)|2(nk,λ − nk+q,λ′ )δ(εk+q,λ′ − h̄ωq − εk,λ)}, (40)

where the first term on the right-hand side of Eq. (40)
corresponds to the Feynman diagram of Fig. 3(a), and the
second term to the Feynman diagram of Fig. 3(b). For the
magnon-phonon scattering matrix elements we again used
the convention that follows Eq. (32). Notice that the above
result is directly related to the collision integral of the
semiclassical Boltzmann transport theory as applied to the
system of phonons within the relaxation time approximation
[see Eq. (B12)].

The calculation of the right-hand side of Eq. (40) proceeds
as in the previous section, i.e., by turning the summation over
the magnon wave vector into a two-dimensional integral. In
Eq. (40) it was implicitly assumed that the different scattering
mechanisms, represented by the nonequivalent Feynman dia-
grams of Fig. 3, proceed independently. Including the effect
of the boundary scattering of phonons, and assuming that the
magnon-phonon scattering processes proceed independently
of the boundary scattering, the total probability of scattering
for the phononic channel q obeys the following Matthiessen
rule:

1

τ (q)
= 1

τ (q)

∣∣∣∣
mp

+ 1

τ (q)

∣∣∣∣
b

, (41)

where the boundary scattering transport relaxation time (for
the phonons) was defined as 1

τ (q) |b = |�υs |
L

, where �υs denotes the
phonon group velocity within the approximation of the Debye
model. Notice that λ (or λ′) is {1, . . . ,4} for the zigzag and
the stripy phases, and {1,2} for the Néel and the ferromagnetic
phases.

3. Computational details of the calculation of the transport
relaxation times within different transport subregimes

The calculation of the transport relaxation times requires,
via the magnon-phonon scattering matrix elements, knowledge
of the spatial derivatives of the Heisenberg and the Kitaev
exchange couplings, denoted as J ′ and K ′, respectively. For
simplicity the derivatives of the exchange couplings are taken
as direction independent, and further they are approximated
as [72] J ′ ≈ �J

α
≈ J

α
and K ′ ≈ �K

α
≈ K

α
, respectively, where

α denotes the interionic distance. Based on those definitions,
one can convert the integrals appearing in the total transport
relaxation times (magnonic or phononic) into dimensionless

integrals as below:

1

τmp

 SA

ED

1

Nuα2
× 2 × 1012(sec−1) × I, (42)

where, for a specific material, different magnon-phonon
scattering processes are encapsulated in the parameter I . S

denotes the spin of the local moments, A is the energy scale
parameter defined in Eq. (2), and further, SA defines an
appropriate magnonic energy scale dictated by the interaction
term of Eq. (23), ED ≡ h̄υDqD = h̄υD2π/α

√
3 is the Debye

energy scale, Nu the number of nucleons of the ions that form
the honeycomb lattice, α the interionic distance in angstroms,
and finally I is the dimensionless form of the total transport
relaxation time (magnonic or phononic).

The relative strength of the magnon-phonon and the bound-
ary scattering for the case of the magnon-dominated thermal
transport can also be written in terms of the dimensionless
parameter I mentioned above, as

τb

τmp

∣∣∣∣
mag

 cmag × 1

υmag

× I, (43)

where cmag ≡ 55× 1
�D (K)×L

α
× 1

Nuα2 , L is the length of the
crystal in the direction of the applied temperature gradient, and
�D the Debye temperature in kelvins. In addition, �υmag(k) is
the dimensionless magnon group velocity which is extracted
from the dimensional magnon group velocity �Vmag(k) as below
(i.e., their magnitudes are related as)

| �Vmag(K )| = |∇K �(K )|

= 1

h̄

√(
∂(h̄�(K ))

∂Kx

)2

+
(

∂(h̄�(K ))
∂Ky

)2

= SAα
√

3

2πh̄

√(
∂(h̄ω(k))

∂kx

)2

+
(

∂(h̄ω(k))
∂ky

)2

≡ SAα
√

3

2πh̄
|�υmag(k)|, (44)

where h̄�(K ) denotes the dimensional magnon energy and
h̄ω(k) the dimensionless magnon energy, the two related as
h̄�(K ) = SA×h̄ω(k). K denotes the dimensional magnon
wave vector and k the dimensionless one, the two related
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as K = 2π

α
√

3
k (α is the interionic distance on the honeycomb

lattice).
On the other hand, the relative strength of the magnon-

phonon and the boundary scattering for the case of the phonon-
dominated thermal transport can be written in terms of the
dimensionless parameter I mentioned above as

τb

τmp

∣∣∣∣
pho

 SA

ED

× cmag × I, (45)

where the various parameters were defined previously. By
varying the parameter cmag above, either by using different
systems or by changing the dimensions of a particular system,
one can tune the relative strength of the magnon-phonon and
boundary scattering, and enter the ballistic (boundary scat-
tering dominated), the diffusive (magnon-phonon scattering
dominated), or the intermediate (competing magnon-phonon
and boundary scattering) heat transport subregime.

V. CALCULATION OF THE DIAGONAL COMPONENTS
OF THE THERMAL CONDUCTIVITY TENSOR

In the previous sections we introduced the low-energy
magnetic degrees of freedom via the Hamiltonian of Eq. (1),
the low-energy ionic degrees of freedom via the Hamiltonian
of Eq. (3), and the magnon-phonon coupling via Eqs. (4)
and (5). In the next step, the magnon spectra of the various
ordered phases were computed within the linear spin wave
approximation leading to Eq. (22), and those spectra were then
used as inputs for the lowest order magnon-phonon scattering
processes encompassed in the Hamiltonian of Eq. (29). The
last information was then used to determine via Fermi’s golden
rule the momentum-dependent total transport relaxation times
given by Eqs. (39) and (41), and in the final step all those results
are patched together to compute the diagonal components
of the thermal conductivity tensor for each one of the
ordered magnetic states, by using the semiclassical Boltzmann
transport theory.

As elaborated in Appendix B [see Eq. (B17)], the thermal
conductivity tensor per unit area, for heat transport dominated
by one type of carrier, is given by

καβ =
∑



∫
d2 K

(2π )2h̄�
(K )vα

(K )vβ


(K )τ
(K )
∂n0


(K )

∂T
,

(46)
where 
 denotes the band index, K the wave vector of
the quasiparticle, h̄�
(K ) the unrenormalized (in this study)
quasiparticle energy, vα


(K ) the αth component of the quasi-
particle group velocity, and τ
(K ) refers to the total transport

relaxation time of the dominant carrier. ∂n0

(K )
∂T

denotes the
temperature gradient of the equilibrium Bose-Einstein distri-
bution function of the dominant heat carrier. In this work, only
the diagonal components of the thermal conductivity tensor
per unit area κxx and κyy (with the spatial directions x and
y defined as in Fig. 11, Appendix A) are studied, which are
not generally expected to be equal to each other due to the
strong spatial anisotropy of the low-energy magnetic degrees
of freedom, which is further imprinted on the spectra of the
low-energy magnetic excitations of the various ordered phases.

In the following sections, first the effect of the pure
boundary scattering on the heat transport is examined by
taking both the magnon and the phonon heat carriers into
account. Afterwards, the effect of the magnon-phonon scatter-
ing mechanism (to lowest order the two-magnon, one-phonon
scattering mechanism) is taken into account on top of the
pure boundary scattering, but in order to simplify the whole
treatment this work focuses on two simple limiting cases,
the phonon-dominated and the magnon-dominated regimes,
in which only one type of heat carrier dominates the thermal
conductivity. Within the two aforementioned regimes, both
scattering mechanisms (boundary and magnon-phonon) are
examined for the dominant heat carrier.

A. Boundary scattering dominated/fully ballistic regime

In this section, the ballistic behavior of the diagonal
components κxx and κyy of the thermal conductivity tensor per
unit area is studied, for all the ordered phases of the nearest-
neighbor Heisenberg-Kitaev Hamiltonian, versus temperature,
for three different relative strengths of the magnon and the
phonon characteristic energy scales. Temperature is measured
in units of [T ] = SA

kB
, where S is the spin of the local moment,

kB the Boltzmann constant, and A the magnetic energy scale
defined in Eq. (2). For the numerical calculations, it is more
convenient to convert the ballistic magnon conductivity per
unit area to a dimensionless one,

κball
mag = 1

2π

L

a

kBSA

h̄
× κ̃ball

mag, (47)

where κ̃ball
mag is the dimensionless ballistic magnon thermal

conductivity per unit area and a = α
√

3, where α denotes
the interionic distance, and the same is done for the ballistic
phonon conductivity,

κball
pho =

(
ED

SA

)3 1

2π

L

a

kBSA

h̄
× κ̃ball

pho , (48)

where κ̃ball
pho is the dimensionless ballistic phonon thermal

conductivity, and the rest of the notation is known. The total
ballistic thermal conductivity is

κball
tot = κball

mag + κball
pho . (49)

Equations (47), (48), and (49) are applied to each of the
diagonal components of the conductivity tensor independently,
and the results are shown in Figs. 5 and 6 below.

