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Method for estimating spin-spin interactions from magnetization curves
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We develop a method to estimate the spin-spin interactions in the Hamiltonian from the observed magnetization
curve by machine learning based on Bayesian inference. In our method, plausible spin-spin interactions are
determined by maximizing the posterior distribution, which is the conditional probability of the spin-spin
interactions in the Hamiltonian for a given magnetization curve with observation noise. The conditional probability
is obtained with the Markov chain Monte Carlo simulations combined with an exchange Monte Carlo method.
The efficiency of our method is tested using synthetic magnetization curve data, and the results show that spin-spin
interactions are estimated with a high accuracy. In particular, the relevant terms of the spin-spin interactions are
successfully selected from the redundant interaction candidates by the l1 regularization in the prior distribution.
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I. INTRODUCTION

The importance of data-driven techniques using machine
learning [1,2] is recognized in both academic and industrial
fields. Machine learning is generally a statistical tool used to
extract the inherent structure from a finite set of observed data.
In condensed-matter physics, machine learning techniques
have been used for, for example, interpolation of density-
functional theory (DFT) [3–6] and dynamical-mean field
theory [7] calculations and for model selection of strongly
correlated systems [8] and the Ginzburg-Landau equation [9].
In this paper, we apply Bayesian inference from the field of
machine learning [10–12] to estimate the spin-spin interactions
in the Hamiltonian given an observed magnetization curve as
an input (Fig. 1).

Magnetization is the average of the magnetic moments
normalized by the amplitude of the magnetic moment, which
is induced in a magnetic material by a magnetic field and
is a fundamental physical quantity in both experiments and
theories of magnetism. The magnetic-field dependence of
the magnetization is called the magnetization curve [13,14]
and has been measured in many magnetic materials using
devices such as a superconducting quantum interference de-
vice (SQUID) in the laboratory. In general, the magnetization
curve for a fixed temperature increases monotonically as a
nonlinear function of the magnetic field. Depending on the
magnetic material, various characteristic features, such as
plateaus [15–21], ramps [22–24], and sharp increases [25],
may be observed in the magnetization curve. Consequently, the
magnetization curve is an important quantity for understanding
the magnetic properties of individual magnetic materials.

To understand the essence of the properties in magnetic
materials, an effective Hamiltonian is often derived in materi-
als science. Many methods have been proposed to determine
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Hamiltonians, and they can be divided roughly into two
groups: one in which the model parameter values in the
Hamiltonian are calculated by ab initio electronic structure
calculations when basic data of the magnetic materials are
inputted [26–29] and one in which the model parameter values
are evaluated by fitting the physical quantities observed in a
target magnetic material [30–34].

The aim of this paper is to establish a Hamiltonian
estimation method which can be classified as the latter group
where the model parameters in the Hamiltonian of a target
material are predicted from experimental data (Fig. 1). In
particular, we propose a method which selects relevant terms
for the model parameters from redundant model parameter
candidates by machine learning based on the l1 regularization.
The framework of this method can be adopted for any
measurement data, but herein we focus on the case where
an observed magnetization curve is used as the input data to
estimate the spin-spin interactions.

The rest of the paper is organized as follows. In Sec. II, we
introduce a method to estimate the model parameters in the
Hamiltonian from the observed magnetization curve. We first
present the forward modeling for an observed magnetization

FIG. 1. Schematic research flows for forward modeling and
Bayes modeling. P (A) is the probability distribution of A, and
P (A|B) is the conditional probability of A given B.
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curve. By using Bayesian inference, we construct the posterior
distribution, that is, the conditional probability of the model
parameters in the Hamiltonian given an observed magnetiza-
tion curve (the Bayes modeling). In this case, the plausible
model parameters maximize the posterior distribution. Next,
we explain the simulation methods, which employ the Markov
chain Monte Carlo (MCMC) method and exchange Monte
Carlo method, to analyze the posterior distribution. In the
last part of Sec. II, we describe cross validation to avoid
overfitting. Cross validation makes it possible to calculate
prediction errors and allows a hyperparameter in the prior
distribution to be determined. To validate our estimation
method, we determine the spin-spin interactions from a
synthetic magnetization curve in Sec. III. We prepare an
input observed magnetization curve using a theoretical model
with fixed spin-spin interactions to consider the case where
the solution of the estimation problem is known in advance.
We show that the spin-spin interactions can be accurately
estimated from the observed magnetization curve using our
method. Section IV presents the discussion and summary.