In Figs. 5 and 6, the temperature region was chosen
well below the magnetic transition as well as the Debye
temperature, since our system of study is assumed to have
well-defined low-energy magnetic degrees of freedom (given
by the Heisenberg-Kitaev Hamiltonian) as well as low-energy
magnetic excitations. For sufficiently low temperatures the use
of the Debye model in the calculation of the phononic thermal
conductivity as well as the neglect of higher order processes
(magnon-magnon, phonon-phonon, or magnon-phonon) are
all well justified. Three distinct characteristic energy relative
strengths are considered: (i) magnetic energy half the Debye
energy, (ii) magnetic energy equal to the Debye energy,
and (iii) magnetic energy twice the Debye energy. In the
application of Eq. (46), the mean-free path for the boundary
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FIG. 5. κxx component of the total fully ballistic thermal con-
ductivity per unit area, for each ordered phase (see the legend of
each panel), for different relative strengths of the Debye energy ED

to the magnon characteristic energy SA (given on the top of each
panel), versus temperature. The temperature region is well below the
lowest of the two characteristic energy scales (phononic or magnonic).
Notice that the conductivity components are measured in the units
given by the prefactor on the right-hand side of Eq. (47). The spatial
direction x is defined as in Fig. 11, Appendix A.

scattering is taken as λ = |�υ(K )|τ (K ) ≈ |�υ(K )| L
|�υ(K )| = L,

i.e., approximately equal to the length of the crystal L (for
simplicity we assume a square crystal). In this case, the

FIG. 6. κyy component of the total ballistic thermal conductivity
per unit area, for each ordered phase (see the legend of each panel),
for different relative strengths of the Debye energy ED to the
magnon characteristic energy SA (given on top of each panel), versus
temperature. The temperature region is well below the lowest of the
two characteristic energy scales (phononic or magnonic). Notice that
the conductivity components are measured in the units given by the
prefactor on the right-hand side of Eq. (47). The spatial direction y is
defined as in Fig. 11, Appendix A.

magnonic and the phononic contribution to the total fully
ballistic thermal conductivity tensor depends solely on the
respective carrier’s band structure, via its energy dispersion
relation, its group velocity, and its Bose-Einstein occupation
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factor. Therefore, any differences among the total fully ballistic
thermal conductivities directly reflect differences in the carrier
band structures, and particularly differences in the magnon
band structures, since the phonon band structure is common
to all magnetically ordered phases.

Note that for the ferromagnetic and the Néel phases there are
two magnon bands, while for the zigzag and the stripy phases
there are four bands. In the low-temperature region, as far as the
magnon contribution is concerned, any gapless magnon bands
are more important than any gapped ones, and furthermore, the
respective thermal conductivity contribution is dominated by
the band structure nearby any magnon valleys. This is because
the Bose-Einstein occupation factors decrease rapidly with
increasing excitation energies. For a two-dimensional system,
there is one longitudinal and one transverse acoustic phonon
(notice that in the fully ballistic regime studied in this section
both acoustic phonons are taken into account), both assumed
to obey a linear isotropic dispersion relation. Particularly, the
two acoustic phonons are treated within the Debye model
adjusted to a two-dimensional system. It is worth noting that
the phononic thermal conductivity within the Debye model in
the low-temperature regime becomes ∝ T 2 for a 2D system
(in contrast to the T 3 result for a 3D system).

Taking into account the previous discussion we now turn
our attention to Figs. 5 and 6. The bottom diagram of each
figure represents phonon-dominated total thermal conductivity
results. The curves for different phases tend to converge to
each other as a result of the common phonon band structure,
tend to follow a parabolic dependence on the temperature
as a result of the Debye model applied to 2D systems, and
tend to become more isotropic due to the smaller difference
between the values of the κxx and κyy components. The
top diagram of each figure represents magnon-dominated
total thermal conductivity results that differ appreciably from
each other over different magnetic phases as a result of the
very different magnon band structures of the various phases,
deviate significantly from the parabolic dependence on the
temperature which is characteristic of the in-plane acoustic
phonons, and tend to become significantly anisotropic due
to the greater difference between the values of the κxx and
κyy components. The intermediate diagram of each figure
corresponds to an intermediate fully ballistic subregime which,
as far as the boundary scattering dominated heat transport
is concerned, is characterized by comparable magnonic and
phononic contributions.

Another point to notice is that, away from the phonon-
dominated regime, even though as T → 0 all conductivities go
to zero, there is a temperature window from 0.05 SA

kB
up to about

0.11 SA
kB

within which the Néel total conductivity is markedly
lower than the total conductivities of the other three magnetic
phases which have higher but nearby values. In addition, the
total conductivity of the Néel phase (either component) seems
to saturate slower than all the other conductivities within the
examined temperature window. This can be traced back to the
structure of the lowest magnon bands of the different ordered
states. As will be detailed below, the particular feature of the
Néel state is that it has a nearly isotropic magnon band whose
minimum is located at the center (� point) of its corresponding
1BZ. However, let us first introduce some useful terminology

that will be employed for the structural description of the
various magnon bands.

In all the following analysis (and sections) we will use
the term stiff anisotropy to refer to the gapless magnon bands
which approach zero energies with nonzero group velocities
(as also happens with the acoustic phonons) and the term
soft anisotropy to refer to the gapless magnon bands which
approach zero energies with zero group velocities.

For the zigzag phase, all four magnon bands are important
at low temperatures (since all of them have magnon valleys),
and further, half of them are strongly anisotropic whereas the
other half are nearly isotropic. In addition, all four bands have
stiff anisotropy and magnon valleys far from the center of
the corresponding 1BZ. For the stripy and the ferromagnetic
phase on the other hand, only half of their bands are important
at low temperatures. In either case the bands are softly
anisotropic, and further, the magnon valleys of the stripy phase
are away from the center of the corresponding 1BZ, whereas
the ferromagnetic phase has its magnon valley at the center
of the corresponding 1BZ. Finally, for the Néel phase, both
of its bands are important at low temperatures, and further,
both magnon bands have their minima at the center (� point)
of the corresponding 1BZ, with the one band being stiffly
isotropic and the other being stiffly anisotropic around the
corresponding valleys.

As will be seen in the following discussion, the presence of
a stiffly (nearly) isotropic band with a valley (minimum) at the
center of the corresponding 1BZ (� point) has some special
properties. The lowest magnon bands of the ferromagnetic
and the stripy phases are softly anisotropic which implies that
at very low temperatures there can be many more excited
magnon quasiparticles compared to the phases which are stiffly
anisotropic. The zigzag phase is partially softly anisotropic
and partially stiffly anisotropic, but all of its magnon bands
are gapless which implies more spin wave valleys. As a result,
there can again be many excited magnon quasiparticles.

The Néel phase, which is a stiffly anisotropic phase with
half the bands and fewer valleys (1/4) compared to the
zigzag phase, does not have any of the aforementioned
leeway to increase the population of its low energy magnon
quasiparticles (remember that a significant contribution at low
temperatures comes from the nearly isotropic valley at the
center of the corresponding 1BZ), and this in turn delays the
corresponding saturation of its total thermal conductivity (even
if it is magnon-dominated).

Now, given the previous analysis, it seems that the deviation
from isotropy (in the magnon bands of interest) leads to a
faster saturation of the total conductivity, other than an induced
difference between the values of the two diagonal components
of the thermal conductivity tensor. It can further be seen from
the top and the middle panel of Figs. 5 and 6 that as the
temperature increases above zero, the κxx component of the
stripy phase and the κyy component of the zigzag phase seem
to saturate first. The reason for this is that for a temperature
gradient along the x direction (Fig. 11, Appendix A), the stripy
phase has its softest magnon modes in that direction, whereas
for a temperature gradient along the y direction (Fig. 11,
Appendix A), the zigzag phase has its softest magnon modes
along that direction.
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Before concluding this section, it is worth mentioning that
close inspection of the top and the bottom diagrams of the
Figs. 5 and 6 leads to the additional conclusion that the
greater heat current (i.e., the greater contribution to the total
thermal conductivity) is carried by the heat carriers with a
greater characteristic energy scale (and therefore greater group
velocities). As a measure of the validity of the last statement
one can use the low-temperature behavior predicted by the
two-dimensional Debye model (its no saturation sign) as well
as the degree of isotropy of the total thermal conductivity
that are typical of phonon contributions, and check how
the resulting conductivity deviates from the aforementioned
typical behavior as one moves toward the magnon-dominated
side of the fully ballistic regime.

In the following section we will focus on the effect of the
weak magnon-phonon scattering on the magnon-dominated
and the phonon-dominated heat transport, using the results
of the fully ballistic regime (magnons and phonons included)
examined in this section as a reference.

B. Magnon-phonon dominated/diffusive regime

1. Phonon-dominated heat transport

In this section we focus on the effect of weak magnon-
phonon scattering on the phonon-dominated heat transport, us-
ing the results of the fully ballistic regime as a reference. (From
now on, by this term we mean the boundary scattering domi-
nated phononic heat transport.) One reason for this is that all
the factors appearing in the formula of the thermal conductivity
tensor are the same for both the boundary and the magnon-
phonon relaxation processes, except for the corresponding
transport relaxation time. Therefore, any deviations of the
thermal conductivity results from the respective pure boundary
scattering results are attributed to magnon-phonon scattering
(since they originate from transport relaxation times that
diverge from the boundary scattering ones). However, before
proceeding to the results it would be advisable to first discuss
some subtle points that were taken into account in our analysis.

First, the presumed weak magnon-phonon scattering is to a
good extent ensured by working at temperatures much lower
than the minimum of the Debye and the magnon characteristic
temperature, at which the ionic displacements from their
equilibrium positions are small (significantly smaller than a
typical lattice constant). Given this, provided that phonon-
induced changes in the bond lengths and bond angles do not
lead to any drastic increase of the gradients of the exchange
couplings [70] (if they lead to a drastic decrease as happens in
various phenomenological models for the distance dependence
of the exchange couplings that does not create any problem),
the magnon-phonon couplings gH

mp ∝ �uq · J ′(Rij ) and gK
mp ∝

�uq · K ′(Rij ) are always much smaller than the exchange
couplings J(Rij ) and K (Rij ), respectively. Then the lowest
order perturbative treatment of the magnon-phonon interaction
is well justified. Strictly speaking, the distance dependence
of the exchange couplings necessitates sophisticated first-
principles calculations, but keeping in mind that exchange
couplings actually originate from electronic exchange paths
mediated by neighboring atomic orbital overlaps, an order-
of-magnitude calculation of the gradients of the exchange

couplings is feasible and can give an estimate of the strength of
the magnon-phonon coupling [see the lines prior to Eq. (42)].

Second, as far as the boundary scattering mechanism is
concerned, both types of acoustic phonons (transverse and
longitudinal) are taken into account via a Debye model
adjusted to 2D systems. As far as the magnon-phonon
scattering mechanism is concerned only the transverse phonon
is taken into account for the conductivity calculation. The
last approximation is tied to the assumption that the magnon-
phonon scattering is more important for the longitudinal rather
than the transverse (acoustic) phonon, which implies that heat
conduction is predominantly borne by the transverse phonon
(since the other phonon is scattered too much to contribute to
the conduction of the heat and is therefore neglected).