II. METHOD FOR ESTIMATING MODEL PARAMETERS

This section presents our estimation method for model
parameters in the Hamiltonian determined from the observed
magnetization curve. Using Bayesian inference, the condi-
tional probability of the spin-spin interactions is obtained
for a given observed magnetization curve. Furthermore, the
simulation methods used to analyze the conditional probability
and the cross validation to avoid overfitting are introduced.

A. Bayesian inference for the magnetization curve

1. Forward modeling

Let us assume a class of the Hamiltonian H({si}; x) for a
magnetic system with a set of model parameters denoted as
x = (x1, . . . ,xK ), where K is the number of model parameters.
Here, si is the spin variable at site i with the absolute value
|s|, and {si} denotes a set of spin configurations. In statistical
physics, the magnetization under a magnetic field H at a tem-
perature T for a given Hamiltonian H({si}; x) is calculated as

m(H,x) =
∣∣∣∣∣ 1

N |s|
N∑

i=1

〈si〉H,x

∣∣∣∣∣, (1)

〈si〉H,x = Tr si exp
[−(

H({si}; x) − H
∑N

i=1 sz
i

)/
T

]
Tr exp

[−(
H({si}; x) − H

∑N
i=1 sz

i

)/
T

] , (2)

where sz
i is the z component of si and N is the number of spins.

Throughout the paper, the g factor, the Bohr magneton, and the
Boltzmann constant are set to unity. In the forward modeling,
the conditional probability of the observed magnetization in
the given model parameters is examined. Because the mag-
netization m(H,x) is uniquely obtained in the thermodynamic
limit by statistical physics, the conditional probability of the
magnetization m(H,x) given x is expressed as

P (m(H,x)|x) = δ

(
m(H,x) −

∣∣∣∣∣ 1

N |s|
N∑

i=1

〈si〉H,x

∣∣∣∣∣
)

, (3)

where δ(· · · ) is the Dirac delta function and P (A|B) expresses
the conditional probability of A given B.

The measurements in an experiment always have some
uncertainty. Taking this uncertainty into account as the ob-
servation noise ε, the observed magnetization in experiments
mex(H ) is expressed as

mex(H ) = m(H,x) + ε. (4)

At this point, we assume that the observation noise follows
a Gaussian distribution with a mean of zero and a standard
deviation of σ :

P (ε) ∝ exp

(
− ε2

2σ 2

)
. (5)

The conditional probability of mex(H ) for a given m(H,x) is
then

P (mex(H )|m(H,x)) ∝ exp

{
− 1

2σ 2
[mex(H ) − m(H,x)]2

}
.

(6)

Thus, in the forward modeling, the conditional probability
of the observed magnetization mex(H ) given the model
parameters x is written as

P (mex(H )|x)

∝
∫

dm(H,x)P (mex(H )|m(H,x))P (m(H,x)|x) (7)

∝ exp

⎡
⎣− 1

2σ 2

(
mex(H ) −

∣∣∣∣∣ 1

N |s|
N∑

i=1

〈si〉H,x

∣∣∣∣∣
)2

⎤
⎦. (8)

By using this formula, the probabilistic prediction of the
magnetization observed in the experiments is obtained as the
conditional probability for the given model parameters. This
can be compared with the experimental data. Figure 1 shows
the flow of the forward modeling.