Another reasoning for this approximation is related to the
fact that the main effect of the long-wavelength transverse
acoustic phonons is to slightly change/perturb the equilib-
rium angles between neighboring bonds, whereas the long-
wavelength longitudinal acoustic phonons can change both
the equilibrium angles between neighboring bonds (actually
depending on their direction of propagation they can be more
or less effective), and more important the lengths of the inter-
atomic bonds. As a result, in all cases in which the exchange
couplings are much more sensitive to perturbations in the bond
lengths (i.e., the radial interionic distances) than in the bond
angles, the assumption of a stronger magnon-phonon coupling
for the longitudinal acoustic phonon seems to be well justified.

Having in mind the previous discussion, it is noted that the
transverse acoustic phonon is subject to magnon-phonon scat-
tering via a much weaker magnon-phonon coupling constant
than the one assumed for the longitudinal acoustic phonon,
and this is taken computationally into account by using a
reduced coupling constant g̃mp(k,q) = gmp(k,q)/γ , where
gmp(k,q) is the magnon-phonon coupling constant used for the
longitudinal acoustic phonons, and γ is a reduction factor such
that γ ∼ 10. Afterwards, the relative strength of the magnon-
phonon and boundary scattering for the (long-wavelength)
transverse acoustic phonon assumes, after partitioning it in
a dimensional and a dimensionless part, the form [juxtapose
with Eq. (45)]

τb

τmp

∣∣∣∣
pho

 SA

ED

× cmag × 1

γ 2
× I, (50)

where for convenience we set

cpho ≡ SA

ED

× cmag × 1

γ 2
. (51)

Third, for the heat transport process to be phonon dom-
inated, it is legitimately required that the phonon and the
magnon energy scales are sufficiently different from each
other, and it turns out computationally that a ratio of
ED/SA= 7 between the phonon and the magnon energy scales
suffices to render the thermal conductivity phonon dominated
(by order of magnitude). Under those conditions, as already
elaborated in the previous sections, it is sufficient to focus
only on one type of heat carrier (in this case the phonons)
for an approximate calculation of the thermal conductivity
(because only the Boltzmann kinetic equation of the dominant
heat carriers is employed for the calculation of the thermal
conductivity), treating the much less significant heat carriers

064410-11



STAMOKOSTAS, LAPAS, AND FIETE PHYSICAL REVIEW B 95, 064410 (2017)

as a bath with which the dominant heat carriers can exchange
energy quasielastically (weak system-bath coupling), as well
as momentum. Since the characteristic energy scale ratio
ED/SA was incorporated into the newly defined parameter
cpho of Eq. (51) [cmag was defined right below Eq. (43)], the
cpho expressed as cpho = 10l , l ∈ Z, is treated as a tunable
parameter via which one can computationally access the dif-
ferent phonon-dominated subregimes: ballistic, intermediate,
and diffusive, where now this subcategorization is based on the
competition between the boundary and the magnon-phonon
relaxation mechanism during the phonon-dominated heat
transport process.

Finally, it should be stressed one more time that only
sufficiently low temperatures are considered in this work
for reasons that were described at various points in the
previous analysis (well-defined low-energy excitations for the
lattice and the magnetic degrees of freedom, weak magnon-
phonon coupling, negligible higher order phonon-phonon,
magnon-magnon, and magnon-phonon processes and so on,
are all required to simplify the problem). Particularly, for the
phonon-dominated heat transport since a lower energy scale
is set by the magnons, a rather safe upper limit for the tem-
perature range of interest is set by the magnon characteristic
energy, by exploring temperatures smaller than Tmax = 1

3
SA
kB

.
Respectively, the units of the thermal conductivity are now
naturally expressed in terms of the magnon energy scale
SA as well. Particularly, in the phonon-dominated ballistic
(boundary scattering dominated) subregime where the length
L of the crystal plays a significant role, the natural units to
measure the thermal conductivity are 1

2π
L
a

kBSA
h̄

. With all the
aforementioned details in mind, let us now turn our attention to
Figs. 7 and 8 below which show the per unit area components of
the phononic conductivity tensor κxx and κyy and, respectively,
the same quantities divided by the temperature squared,
for each ordered phase, for the three different subregimes
mentioned previously (ballistic, intermediate, and diffusive;
see the legend of each panel) as well as for pure boundary
scattering, versus temperature.

As already noted above, both acoustic phonons are subject
to boundary as well as magnon-phonon scattering. Since
heat conduction is of primary interest, we focus only on the
transverse acoustic phonon (the longitudinal one comes in only
through boundary scattering, via the 2D Debye model, and its
contribution to the heat conduction becomes negligible as one
moves away from the purely ballistic deep to the diffusive
phonon dominated subregime where it is strongly scattered
via the magnon-phonon mechanism). Since the pure boundary
scattering for phonons at low temperatures follows exactly the
T 2 behavior (as a result of the 2D Debye model), Fig. 8 actually
shows the deviation of the thermal conductivity (due to the
transverse long-wavelength acoustic phonon) from the T 2 low-
temperature behavior, as one goes from the fully ballistic deep
to the diffusive phonon dominated subregime (by tuning the
cpho = 10l parameter defined above). In Figs. 7 and 8 the black
curves correspond to boundary scattering dominated phononic
heat transport, whereas the red (and the green in Fig. 8) curves
correspond to the ballistic subregime, where this term now
refers to a situation in which the phononic heat transport is
mostly (but not purely) boundary scattering dominated. In the
intermediate subregime, as already stressed above, both scat-

FIG. 7. Phonon-dominated transport: κxx and κyy component of
the phononic thermal conductivity per unit area, for each ordered
phase, for three different subregimes: ballistic, intermediate, and
diffusive (see the legend of each panel) as well as pure boundary
scattering, versus temperature. The spatial directions x and y are
defined as in Fig. 11, Appendix A.

tering mechanisms (boundary and magnon-phonon) affect the
transverse long-wavelength acoustic phonon. It is worth noting
that the crossover from the purely ballistic to the diffusive sub-
regime takes place by gradually decreasing the strength of the
boundary scattering (i.e., by increasing the length of the crys-
tal), and along the way the magnon-phonon scattering mecha-
nism is gradually unmasked until it dominates over the bound-
ary scattering mechanism, deep in the diffusive subregime.

From Figs. 7 and 8, it is easily observed that the thermal
conductivity is actually isotropic for all subregimes, since the
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FIG. 8. Phonon-dominated transport: κxx/T 2 and κyy/T 2 com-
ponent of the phononic thermal conductivity per unit area, for each
ordered phase, for three different subregimes: ballistic, intermediate,
and diffusive (see the legend of each panel) as well as pure boundary
scattering, versus temperature. The spatial directions x and y are
defined as in Fig. 11, Appendix A.

κxx and the κyy components almost coincide with each other.
This is a consequence of the (intrinsic) isotropic nature of the
phonon band structure. Absolute coincidence, upon deviation
from the boundary scattering dominated (or fully ballistic)
subregime, is not possible because of the interplay with the
magnon bath whose band structure is strongly anisotropic.
The qualitative conclusion is that in the phonon-dominated
regime, no matter how anisotropic the band structure of the
magnon bath is, the phonon thermal conductivity succeeds in

retaining its isotropic character even deeply in the diffusive
subregime of the phonon-dominated regime.

A second striking aspect of the diagrams of Fig. 8 (this
is hard to notice in the diagrams of Fig. 7) is the fact that
for all the magnetic phases, except for the stripy phase, the
magnon-phonon scattering mechanism seems to start taking
effect at fairly low temperatures. This can be seen by the
fact that at the low-temperature limit used in the calculations
(T = 0.05 SA/kB ) passing from the fully ballistic to the diffu-
sive subregime (i.e., from the top to the bottom of each panel),
the values of the phononic thermal conductivity components
deviate significantly from the values of the corresponding
top black curve which conforms to the T 2 low-temperature
behavior, and this of course is indicative of magnon-phonon
scatterings at such low temperatures. This last effect, easily
seen, is strongest for the Néel phase and weakest for the stripy
phase. Saying so, one then is naturally led to the following two
qualitative results.

The first qualitative result is that within the phonon-
dominated regime, at very low temperatures, high-energy
acoustic phonons can sufficiently effectively be scattered by
low-energy magnons whose band structure has (at least) a
pair of stiff gapless magnon bands, of sufficiently different
stiffness (the more different the stiffnesses the better). These
magnon bands can be isotropic or anisotropic or both (one
isotropic, one anisotropic, as happens in the Néel phase), but
they must both have their minima (their valleys) at the center
of the 1BZ (where the acoustic phonon spectra have their
minima as well). This conclusion also agrees with the results
of Ref. [59] in which, at very low temperatures (liquid helium
temperatures), high-energy phonons are scattered (though
mildly) by low-energy magnons whose band structure consists
of a pair of stiff magnon bands, of slightly different stiffness,
which are isotropic and both have their minima at the center
of the 1BZ.

The second qualitative result is that within the phonon-
dominated regime, at very low temperatures, high-energy
acoustic phonons cannot be scattered by low-energy magnons
whose band structure consists of gapless magnon bands which
are soft, and whose minima (valleys) are nondegenerate, far
away from the center of the 1BZ as well as far away from each
other. This is exactly the case with the stripy phase, which
has two low-energy gapless magnon bands on the one hand,
but which on the other hand are softly anisotropic, have their
valleys far from the center of the 1BZ, and all the valleys are
located at different points of the k space. As a result, there
is only one softly anisotropic band around each valley whose
magnons cannot satisfy energy conservation by interacting
with the fast-moving phonons.