2. Bayes modeling

The Bayes modeling provides a general framework to
estimate the model parameters x from the observed mag-
netizations. In this work, we consider the case where the
magnetization under various magnetic fields is observed
experimentally; that is, the observed magnetization curve is
expressed as {mex(Hl)}l∈D for a series of magnetic fields
{Hl}l∈D , where the data are indexed by D = (1, . . . ,L) and L

is the number of observed magnetizations. By using Bayes’s
theorem, the posterior distribution, which is the conditional
probability of the model parameters x given the observed
magnetization curve {mex(Hl)}l∈D , is expressed as

P (x|{mex(Hl)}l∈D) = P ({mex(Hl)}l∈D|x)P (x)

P ({mex(Hl)}l∈D)
, (9)

where P (x) is the prior distribution of x. On the right-hand
side, the denominator is independent of the model parameters.
In contrast, the prior distribution P (x) explicitly contributes
to the estimation in the posterior distribution. For example, in
the case without a priori knowledge of the model parameters,
a uniform distribution of P (x) may be used. In this work,
we assume that the number of important model parameters
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is small, indicating that the relevant parameters are sparse in
the model Hamiltonian. In this situation, the prior distribution
P (x) based on the l1 regularization is frequently represented
as

P (x) ∝ exp

(
−λ

K∑
k=1

|xk|
)

, (10)

where λ is called the hyperparameter given before the analysis.
The inference scheme using the prior distribution is called the
least absolute shrinkage and selection operator (LASSO) [35],
and the value of λ controls the strength of the regularization.

In addition, we assume that mex(Hl) is independently
obtained from different magnetic fields. That is, the previous
measurement in a magnetization process does not affect the
present measurement, which gives

P ({mex(Hl)}l∈D|x) =
L∏

l=1

P (mex(Hl)|x). (11)

Combined with the prior distribution of Eq. (10), the posterior
distribution of x given {mex(Hl)}l∈D based on Bayes’s theorem
is expressed as

P (x|{mex(Hl)}l∈D)

∝
L∏

l=1

P (mex(Hl)|x)P (x) (12)

∝ exp

[
− 1

2σ 2

L∑
l=1

(
mex(Hl) −

∣∣∣∣∣ 1

N |s|
N∑

i=1

〈si〉Hl,x

∣∣∣∣∣
)2

−λ

K∑
k=1

|xk|
]
. (13)

From the view point of the maximum a posteriori (MAP)
estimation, the plausible model parameters x∗ are obtained
by the maximizer of Eq. (13). In other words, we search
the model parameters so that Eq. (13) is maximized in the
Bayes modeling, where σ , λ, and K are the previously
fixed hyperparameters. Although the posterior distribution is
constructed using the magnetization curve as the input data,
it should be emphasized that the framework of our estimation
method can be adopted for any measurement data.

B. Simulation method

In this study, we use the MCMC method and the exchange
Monte Carlo method to analyze the posterior distribution
P (x|{mex(Hl)}l∈D). This combination significantly contributes
to finding the global maximum of the posterior distribution in
systems where many local maxima exist. When the energy
function E(x|σ,λ,K) is defined as

E(x|σ,λ,K) := 1

2σ 2

L∑
l=1

(
mex(Hl) −

∣∣∣∣∣ 1

N |s|
N∑

i=1

〈si〉Hl,x

∣∣∣∣∣
)2

+ λ

K∑
k=1

|xk|, (14)

the posterior distribution can be written as

P (x|{mex(Hl)}l∈D) ∝ exp

[
− 1

TR
E(x|σ,λ,K)

]
, (15)

where TR = 1 in the case of Eq. (13). This distribution formally
has the same form as the Boltzmann distribution by regarding
E(x|σ,λ,K) and TR as the energy of the system and the vir-
tual temperature, respectively. Thus, a statistical-mechanical
approach is promising for sampling from the distribution [36].
It should be noted that the dynamical variables in this scheme
are the model parameters in the Hamiltonian, which is unusual
in the study of magnetism as well as in statistical physics.

In our MCMC simulations, we employ the Metropolis-type
transition probability from x to x′:

w(x′|x) = min

{
1, exp

[
− 1

TR
�E(x′,x)

]}
, (16)

�E(x′,x) := E(x′|σ,λ,K) − E(x|σ,λ,K). (17)

By sampling, we investigate the properties of
P (x|{mex(Hl)}l∈D) and search for the model parameters
x∗ that maximize P (x|{mex(Hl)}l∈D).

In addition, we use the exchange Monte Carlo method [37]
to enhance the sampling efficiency and to find the global
maximum of P (x|{mex(Hl)}l∈D) in a system where many local
maxima exist. In the method, several MCMC simulations using
Eq. (16) with different virtual temperatures are performed in
parallel, and the model parameters x are exchanged between
the different MCMC simulations with an exchange probability
expressed as

wex(xj |xi) = min

{
1, exp

[(
1

T
j

R

− 1

T i
R

)
�E(xj ,xi)

]}
,

(18)

�E(xj ,xi) := E(xj |σ,λ,K) − E(xi |σ,λ,K), (19)

where xi and T i
R indicate the model parameters and the virtual

temperature in the ith MCMC simulation, respectively. By
using this technique, we can find the global maximum of
P (x|{mex(Hl)}l∈D) and obtain the plausible model parameters
x∗ with a high probability. Without a loss in generality, the
units of the parameter λ and the virtual temperature TR can be
taken as σ 2. Thus, we set σ = 1 throughout the paper.

C. Cross validation

In general, the observed magnetization curve is well
fitted when the number of model parameters is sufficiently
large. Often, the estimated model in machine learning cannot
properly predict unknown data not used in the fitting, even
when the observed data are well fitted by the estimated model.
This is known as the overfitting problem.

To determine the hyperparameter λ while preventing
overfitting, we perform cross validation in which the hyperpa-
rameter is chosen to minimize the prediction error. Consider
the case where the value of K is fixed. In cross validation, the
data set D is divided into S groups as Ds = ((s − 1)L/S +
1,(s − 1)L/S + 2, . . . ,sL/S), with s = 1, . . . ,S. One of the
S groups is regarded as the test data, while the remaining S − 1
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FIG. 2. Cross validation for S = 4. We evaluate �(s)(λ) in
each case. The average of �(s)(λ) over the four cases is used to
estimate λ∗.

groups are used as the training data. Figure 2 shows an example
for S = 4. The number of pieces of test data and that of the
training data are given by Lte := N/S and Ltr := N (S − 1)/S,
respectively. For each data subset Gs = D \ Ds , the plausible
model parameters x∗

s are determined by the MAP estimation
according to λ. The mean-square deviation between the test
data and the estimated magnetization curve when using x∗

s for
various λ is evaluated as

�(s)(λ) := 1

Lte

∑
lte∈Ds

(
mex(Hlte ) −

∣∣∣∣∣ 1

N |s|
N∑

i=1

〈si〉Hlte ,x
∗
s

∣∣∣∣∣
)2

.

(20)

In the cross validation, �(s)(λ) represents the prediction error
when the test data Ds are treated as unknown data. Using the
average of �(s)(λ) over different data sets, we evaluate the
optimal value of λ∗, where the averaged prediction error takes
a minimum as a function of λ. Furthermore, the plausible
model parameters x∗ are obtained such that �(s)(λ) is the
smallest among S selections for the test data for λ∗. It should
be noted that λ∗ depends on the input magnetization curve by
performing cross validation.

III. DEMONSTRATION OF ESTIMATION OF SPIN-SPIN
INTERACTIONS

In this section, we confirm that the estimation method
proposed in Sec. II can determine the spin-spin interactions in
the Hamiltonian. The inputted observed magnetization curve
was a zero-temperature magnetization curve calculated from
a theoretical model. The results confirm that our estimation
method is highly accurate and the relevant terms of the spin-
spin interactions are successfully selected from the redundant
interaction candidates by the l1 regularization.