In conclusion, we mention that as one passes from the
fully ballistic deeply to the diffusive subregime, the phononic
thermal conductivity keeps decreasing as a result of the
stronger and stronger magnon-phonon scattering compared to
the boundary scattering (since the magnon-phonon coupling
constant is always weak as discussed previously). The last
effect is expected within the model we study since the magnon
bands of whichever magnetic phase (even the lower energy
bands of the phases which have well separated in energy
magnon bands) do not saturate within the temperature window
employed in this analysis.
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2. Magnon-dominated heat transport

In this section we focus on the effect of the weak
magnon-phonon scattering on the magnon-dominated heat
transport, using the results of the fully ballistic subregime
(which from now on implies boundary scattering dominated
magnonic heat transport) as a reference. Any deviations of the
thermal conductivity results from the respective fully ballistic
results are attributed to magnon-phonon scattering (since they
originate from transport relaxation times that diverge from the
purely ballistic ones). Before proceeding to the results it is
helpful to pause and discuss how the arguments presented in
the introduction of the previous section are modified for the
magnon-dominated heat transport that is examined here.

First, the presumed weak magnon-phonon scattering is
ensured by working at temperatures much lower than the
minimum of the Debye and the magnon characteristic tem-
perature. Second, both for the boundary scattering and the
magnon-phonon scattering mechanism all magnon bands are
taken into account (a Debye-like approximation turns out to
be a poor one for the magnons due the highly anisotropic
nature and nonlinear dispersion of the magnon bands). Third,
as far as the magnon-phonon scattering mechanism is con-
cerned only the longitudinal phonon is taken into account
for the magnon conductivity calculation, since according to
the arguments given in the previous section, any magnon-
phonon scattering is predominantly caused by the longitudinal
rather than the transverse acoustic phonon. Therefore, the
approximation that is adopted is that the diffusive regime
of the magnon-dominated heat transport originates from the
interaction with the longitudinal acoustic phonons. Finally,
it should be mentioned that for the heat transport process to
be magnon dominated, the phonon and the magnon energy
scales must be sufficiently different from each other, and it
turns out computationally that a ratio of SA/ED = 7 between
the phonon and the magnon energy scales suffices to render
the thermal conductivity magnon dominated (by order of
magnitude).

Under those conditions, as was already stressed in the
previous sections, it is sufficient to focus only on one type
of heat carrier (in this case the magnons) for an approximate
calculation of the thermal conductivity (because only the
Boltzmann kinetic equation of the dominant heat carriers is
employed for the calculation of the thermal conductivity).
The less significant heat carriers are then treated as a bath
(in this case the phonons) with which the dominant heat
carriers can exchange energy quasielastically (weak system-
bath coupling), as well as momentum. As a reminder, the
relative strength of the magnon-phonon and boundary scatter-
ing is now given by Eq. (43), and the tunable parameter via
which one can computationally access the different magnon
dominated subregimes (ballistic, intermediate, diffusive) is the
parameter cmag [defined right below Eq. (43)], which can more
conveniently be expressed as cmag = 10l , l ∈ Z (to induce
order-of-magnitude changes in the relative strength of the two
scattering mechanisms).

We can now turn our attention to the results of Figs. 9 and 10
which show the behavior of the components of the magnonic
thermal conductivity tensor versus temperature, for all ordered
phases, for each subregime (ballistic, intermediate, diffusive)
as well as pure boundary scattering. In the results of Fig. 10

FIG. 9. Magnon-dominated transport: κxx and κyy component of
the magnonic thermal conductivity per unit area, for each ordered
phase, for three different subregimes: ballistic, intermediate, and
diffusive (see the legend of each panel) as well as pure boundary
scattering, versus temperature. The spatial directions x and y are
defined as in Fig. 11, Appendix A.

there was an attempt to find a power law for the temperature
dependence of the pure boundary scattering mechanism (at
least in the low-temperature limit of the examined temperature
window) so that the respective results lie on a horizontal line
(and this is important since by doing so, it is much easier to
see the deviations in the results caused by the complementary
magnon-phonon scattering mechanism). As can be seen from
that figure, the temperature exponent can be slightly different
for the x and y directions, as happens for the Néel and the
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FIG. 10. Magnon-dominated transport: κxx/T n and κyy/T n com-
ponent of the magnonic thermal conductivity per unit area, for each
ordered phase, for three different subregimes: ballistic, intermediate,
and diffusive (see the legend of each panel) as well as pure boundary
scattering, versus temperature. The appropriate temperature exponent
n that should divide κxx and κyy such that the pure boundary scattering
results are represented by horizontal straight lines (at least at low
temperatures) is given in the nearby yellow inset. The exponents can
slightly vary for the spatial directions x and y, as defined in Fig. 11,
Appendix A.

FM phase. Further, for all the magnetic phases except for the
Néel one, it was possible to find a power of the temperature by
which the pure boundary scattering results can be divided so
that they all lie along a straight line over the whole examined
temperature window (for the Néel phase the given exponents

cover only the low-temperature limit denoted by the horizontal
arrows in the top panel of Fig. 10).

Furthermore, from Figs. 9 and 10 it is easily seen that
the anisotropy of the magnonic conductivity tensor fades
away as one moves from the purely ballistic deep to the
purely diffusive subregime, and this happens because of
the stronger and stronger magnon-phonon scattering from
the longitudinal phonons (the deeper we enter the diffusive
subregime), or to put it differently, stronger and stronger
scattering of the (lower energy) magnons by the (low energy)
isotropic longitudinal acoustic phonons gradually washes out
any residual anisotropic features of the magnon band structure
from the magnonic thermal conductivity. It should further
be noticed that the aforementioned effect is stronger for soft
low-energy magnon bands compared to the analogous effect
for stiff low-energy magnon bands. Saying so, a qualitative
argument that can be given here is that for the softly anisotropic
phases (the FM and the stripy phases) the anisotropy of
the magnonic conductivity tensor starts diminishing earlier
with increasing temperature (i.e., for the aforementioned
two phases, the anisotropy of the magnonic conductivity is
significantly diminished already at very low temperatures), as
opposed to the stiffly anisotropic phases (the zigzag and the
Néel phase), whose magnon thermal conductivity manages
to partially retain the magnon band anisotropies up to higher
temperatures. The previous argument is supported by looking
at the low-temperature side (leftmost side) of each panel of
Fig. 10, whereby one can see that due to the intense magnon-
phonon scattering, the magnonic conductivity is significantly
suppressed compared to its corresponding purely ballistic
value. However, the suppression is weaker for the stiffly
anisotropic phases (especially for the zigzag phase), where the
magnon conductivity is not significantly suppressed from its
purely ballistic value unless ones goes to higher temperatures.

Another feature that one can observe by looking at the
panels of Fig. 9 is that the magnon conductivity of all the
magnetic phases seems to saturate within the temperature
window employed in this study, except for the Néel phase
which tends to saturation slower than all the other phases. An
explanation for this is that, because the low energy magnon
band of the Néel phase is stiffly nearly isotropic, with its
magnon valley at the center of the 1BZ (where the acoustic
phonon bands also have their minima), the strong magnon-
phonon scattering mainly affects the lower energy magnons
which also have very small wave vectors, whereas the higher
energy magnons which are more effective in transporting
heat continue to propagate less impeded by the longitudinal
acoustic phonons.

Concluding this section, we emphasize that the magnonic
conductivities of the various magnetic phases differ more
markedly from each other closer to the ballistic subregime
(or the pure boundary scattering subregime) compared to
the diffusive one. In addition, at very low temperatures
(the lower temperature limit of our plots) the boundary
scattering mechanism (Fig. 10; see the yellow insets) seems to
approximately follow some particular power law, that varies
markedly between the stiffly and the softly anisotropic phases
(Néel and zigzag, and stripy and FM, respectively). A further
discrimination between the stripy and the FM phase on the
one hand, and the zigzag and the Néel phase on the other,

064410-15



STAMOKOSTAS, LAPAS, AND FIETE PHYSICAL REVIEW B 95, 064410 (2017)

deeply within the ballistic subregime, comes from the fact that
the values of the two components of the magnon conductivity
tensor of the Néel and the FM phase follow slightly different
power laws (at low temperatures) as opposed to the magnon
conductivity components of the other two magnetic phases,
which can be described by a common power law.

VI. CONCLUSIONS

In this work we studied the thermal conductivity of
electrically insulating local moment models with strong
spin-orbit coupling. As a specific example, we studied the
nearest-neighbor Heisenberg-Kitaev model on the honeycomb
lattice, whose ground state properties (magnetic orders) are
well established. In particular, for different model parameters,
Néel, stripy, zigzag, and ferromagnetic phases are realized.
The richness of the phase diagram originates in the spin-
orbit coupling. For these four magnetic phases, the magnon
spectra were initially computed within the linear spin wave
approximation. Then, using Fermi’s golden rule in conjunction
with the magnon and the phonon spectra, the scattering rates
for the lowest order magnon-phonon scattering processes, the
two-magnon one-phonon processes, were calculated. Finally,
the kinetic Boltzmann equation within the relaxation time ap-
proximation was employed for the calculation of the magnonic
and the phononic thermal conductivities. The evaluation of the
scattering rates was among the most technically challenging
aspects of this work, and we had to innovate in order to find
an efficient method of computing these rates for the multiple
magnon branches. The procedure we followed and described
in this paper can be generalized to any two-dimensional
magnon-phonon system.

Several results and qualitative conclusions for the magnon-
dominated and the phonon-dominated heat transport are con-
tained in Sec. V. We emphasize again that each of the previous
regimes is further broken down into three main transport
subregimes: the ballistic, the diffusive, and the intermediate
subregimes. We have also included some discussion of how
to estimate which regime may be most relevant to a particular
material of a given size. A central result of this analysis is that
the effect of the strong spin-orbit coupling on the magnetic
degrees of freedom, which is to induce anisotropies in the
band structures of the low-energy magnetic excitations, can
most efficiently be probed by measuring the ballistic thermal
conductivity of a material whose heat transport is magnon
dominated.

When the phonon energy dominates the magnon energy, the
thermal conductivity primarily reflects the spatially isotropic
phonon band structure. In this case, the thermal conductivity
tensor remains isotropic, and in the ballistic subregime, at
low temperatures, follows a quadratic temperature power law
(reminiscent of the 2D Debye model). On the other side, when
the magnon energy dominates the phonon energy, the thermal
conductivity tensor of the various phases shows significant
anisotropic behavior that is strongest within the ballistic
subregime. In addition to this, the thermal conductivity
of different magnetic phases is found to follow different
temperature dependencies, even at very low temperatures.