A. Model and observed magnetization curve

We examine the efficiency of our proposed method by
synthetic data for the magnetization curve. To generate the
input data, we used the classical Heisenberg model with
bilinear and biquadratic interactions, which has the following
Hamiltonian:

H =
∑
i,j

Jij [si · sj − bij (si · sj )2] − H
∑

i

sz
i . (21)

FIG. 3. Lattice structure and types of spin-spin interactions in
the model Hamiltonian used to generate the synthetic magnetization
curve. Numbers indicate the types of lattice points.

Here, bij = bJij , and si = (sx
i ,s

y

i ,sz
i ) denotes the three-

component vector spin with a length |s| = 1/2. The value
of b represents the amplitude of the biquadratic interactions.
Depending on the lattice and sets of spin-spin interactions,
this model exhibits fruitful magnetization curves [38–40].
Here, the inputted observed magnetization curve is given
by the model on a tetrahedral chain at a zero temperature.
The lattice structure is shown in Fig. 3. For simplicity,
we consider seven types of spin-spin interactions Jk (k =
1, . . . ,7). Thus, the model parameter can be expressed by
x = (J1,J2,J3,J4,J5,J6,J7,b) with the dimension K = 8.

Figure 4(a) shows the zero-temperature magnetization
process {m(Hl,x′)}l∈D with the number of data points L =
160, which is obtained by x′ = (1,4,5,6,0,0,0,0.1). The
magnetization curve exhibits a huge 2/3 magnetization plateau.
Furthermore, we assume that the observed magnetization
curve {mex(Hl)}l∈D can be represented by adding Gaussian
noise with a mean of zero and a standard deviation of
σ = 0.004. Figure 4(b) shows the synthesized magnetization
curve {mex(Hl)}l∈D .

For the magnetization curve shown in Fig. 4(b), we estimate
model parameters x = (J1,J2,J3,J4,J5,J6,J7,b) using our
proposed method. For the cross validation, we randomly
divided the observed magnetization curve into four sets of
data points (S = 4). Each set of training data contains 120
data points (Lte = 120) in the magnetization curve.

B. Estimation of spin-spin interactions

This section explains the details of the numerical simula-
tions to evaluate the posterior distribution P (x|{mex(Hl)}l∈Gs

),

(b)
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(a)

FIG. 4. (a) Magnetization curve {m(Hl,x′)}l∈D for L = 160 at the
zero temperature in the theoretical model defined by Eq. (21) with
model parameter x′ = (1,4,5,6,0,0,0,0.1). (b) Observed magnetiza-
tion curve {mex(Hl)}l∈D represented by {m(Hl,x′)}l∈D with added
Gaussian noise of the mean zero and standard deviation of 0.004.
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TABLE I. Number of each type of interaction Jk per tetrahedron, distance between spins connected by each interaction Jk within the
nearest-neighbor lattice spacing, spin-spin interactions used in the input magnetization curve, and spin-spin interactions estimated using our
estimation method.

J1 J2 J3 J4 J5 J6 J7 b

Number of interactions nk 2 2 1 1 2 1 1
Distance between spins rk 1 1 1 1

√
3 2 2

Input spin-spin interactions x′ 1.000 4.000 5.000 6.000 0.000 0.000 0.000 0.100
Estimated spin-spin interactions x∗ 1.074 3.850 5.012 6.051 0.011 −0.051 0.002 0.102

with s = 1, . . . ,4. Our numerical method consists of double-
loop calculations, which include a calculation of the magne-
tization curve for a given set of model parameters and the
sampling of the model parameters. We used the Hamiltonian
defined by Eq. (21) with periodic boundary conditions where
the total number of spins was six as a theoretical model
to obtain 〈si〉Hl,x. The zero-temperature magnetization curve
was obtained by the steepest descent method. This is the
inner-loop calculation, which was performed in a few seconds.
Monte Carlo simulations were employed to sample the model
parameters x in the outer loop. Typically, the number of
the Monte Carlo steps to update the model parameters
was 104. Furthermore, we prepared 20 replicas with virtual
temperatures TR between 0.001 and 10 for the exchange Monte
Carlo method.