By carefully analyzing the low-temperature dependence
and the degree of anisotropy of the thermal conductivity tensor,

one may be able to use thermal transport to infer important
features of the magnetic order and excitation spectrum that
are not easily obtained by other means. For example, the large
neutron absorption cross section of iridium makes measure-
ments of the magnon spectrum even in bulk iridates difficult.
The small signal from resonant inelastic x-ray scattering in a
two-dimensional system also makes determination of magnetic
order and excitations challenging. Thus, thermal transport
may offer a window into the magnetic degrees of freedom
where other methods present challenges. On the experimental
side, measurements of the thermal conductivity of the SOC-
induced Mott insulator Sr2IrO4 were recently reported [71],
which by comparison with the thermal conductivity of the
La2CuO4 antiferromagnet, led to the conclusion that the
thermal conductivity of the former is highly suppressed due
to strong magnon-phonon coupling, and this effect was then
correlated with strong spin-orbit coupling of the iridate.

We hope this work will help stimulate future theoretical
and experimental work on thermal transport in insulating local
moment systems with strong-spin orbit coupling, since the
methodology followed in this work opens a new window
to studying systems which previously were technically un-
approachable. Particularly, magnetically insulating systems
that cannot be approached analytically as far as the magnon-
phonon interaction problem is concerned can be numerically
approached by the above methodology which relies on the
use of a general numerical Bogoliubov transformation for the
derivation of the magnon-phonon interaction Hamiltonian and
the calculation of magnon-phonon transport relaxation times,
even in the presence of anisotropic magnon bands. These
anisotropies are commonplace within the newly discovered
field of magnonics, as well as among materials with strong
spin-orbit coupling. Such materials may be relevant to ap-
plications in spin caloritronics and other spin-based energy,
computing, and communications applications. Finally, we note
that theoretical estimates of the magnon-phonon relaxation
times, which are possible within the above methodology,
could be useful to experimentalists who want to know
(approximately) the strength of the magnon-phonon relaxation
time in their specific systems of study (to the extent that the
heat transport is dominated by the mechanisms studied in this
work).
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APPENDIX A: LINEAR SPIN WAVE THEORY FOR THE
NEAREST-NEIGHBOR HEISENBERG-KITAEV

HAMILTONIAN

In this appendix, we sketch out the derivation of the
linear spin wave dispersion relations and the lowest order
magnon-phonon scattering amplitudes for the four collinear
ordered phases of the Heisenberg-Kitaev model, depending on
the relative strength of the Heisenberg and Kitaev couplings
through the angle ϕ [see Fig. 2 and Eq. (2)]. The spin wave
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FIG. 11. Zigzag magnetic phase: A magnetic unit cell consists of
four magnetic moments labeled as A, B, C, and D, and is represented
by the gray-shaded rectangle shown in the figure. The translation
vectors of the periodic magnetic structure are the vectors a and b.
The translation vectors of the chemical periodic structure are the
vectors t1 and t2, and a chemical unit cell is represented by any dashed
parallelogram. For the Néel and the ferromagnetic states the magnetic
unit cell coincides with the chemical unit cell (that is common to all
phases).

analysis of the zigzag and the stripy states requires the use
of four magnetic sublattices, labeled as A, B, C, D, and the
magnetic unit cell is the rectangular unit cell (gray-shaded
rectangle defined by the translation vectors a and b) shown
in Fig. 11. The Néel and the ferromagnetic states require
only two magnetic sublattices, and the magnetic unit cell

coincides with the chemical unit cell of the honeycomb lattice
(see the dashed parallelogram whose edges are defined by the
translation vectors t1 and t2 in Fig. 11). Notice that in all the
following analysis the spatial gradients of the Heisenberg and
the Kitaev exchange couplings are denoted as �J (1) and �K (1),
respectively.

1. Zigzag phase

As already noted, for the zigzag phase the magnetic unit cell
is defined by the gray-shaded rectangle with sides of length a

(along the global X axis) and b (along the global Y axis), and
consists of four magnetic moments A, B, C, and D, with A and
D pointing along the positive X axis, and B and C pointing
along the negative X axis. Choosing the positive spin quanti-
zation axis along the negative X axis, at the sites A and D we
employ the bosonization given by Eqs. (17)–(19), while at the
sites B and C we employ the bosonization given by Eqs. (14)–
(16). Each magnetic site has three nearest neighbors (NN)
shown as encircled bonds in Fig. 11. To avoid double counting
of the NN interactions, only the dashed pink encircled bonds
(see Fig. 11) are taken into account. The Kitaev term couples
the z-spin components along the AB and the CD bonds, the
x-spin components along the upper right AD and the lower left
BC bonds, and the y-spin components along the upper left AD
and the lower right BC bonds. Using the representation of the
x- and y-spin components in terms of the ladder spin operators
to write the total Hamiltonian in terms of the S

||
i , S+

i , and S−
i

operators, performing the bosonization as elaborated above,
and Fourier-transforming according to the convention of
Eqs. (20) and (21), ones finds the classical ground state energy
Hclassical = NS2

2 (J − 2K), and the following spin wave mode
matrix M(k) [reference to Eq. (22) and the notation thereof]:

M(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A 0 0 D(k) 0 B(k) 0 C(k)

0 A D∗(k) 0 B∗(k) 0 C∗(k) 0

0 D(k) A 0 0 C(k) 0 B(k)

D∗(k) 0 0 A C∗(k) 0 B∗(k) 0

0 B(k) 0 C(k) A 0 0 D(k)

B∗(k) 0 C∗(k) 0 0 A D∗(k) 0

0 C(k) 0 B(k) 0 D(k) A 0

C∗(k) 0 B∗(k) 0 D∗(k) 0 0 A

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A1)

where we defined the following parameters [in this appendix
the parameter A appearing in the spin wave mode matrix
M should never be confused with the magnetic energy scale
defined in Eq. (2)]:

A = J (�δ1) − J (�δ2) − J (�δ3) + 2K(�δ1) = −J + 2K,

B(k) = J (�δ1)e−i�k·�δ1 = Jη−2,

C(k) = K(�δ3)e−i�k·�δ3 − K(�δ2)e−i�k·�δ2 = 2iKη sin(πh),

D(k) = (J (�δ3) + K(�δ3))e−i�k·�δ3

+ (J (�δ2), + K(�δ2))e−i�k·�δ2 = 2(J + K)η cos(πh),

in combination with the following definitions:

a = α
√

3, α = hexagon side = interionic distance,

�δ1 = 1

3
b = 1

3
bêY , b = 3α,

�δ2 = 1

2
a − 1

6
b = 1

2
a êX − 1

6
bêY ,

�δ3 = −1

2
a − 1

6
b = −1

2
a êX − 1

6
bêY ,

k =
(

h
2π

a
, k

2π

b

)
= h

2π

a
êX + k

2π

b
êY , h,k ∈ Z,
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FIG. 12. Lower spin wave dispersion relations of the zigzag
phase, as given by Eqs. (A2). The yellow surface corresponds to
ω1(k) and the blue surface to ω2(k). Notice that the magnon wave
vector components kx and ky are measured in units of 2π

a
and 2π

b
,

respectively, and the spin wave energy is measured in units of SJ

2h̄ .
The shaded hexagon within the Oxy plane is the first Brillouin zone
(1BZ) of the honeycomb lattice. The plot is for K/J = −2.65 and
α = 2π/3.

ζ = eiπh = ζ−1 (ζ 2 = 1 = ζ ζ−1), η = eikπ/3,

t1 = 1

2
(a + b), t2 = 1

2
(b − a),

where it is more convenient to measure the components of the
magnon wave vector k in units of the reciprocal lattice of the
magnetic lattice, i.e., in units of 2π

a
and 2π

b
, respectively. As

far as the parameters A, B(k), C(k), and D(k) are concerned,
it was assumed that the exchange couplings J and K are bond
independent (i.e., the same for each NN bond), as a result of
which the bond direction dependence was then dropped.

Diagonalizing the dynamical matrix D = I−M as de-
scribed in Eq. (27) of Sec. III, we obtain the following magnon
normal modes:

ω1 =
√

�3 −
√

�4, ω2 =
√

�1 −
√

�2, (A2)

ω3 =
√

�3 +
√

�4, ω4 =
√

�1 +
√

�2, (A3)

where the following parameters were used:

�1 = A2 + |D|2 − |B − C|2,
�2 = 4A2|D|2 − ∣∣D(B∗ − C∗) − D∗(B − C)

∣∣2
,

FIG. 13. Upper spin wave dispersion relations of the zigzag
phase, as given by Eqs. (A3). The yellow surface corresponds to
ω3(k) and the blue surface to ω4(k). Notice that the magnon wave
vector components kx and ky are measured in units of 2π

a
and 2π

b
,

respectively, and the spin wave energy is measured in units of SJ

2h̄ . The
shaded hexagon within the Oxy plane is the 1BZ of the honeycomb
lattice. The plot is for K/J = −2.65 and α = 2π/3.

�3 = A2 + |D|2 − |B + C|2,
�4 = 4A2|D|2 − ∣∣D(B∗ + C∗) − D∗(B + C)

∣∣2
.