We considered three types of prior distributions for the
model parameters x based on the l1 regularization:

Type I : P (x) ∝ exp

[
−λ

(
7∑

k=1

|Jk| + |b|
)]

, (22)

Type II : P (x) ∝ exp

[
−λ

(
7∑

k=1

|nkJk| + |b|
)]

, (23)

Type III : P (x) ∝ exp

[
−λ

(
7∑

k=1

|nkrkJk| + |b|
)]

, (24)

where nk is the number of each type of interaction Jk per
tetrahedron and rk is the distance between the spins connected
by interaction Jk . Table I summarizes the values used in
this demonstration. Type I is the general form of the l1
regularization. Type II considers the number of interactions
per tetrahedron. In the theoretical model, the number of
interactions in the lattice depends on Jk . Thus, we constructed
the l1 regularization from the viewpoint of the sum of the
absolute values of the spin-spin interactions (i.e., the number
of interactions per tetrahedron was introduced in the prior
distribution). Type III considers both the number and the
distance of the interactions. In general, the amplitude of
the spin-spin interactions decreases as the distance between
spins increases. Therefore, we assumed that the effect of the
long-range interactions on the physical properties was smaller
than that of the short-range interactions. To add a penalty to the
long-range interactions, we introduced the distance between
spins in the prior distribution in type III.

Figure 5 shows the λ dependence of the estimated spin-
spin interactions that maximize P (x|{mex(Hl)}l∈Gs

), with
s = 1, . . . ,4. The results are the averages over the spin-spin

interactions estimated by the four sets of training data x∗
s ,

with s = 1, . . . ,4, and the error bars calculated from the
standard deviation. Large error bars indicate that the estimated
spin-spin interactions differ across the four sets of training
data. The dashed lines in Fig. 5 show the values of the spin-spin
interactions used in the inputted magnetization curve, that is,
the solution of the estimation problem. Between λ = 0.002
and 0.008 for type III, which is shown in the shaded area
in Fig. 5(c), the estimated spin-spin interactions are roughly
the same as the values used in the inputted magnetization
curve. However, these figures do not conclusively show which
estimated spin-spin interactions are plausible for the inputted
magnetization curve.

Using cross validation, we calculated the prediction error
�av(λ), which is the average of �(s)(λ), with s = 1, . . . ,4,
defined in Eq. (20). Figure 6 shows the λ dependence of
�av(λ) for each type of prior distribution. The minimum
value of �av(λ) occurs at λ = 0.004 in type III, which
produces the highest prediction accuracy. We conclude that
the estimated spin-spin interactions for λ = 0.004 in type III
are the most likely spin-spin interactions for the inputted
magnetization curve. Table I, which shows the estimated
spin-spin interactions for λ = 0.004 in type III, where �(s)(λ)
is the smallest among s = 1, . . . ,4, confirms that the estimated
spin-spin interactions are almost the same as the values used
in the inputted magnetization curve. This demonstrates that
our proposed estimation method can estimate the spin-spin
interactions with high accuracy from the observed magnetiza-
tion curve. Furthermore, the estimated values of J5, J6, and
J7 are very close to zero, indicating that the important spin-
spin interactions can be selected among the many candidate
interactions in the Hamiltonian. In addition, Fig. 6 shows that
overfitting occurs in the case of λ = 0 when using nonzero
values for the additional interaction terms. Consequently,
overfitting can be avoided by introducing a regularization term
based on the l1 regularization. Finally, Fig. 7 compares the
estimated magnetization curve for λ = 0.004 in type III with
the inputted magnetization curve.