The spin wave dispersions of Eq. (A2) are plotted in Fig. 12
and those of Eq. (A3) are plotted in Fig. 13. At low enough
temperatures, as far as the magnon-phonon interaction is
concerned, only the parts of the spin wave spectra around the
spin wave valleys are of interest, whose exact k-space positions
are found from the conditions that ωi = 0, i = 1,2,3,4. From
Eqs. (A2) and (A3) it is not hard to see that ωi = 0 implies
that either the whole argument of the big (outer) square root
is zero, or all the �j parameters on the respective right-hand
side are simultaneously zero. One can check that the spin
wave dispersions of Eqs. (A2) and (A3) have the following
symmetry properties:

ωi(kx,ky) = ωi(−kx, − ky) (time-reversal symmetry),

ωi(kx, − ky) = ωi(−kx,ky),

for i = 1,2,3,4, which can be employed to simplify the
calculations. As far as the magnon phonon scattering matrix
is concerned, the 
′(k,q) matrix on the right-hand side of
Eq. (31) has the following form:


′(k,q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A′(q) 0 0 D′(k,q) 0 B ′(k,q) 0 C ′(k,q)

0 A′(q) D′(−k,q) 0 B ′(−k,q) 0 C ′(−k,q) 0

0 D′(k,q) A′(q) 0 0 C ′(k,q) 0 B ′(k,q)

D′(−k,q) 0 0 A′(q) C ′(−k,q) 0 B ′(−k,q) 0

0 B ′(k,q) 0 C ′(k,q) A′(q) 0 0 D′(k,q)

B ′(−k,q) 0 C ′(−k,q) 0 0 A′(q) D′(−k,q) 0

0 C ′(k,q) 0 B ′(k,q) 0 D′(k,q) A′(q) 0

C ′(−k,q) 0 B ′(−k,q) 0 D′(−k,q) 0 0 A′(q)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A4)
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and further, for long-wavelength acoustic phonons it is

A′(q) = i[(êqs · �J (1)(�δ1))(�q · �δ1) − (êqs · �J (1)(�δ2))(�q · �δ2) − (êqs · �J (1)(�δ3))(�q · �δ3) + 2(êqs · �K (1)(�δ1))(�q · �δ1)]

= i
4πn

3
(êqs · �J (1) + êqs · �K (1)),

B ′(k,q) = i(êqs · �J (1)(�δ1))(�q · �δ1)e−i�k·�δ1 = i
2πn

3
(êqs · �J (1))η−2,

C ′(k,q) = i[(êqs · �K (1)(�δ3))(�q · �δ3)e−i�k·�δ3 − (êqs · �K (1)(�δ2))(�q · �δ2)e−i�k·�δ2 ] = −2imπ (êqs · �K (1))ζη,

D′(k,q) = i([(êqs · �J (1)(�δ2)) + (êqs · �K (1)(�δ2))](�q · �δ2)e−i�k·�δ2 + [(êqs · �J (1)(�δ3)) + (êqs · �K (1)(�δ3))](�q · �δ3)e−i�k·�δ3 )

= −i
2πn

3
(êqs · �J (1) + êqs · �K (1))ζη,

where

q = m
2π

a
êX + n

2π

b
êY , a = α

√
3, b = 3α, m,n ∈ Z,

and also, ζ = eiπh = ζ−1 and η = eikπ/3. Notice that in the
calculation of the parameters B ′(k,q), C ′(k,q), and D′(k,q)
above, the substitution k → −k implies the substitution
(h,k) → (−h, − k) [i.e., switch the sign of the magnon wave
vector components; see the definitions prior to Eqs. (A2) and
(A3)], and further, it was assumed that the exchange couplings
�J (1) and �K (1) are bond independent, as a result of which the

bond direction dependence was dropped.

2. Stripy phase

For the stripy phase the magnetic unit cell is again defined
by the gray rectangle of sides a and b shown in Fig. 11,
consisting of four magnetic moments A, B, C, and D, with

A and B pointing along the positive X axis, and C and D
pointing along the negative X axis. Choosing the positive
spin quantization axis along the negative X axis again, at
the sites A and B we employ the bosonization given by
Eqs. (17)–(19), while at the sites C and D we employ the
bosonization given by Eqs. (14)–(16). The NN bonds that
interact through the Hamiltonian of Eq. (1) as well as the Kitaev
couplings are the same as in the case of the zigzag phase. Using
the representation of the x- and y-spin components in terms
of the ladder spin operators to write the total Hamiltonian
in terms of the S

||
i , S+

i , and S−
i operators, performing the

bosonization as elaborated above, and Fourier-transforming
according to the convention of Eqs. (20) and (21), ones finds
the classical ground state energy Hclassical = NS2

2 (−J + 2K),
and the following spin wave mode matrix M(k) [reference to
Eq. (22) and the notation thereof]:

M(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B∗(k) 0 C∗(k) 0 0 0 D∗(k)
B(k) A C(k) 0 0 0 D(k) 0

0 C∗(k) A B∗(k) 0 D∗(k) 0 0
C(k) 0 B(k) A D(k) 0 0 0

0 0 0 D∗(k) A B∗(k) 0 C∗(k)
0 0 D(k) 0 B(k) A C(k) 0
0 D∗(k) 0 0 0 C∗(k) A B∗(k)

D(k) 0 0 0 C(k) 0 B(k) A

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A5)

where we defined the following parameters

A = J − 2K,

B(k) = Je−i�k·�δ1 = Jη−2,

C(k) = K(e−i�k·�δ3 − e−i�k·�δ2 ) = 2iKη sin(πh),

D(k) = (J + K)(e−i�k·�δ3 + e−i�k·�δ2 ) = 2(J + K)η cos(πh),

and as previously it is

ζ = eiπh = ζ−1 (ζ 2 = 1 = ζ ζ−1), η = eikπ/3.

Diagonalizing the dynamical matrix D = I−M as de-
scribed in Eq. (27) in Sec. III, we obtain the following magnon
normal modes:

ω1 =
√

�1 − √
�2, ω2 =

√
�3 − √

�4, (A6)

ω3 =
√

�1 + √
�2, ω4 =

√
�3 + √

�4, (A7)

where the following parameters were used:

�1 = A2 − |D|2 + |B − C|2,
�2 = 4|A(B − C)|2 − |D(B∗ − C∗) − D∗(B − C)|2,
�3 = A2 − |D|2 + |B + C|2,
�4 = 4|A(B + C)|2 − |D(B∗ + C∗) − D∗(B + C)|2.

The spin wave dispersions of Eq. (A6) are plotted in Fig. 14 and
those of Eq. (A7) are plotted in Fig. 15. As can be seen from
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FIG. 14. Lower spin wave dispersion relations of the stripy phase,
as given by Eqs. (A6). The yellow surface corresponds to ω1(k)
and the blue surface to ω2(k). Notice that the magnon wave vector
components kx and ky are measured in units of 2π

a
and 2π

b
, respectively,

and the spin wave energy is measured in units of SJ

2h̄ . The shaded
hexagon within the Oxy plane is the 1BZ of the honeycomb lattice.
The plot is for K/J = −1 and α = 2π/3.

Figs. 14 and 15 (vertical axis), the lower and the upper magnon
bands are well separated in energy from each other. At low
enough temperatures, as far as the magnon-phonon interaction
is concerned, only the parts of the spin wave spectra around the
spin wave valleys, and in this case the lower magnon bands, are
of interest. The lower energy magnon valley k-space positions
are found from the conditions that ωi = 0, i = 1,2, which can
be solved as was detailed in the previous section. One can

FIG. 15. Upper spin wave dispersion relations of the stripy phase,
as given by Eqs. (A7). The yellow surface corresponds to ω3(k)
and the blue surface to ω4(k). Notice that the magnon wave vector
components kx and ky are measured in units of 2π

a
and 2π

b
, respectively,

and the spin wave energy is measured in units of SJ

2h̄ . The shaded
hexagon within the Oxy plane is the 1BZ of the honeycomb lattice.
The plot is for K/J = −1 and α = 2π/3.

check that the spin wave dispersions of Eqs. (A6) and (A7) have
the symmetry properties ωi(kx,ky) = ωi(−kx,−ky) (time-
reversal symmetry), as well as ωi(kx,−ky) = ωi(−kx,ky),
for i = 1,2,3,4, which can further be employed to sim-
plify the calculations. As far as the magnon-phonon
scattering matrix is concerned, the 
′(k,q) matrix on
the right-hand side of Eq. (31) has the following
form:


′(k,q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A′(q) B ′(−k,q) 0 C ′(−k,q) 0 0 0 D′(−k,q)
B ′(k,q) A′(q) C ′(k,q) 0 0 0 D′(k,q) 0

0 C ′(−k,q) A′(q) B ′(−k,q) 0 D′(−k,q) 0 0
C ′(k,q) 0 B ′(k,q) A′(q) D′(k,q) 0 0 0

0 0 0 D′(−k,q) A′(q) B ′(−k,q) 0 C ′(−k,q)
0 0 D′(k,q) 0 B ′(k,q) A′(q) C ′(k,q) 0
0 D′(−k,q) 0 0 0 C ′(−k,q) A′(q) B ′(−k,q)

D′(k,q) 0 0 0 C ′(k,q) 0 B ′(k,q) A′(q)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A8)

where the parameters B ′(k,q), C ′(k,q), and D′(k,q) are
defined exactly as in the zigzag phase, with the following
modification for the A′(q) parameter:

A′(q) = −i
4πn

3
(êqs · �J (1) + êqs · �K (1)),

and further,

q = m
2π

a
êX + n

2π

b
êY , a = α

√
3, b = 3α, m,n ∈ Z,

ζ = eiπh = ζ−1, and η = eikπ/3. Notice again that in the
calculation of the parameters B ′(k,q), C ′(k,q), and D′(k,q)
above, the substitution k → −k implies the substitution
(h,k) → (−h, − k), and it was assumed that the exchange
couplings J and K as well as the couplings �J (1) and �K (1)

are bond independent, as a result of which the bond direction
dependence was dropped.

3. Néel phase

For the Néel phase the magnetic unit cell coincides with the
chemical unit cell defined by the parallelogram of sides t1 and
t2 (see Fig. 11), and consists of two magnetic moments A, B,
with A pointing along the positive X axis, and B pointing along
the negative X axis. Choosing the positive spin quantization
axis along the negative X axis again, at the site A we employ
the bosonization given by Eqs. (17)–(19), while at the site
B we employ the bosonization given by Eqs. (14)–(16). The
bond-dependent Kitaev couplings are defined as in the zigzag
phase, except that now only the NN bonds at sites A and B
are taken into account leading to a total of three bonds. Using
the representation of the x- and y-spin components in terms
of the ladder spin operators to write the total Hamiltonian
in terms of the S

||
i , S+

i , and S−
i operators, performing the

bosonization as elaborated above, and Fourier transforming
according to the convention of Eqs. (20) and (21), ones finds the
classical ground state energy Hclassical = −NS2

2 (3J + 2K),
and the following spin wave mode matrix M(k) [reference
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FIG. 16. Spin wave dispersion relations of the Néel phase, as
given by Eqs. (A10). The yellow surface corresponds to ω1(k) and
the blue surface to ω2(k). Notice that the magnon wave vector
components kx and ky are measured in units of 2π

a
and 2π

b
, respectively,

and the spin wave energy is measured in units of SJ

2h̄ . The shaded
hexagon within the Oxy plane is the 1BZ of the honeycomb lattice.
The plot is for K/J = 1 and α = 2π/3.

to Eq. (22) and the notation thereof]:

M(k) =

⎡
⎢⎣

A C(k) 0 B(k)
C∗(k) A B∗(k) 0

0 B(k) A C(k)
B∗(k) 0 C∗(k) A

⎤
⎥⎦, (A9)

where we defined the following parameters:

A = 3J + 2K,

B(k) = J (�δ1)e−i�k·�δ1 + (J (�δ3) + K(�δ3))e−i�k·�δ3

+ (J (�δ2) + K(�δ2))e−i�k·�δ2 = Jη−2 + 2(J + K)η cos(πh),

C(k) = K(�δ3)e−i�k·�δ3 − K(�δ2)e−i�k·�δ2 = 2iKη sin(πh),

in conjunction with the definitions

ζ = eiπh = ζ−1 (ζ 2 = 1 = ζ ζ−1), η = eikπ/3.

Diagonalizing the dynamical matrix D = I−M as de-
scribed in Eq. (27) in Sec. III, we obtain the following magnon
normal modes:

ω1 =
√

�1 −
√

�2, ω2 =
√

�1 +
√

�2, (A10)

where the following parameters were used:

�1 = A2 − |B|2 + |C|2,
�2 = 4A2|C|2 + (B∗C − C∗B)2.

The spin wave dispersions of Eq. (A10) are plotted in Fig. 16.
At low enough temperatures, as far as the magnon-phonon
interaction is concerned, only the parts of the spin wave spectra
around the spin wave valleys are of interest, which in this
case are located at the � point of the 1BZ (as opposed to the
previous phases). The exact magnon valley k-space positions
are found from the conditions that ωi = 0, i = 1,2, which
can be solved as was detailed in the previous sections. One
can check that the spin wave dispersions of Eq. (A10) have
the symmetry properties ωi(kx,ky) = ωi(−kx, − ky) (time-
reversal symmetry) as well as ωi(kx, − ky) = ωi(−kx,ky),
for i = 1,2, which can further be employed to simplify the
calculations. As far as the magnon-phonon scattering matrix

is concerned, the 
′(k,q) matrix on the right-hand side of
Eq. (31) has the following form:


′(k,q) =

⎡
⎢⎣

A′(q) C ′(k,q) 0 B ′(k,q)
C ′(−k,q) A′(q) B ′(−k,q) 0

0 B ′(k,q) A′(q) C ′(k,q)
B ′(−k,q) 0 C ′(−k,q) A′(q)

⎤
⎥⎦,

(A11)
where the parameters A′(q), B ′(k,q), and C ′(k,q) are defined
as below:

A′(q) = i
4π

3
(êqs · �K (1)),

B ′(k,q) = i
2πn

3
(êqs · �J (1))η−2

− i
2πn

3
(êqs · �J (1) + êqs · �K (1))ζη,

C ′(k,q) = − 2imπ (êqs · �K (1))ζη,

and further,

q = m
2π

a
êX + n

2π

b
êY , a = α

√
3, b = 3α, m,n ∈ Z,

ζ = eiπh = ζ−1, and η = eikπ/3. Notice that in the calculation
of the parameters B ′(k,q) and C ′(k,q) above, the substitution
k → −k implies the substitution (h,k) → (−h, − k), and it
was assumed that the exchange couplings J and K as well as
the couplings �J (1) and �K (1) are bond independent, as a result
of which the bond direction dependence was dropped.

4. Ferromagnetic phase

For the ferromagnetic phase the magnetic unit cell again co-
incides with the chemical unit cell defined by the parallelogram
of sides t1 and t2 (see Fig. 11), and consists of two magnetic
moments A, B, with A and B both pointing along the positive
X axis. Choosing the positive spin quantization axis along the
negative X axis again, at both sites we employ the bosonization
given by Eqs. (17)–(19). The NN bonds that interact through
the Hamiltonian of Eq. (1) as well as the definition of the Kitaev
couplings are the same as in the case of the Néel phase. Using
the representation of the x- and y-spin components in terms
of the ladder spin operators to write the total Hamiltonian
in terms of the S

||
i , S+

i , and S−
i operators, performing the

bosonization as elaborated above, and Fourier transforming
according to the convention of Eqs. (20) and (21), one finds
the classical ground state energy Hclassical = NS2

2 (3J + 2K),
and the following spin wave mode matrix M(k) [reference to
Eq. (22) and the notation thereof]:

M(k) =

⎡
⎢⎣

A B(k) 0 C(k)
B∗(k) A C∗(k) 0

0 C(k) A B(k)
C∗(k) 0 B∗(k) A

⎤
⎥⎦, (A12)

where the parameters B(k) and C(k) are defined exactly as in
the Néel phase, except for the parameter A which is modified
as below:

A = −3J − 2K. (A13)

Diagonalizing the dynamical matrix D = I−M as de-
scribed in Eq. (27) in Sec. III, we obtain the following magnon
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FIG. 17. Spin wave dispersion relations of the ferromagnetic
phase, as given by Eqs. (A14). The yellow surface corresponds to
ω1(k) and the blue surface to ω2(k). Notice that the magnon wave
vector components kx and ky are measured in units of 2π

a
and 2π

b
,

respectively, and the spin wave energy is measured in units of SJ

2h̄ . The
shaded hexagon within the Oxy plane is the 1BZ of the honeycomb
lattice. The plot is for K/J = 1 and α = 2π/3.

normal modes:

ω1 =
√

�1 −
√

�2, ω2 =
√

�1 +
√

�2, (A14)

where the following parameters were used:

�1 = A2 − |C|2 + |B|2,
�2 = 4A2|B|2 + (B∗C − C∗B)2.

The spin wave dispersions of Eq. (A14) are plotted in Fig. 17.
At low enough temperatures, as far as the magnon-phonon
interaction processes are concerned, only the part of the lower
spin wave spectrum around the spin wave valley is of interest,
which in this case is again located at the � point of the 1BZ.
The exact magnon valley k-space position is found from the
condition that ωi = 0, i = 1, which can be solved as was
detailed in the previous sections. One can check that the spin
wave dispersions of the ferromagnetic phase as well have
the symmetry properties: ωi(kx,ky) = ωi(−kx, − ky) (time-
reversal symmetry) as well as ωi(kx, − ky) = ωi(−kx,ky), for
i = 1,2. It should be stressed that the spin wave dispersions
of both the Néel and the ferromagnetic phases, in Figs. 16 and
17, respectively, are not exactly isotropic around the respective
spin wave valleys. Lastly, for the magnon-phonon scattering
matrix 
′(k,q) of the right-hand side of Eq. (31) it is


′(k,q) =

⎡
⎢⎣

A′(q) B ′(k,q) 0 C ′(k,q)
B ′(−k,q) A′(q) C ′(−k,q) 0

0 C ′(k,q) A′(q) B ′(k,q)
C ′(−k,q) 0 B ′(−k,q) A′(q)

⎤
⎥⎦,

(A15)
where the parameters B ′(k,q) and C ′(k,q) are defined exactly
as in the Néel phase, with the following modification for the
A′(q) parameter:

A′(q) = −i
4π

3
(êqs · �K (1)),

and further,

q = m
2π

a
êX + n

2π

b
êY , a = α

√
3, b = 3α, m,n ∈ Z,

ζ = eiπh = ζ−1, and η = eikπ/3. It is again noticed that in the
calculation of the parameters B ′(k,q) and C ′(k,q) above, the

substitution k → −k implies the substitution (h,k) → (−h, −
k), and it was assumed that the exchange couplings J and K

as well as the couplings �J (1) and �K (1) are bond independent, as
a result of which the bond direction dependence was dropped.

APPENDIX B: BOLTZMANN KINETIC EQUATION AND
DERIVATION OF THERMAL CONDUCTIVITY FORMULA

IN THE RELAXATION TIME APPROXIMATION

Consider the phase space of a multiparticle system of
noninteracting particles, more generally noninteracting in the
mean field sense. For such a case, instead of the multiparticle
distribution function one has recourse to the so-called reduced
distribution functions [74], and more specifically to the single-
particle distribution function f (r,q,t) without introducing any
further approximations. Let us now focus on the motion of
the particles whose phase-space coordinates lie within the
volume d rdq around the phase-space point (r,q) at time t .
If no collisions occur, then at time t + dt the phase-space
coordinates of all those particles flow into the region d r ′dq ′
around the point (r ′,q ′), where obviously r ′ = r + ṙdt and
q ′ = q + q̇dt . Conservation of the number of particles (since
no collisions occur) dictates that

f (r,q,t)d rdq = f (r ′,q ′,t + dt)d r ′dq ′

= f (r + ṙdt,q + q̇dt,t + dt)d r ′dq ′,

where f (r,q,t) is the single-particle dynamical phase-space
distribution function. Liouville’s theorem states that d rdq =
d r ′dq ′, implying that

f (r + ṙdt,q + q̇dt,t + dt) = f (r,q,t). (B1)

Furthermore,

f (r + ṙdt,q + q̇dt,t + dt)

= f (r,q,t) + ∂f

∂ r
ṙdt + ∂f

∂q
q̇dt + ∂f

∂t
dt. (B2)

Combining Eqs. (B1), (B2) we get

df

dt
= f (r + ṙdt,q + q̇dt,t + dt) − f (r,q,t)

dt

= ṙ
∂f

∂ r
+ q̇

∂f

∂q
+ ∂f

∂t
= 0. (B3)

Now, if collisions do occur during the infinitesimal time inter-
val dt , some particles are scattered out (of the aforementioned
multiparticle distribution function) whereas other particles
are scattered in (the aforementioned multiparticle distribution
function), upon flowing from the phase-space point (r,q) to the
phase-space point (r ′,q ′), infinitesimally far away (within the
phase space). As a result of it, the single-particle dynamical
phase-space distribution function does not satisfy Eq. (B3),
but instead it is (reducing the inscattering and outscattering
from the multiparticle distribution function to a probability
of inscattering and outscattering from the single-particle
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distribution function)

f (r + ṙdt,q + q̇dt,t + dt) − f (r,q,t)

dt

=
(

df

dt

)
in

−
(

df

dt

)
out

≡
(

df

dt

)
coll

, (B4)

where the rightmost term accounts for the total change in the
single-particle distribution function due to inscattering and
outscattering processes, and is the so-called collision term.
Combining Eqs. (B3) and (B4), to linear order in dt we get

ṙ
∂f

∂ r
+ q̇

∂f

∂q
+ ∂f

∂t
=

(
df

dt

)
coll

, (B5)

and this is the so-called Boltzmann kinetic equation. Now, let
us apply the Boltzmann kinetic equation to the problem of
heat transport. Let us focus on the low-energy lattice degrees
of freedom, which in the language of second quantization can
be treated as noninteracting quasiparticles called phonons, and
derive an expression for the thermal conductivity tensor.

When a temperature gradient (slowly varying in space, and
time [74] in general) is present, phonons can be treated within
the semiclassical approximation; i.e., they can be described
by a semiclassical distribution function (from now on called
phonon distribution function) whose dynamics obeys the
Boltzmann kinetic equation. For heat transport, the phononic
distribution function is actually nonuniform in real space only,
due to the presence of a nonzero temperature gradient. As a
result, the equation that governs the phase-space variations
of the phonon distribution function fs(r,q,t), for phonons of
polarization s, has the following form:

vs(q)
∂fs(r,q,t)

∂ r
+ ∂fs(r,q,t)

∂t
=

(
dfs

dt

)
coll

, (B6)

where vs(q) is the group velocity of phonons of polarization
s, given by vs(q) = ∇qωs(q). Taking into account the fact that
the spatial nonuniformity of the phonon distribution function
comes through the spatial variation of the temperature, in the
so-called stationary or steady state case, one finds that

vs(q) · ∇rT
∂fs(q)

∂T
=

(
dfs

dt

)
coll

. (B7)

Equation (B7) is the stationary Boltzmann equation for
phonons of polarization s. As was mentioned previously, in
the phonon-dominated regime heat is mostly carried by the
phonons, which at low enough temperatures can be treated
as noninteracting quasiparticles, which weakly interact with a
bath which in this case is the magnons. Under those conditions
we attempt to solve the stationary Boltzmann equation (B7)
within the so-called relaxation time approximation, and the
current situation can be treated similarly to the impurity
scattering of the electrons.

Quite generally, the collision term can be put into the
following form (A denotes the area, and our analysis is adjusted
to 2D):(

dfs

dt

)
coll

≡ I [fs] = 1

A

∑
q′

(
Wq′→q − Wq→q′

)
, (B8)

where Wq′→q denotes the probability per unit time for a phonon
to be scattered from q ′ to q in a given scattering process, which

encompasses not only microscopic probabilities for quantum
transitions but also the single-particle distribution function
itself. More specifically, if the quantum transition probability
per unit time, denoted as wq′→q for a phononic scattering
process from the state of wave vector q ′ to a state of wave
vector q is known (this last quantity is directly related to the
magnon-phonon scattering matrix of the analysis of the main
text), then the probability Wq′→q can be expressed directly
in terms of the microscopic probability wq′→q and fs(r,q,t)
[actually fs(q) for the stationary case that is of interest here].
Furthermore, from Eq. (B8) it is

I [fs] = 1

A

∑
q′

{wq′→q[fs(q) + 1] − wq→q′fs(q)}

= 1

A

∑
q′

wq′→q[fs(q) + 1] − 1

A

∑
q′

wq→q′fs(q)

≡ Iin[fs] − Iout [fs], (B9)

where in the rightmost term of Eq. (B9) the collision term
is decomposed into two parts, one related to inscattering and
the other related to outscattering processes. Under thermal
equilibrium conditions the inscattering and the outscattering
processes should compensate each other leading to the result

wq′→q
[
f 0

s (q) + 1
] = wq→q′f 0

s (q), (B10)

where f 0
s (q) is the equilibrium distribution function. Assum-

ing that the applied temperature gradient is such that the
departure of the single-particle distribution function from its
equilibrium value is small, i.e., fs(q) ≈ f 0

s (q) + f 1
s (q), from

Eqs. (B9) and (B10) to lowest order it is

I [fs] ≈ −
[

1

A

∑
q′

(
wq→q′ − wq′→q

)]
f 1

s (q)

= −
[

1

A

∑
q′

(wq→q′ − wq′→q)

][
fs(q) − f 0

s (q)
]
,

(B11)

where we define the so-called relaxation time as below:

1

τs(q)
= 1

A

∑
q′

(wq→q′ − wq′→q). (B12)

Notice that the result of Eq. (B12) per unit area is directly
related to Eqs. (40) and (41) that were derived in the phonon-
dominated thermal transport regime. Notice also that the
microscopic transition probabilities wq→q′ and wq′→q do not
necessarily balance each other (as happens in the problem
of the elastic scattering of an electron from impurities), and
more specifically, to ensure the non-negativity of the phonon
relaxation time defined above it should be true that wq→q′ �
wq′→q , and of course the quantity

∑
q′ (wq→q′ − wq′→q)

should be bounded (not infinite). Under the aforementioned
conditions, the weak interaction of phonons with the magnon
bath (under a weak temperature gradient) can be described via
the concept of the phonon relaxation time.
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Combining Eqs. (B7), (B8), (B11), and (B12) we get [using
again the approximation of fs(q) ≈ f 0

s (q) + f 1
s (q)]

vs(q) · ∇T
∂f 0

s (q)

∂T
+ vs(q) · ∇T

∂f 1
s (q)

∂T
= −f 1

s (q)

τs(q)
,

and neglecting on the left-hand side the term that depends on
f 1

s (q) (as being smaller compared to the other term on the
left-hand side), to lowest order it is

f 1
s (q) = −τs(q)vs(q) · ∇T

∂f 0
s (q)

∂T
,

or finally

fs(q) ≈ f 0
s (q) − τs(q)vs(q) · ∇T

∂f 0
s (q)

∂T
. (B13)

Let us now connect the above results (of the stationary case)
with the thermal conductivity tensor. The total heat current
carried by phonons with single-particle distribution function
fs(q), summing over all different phonon polarizations, is
(adjusted to 2D)

jQ =
∑

s

∫
d2q

(2π )2h̄ωs(q)vs(q)fs(q). (B14)

Combining Eqs. (B13) and (B14) we find (the term containing
the equilibrium distribution function of the phonons does not
participate in the heat current and is dropped)

jQ = −
∑

s

∫
d2q

(2π )2h̄ωs(q)vs(q)τs(q)
∂f 0

s (q)

∂T
vs(q) · ∇T ,

(B15)

and recalling the definition of the thermal conductivity tensor κ

via the Fourier law of heat transport (adjusted to a 2D system),
which reads

jQ = −κ∇T , (B16)

we find for the thermal conductivity tensor per unit area the
following expression [notice that in order to get the correct
units we need to take into account the relaxation time per unit
area as defined in Eq. (B12)]:

καβ =
∑

s

∫
d2q

(2π )2h̄ωs(q)vα
s (q)vβ

s (q)τs(q)
∂f 0

s (q)

∂T
. (B17)

Before concluding this section, let us mention that all the
aforementioned analysis can also be applied to magnons
weakly interacting with a phonon bath, as happens in the

magnon-dominated transport regime, of course with the
appropriate modifications. The more general case in which
both types of carriers participate significantly in the total
thermal conductivity requires a more sophisticated treatment
than the one given here.

APPENDIX C: TECHNICAL DETAILS FOR
THE COMPUTATION OF THE LINE INTEGRALS

OF THE VARIOUS SCATTERING RATES

To calculate the line integrals (reduction comes upon
using the property of the Dirac δ function mentioned in the
main text) appearing in various scattering rates (magnonic
or phononic), one needs to find the path of integration
dictated by the energy conservation constraint. For instance,
for the magnon scattering rates of the following general
form,

1

τλ(k)

∣∣∣∣
mp

=
∑
λ′

∫
F (k,q,T )δ(εk±q,λ′ ± h̄ωq ± εk,λ)dl(q),

(C1)
for each given (kx,ky) point of interest, one needs to know all
(qx,qy) points that satisfy the energy conservation constraint
δ(εk±q,λ′ ± h̄ωq ± εk,λ) first, and then perform the line integral
over these points numerically. Due to high nonlinearity of
the magnon dispersion relations simple analytical expressions
are not possible. Thus, the energy constraint was graphically
solved like this: For a specific temperature T , a grid of (kx,ky)
points were taken in the vicinity of the various magnon valleys,
and for each one of those k points a contour plot of the
energy constraint was created. From each contour plot, all
the (qx,qy) points that satisfy the energy constraint for that
fixed (kx,ky) point were extracted, and were then used to
compute the reduced integral. This way, the quantity 1

τλ(k,T )
for every (kx,ky) point was calculated, and further, the whole
previous calculation was repeated for each temperature of the
chosen temperature window for this study. In the semiclassical
Boltzmann approach to the thermal conductivity, the quantity

1
τλ(k,T ) enters within a second integral, this time over the
magnon momentum space of interest (i.e., over the k space),
whereby one finally gets the magnon thermal conductivity.
A similar procedure is followed for the calculation of the
phononic thermal conductivity.

As a last note, to get the constant energy surfaces
for a fixed temperature value, for a given wave vector
of the one quasiparticle type, the various points of the
contour plot of the energy constraint were extracted using
the following MATHEMATICA command: List=Cases
[Normal[ContourPlot pic],Line[Data ] → Data,5].
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