The model parameters in the Hamiltonian can be estimated
with high accuracy from the observed magnetization curve
using the estimation method introduced in Sec. II. In addition,
we confirm that the model parameters are well estimated
for certain input magnetization curves with the Hamiltonian
defined in Eq. (21).

IV. DISCUSSION AND SUMMARY

We developed a method for estimating the model param-
eters in the Hamiltonian from the observed magnetization
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FIG. 5. The λ dependence of estimated spin-spin interactions Jk and b using the prior distributions of (a) type I, (b) type II, and (c) type
III, respectively. The results are the averages over the four sets of training data. Dashed lines indicate the input spin-spin interactions Jk and b.
The shaded area in (c) indicates that the estimated spin-spin interactions are roughly the same as the values used in the inputted magnetization
curve.

curve. Bayesian inference is initially used to determine the
posterior distribution (i.e., the conditional probability of
model parameters in the Hamiltonian for a given observed
magnetization curve). We adopted the l1 regularization as the
prior distribution of the model parameters. In this scheme,
the plausible model parameters are determined by maximizing
the posterior distribution. To analyze the posterior distribution,
we adopted the Markov chain Monte Carlo method and
the exchange Monte Carlo method because this combination
significantly contributes to finding the global maximum of a
posterior distribution where many local maxima exist. Cross
validation was introduced to avoid overfitting and to determine
the hyperparameter in the prior distribution. Note that the
framework of our estimation method can be used not only
for magnetization curves but also for any measured data as the
input data.

Type III

Type II

Type I

 0

 0.0005

 0.001

 0.0015

 0.002

 0  0.004 0.008 0.012 0.016  0.02  0.024

FIG. 6. The λ dependence of the prediction error �av(λ) obtained
by cross validation for each type of prior distribution. �av(λ) takes a
minimum for λ = 0.004 in type III.

The effectiveness of our method is demonstrated by esti-
mating the spin-spin interactions in the Hamiltonian from the
observed magnetization curve. We used a magnetization curve
synthesized by adding Gaussian noise prepared by a theoretical
model with fixed spin-spin interactions. Specifically, we
employed a classical Heisenberg model with bilinear and
biquadratic interactions on a tetrahedral chain to consider
the case where the solution of the estimation problem is
known in advance. Furthermore, we introduced three types
of prior distributions of the spin-spin interactions based
on the l1 regularization. These prior distributions include
the hyperparameter λ, which controls the strength of the
regularization. The spin-spin interactions are sampled from the
posterior distribution for a given λ by numerical simulations
based on the Monte Carlo method. We also determined the
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FIG. 7. Estimated magnetization curve {m(Hl,x∗)}l∈D for L =
160 when λ = 0.004 in type III and inputted observed magneti-
zation curve {mex(Hl)}l∈D . Table I shows the estimated spin-spin
interactions x∗.
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value of λ and the type of the prior distribution by minimizing
the prediction error by cross validation. Spin-spin interactions
consistent with the input data can be estimated. It is noted
that our estimation method successfully selects the relevant
spin-spin interactions from the many redundant interactions
in the Hamiltonian. The prior distribution taking into account
both the number and the distance of the interactions plays
a relevant role in this study, confirming that our method
can estimate the spin-spin interactions from an observed
magnetization curve with high accuracy.

In general, it is difficult to obtain physical quantities
measured by indirect measurements such as magnetic specific
heat and magnetic entropy. However, our estimation method
should predict these quantities once the Hamiltonian for
a target magnetic material is obtained. Furthermore, we
can directly obtain the predicted spin snapshots as well as
predict the magnetic structure and structure factor. Thus, the
information from the estimated Hamiltonian should provide
preliminary information before using large facilities such as
those for neutron diffraction measurements.

Our final objective is to assist with measurements by provid-
ing additional estimation information. However, this research
shows only the case of inputting a synthetic magnetization
curve obtained from a classical theoretical model, including
bilinear and biquadratic interactions. To achieve our broader
objectives, we must address two issues. First, we need to
establish an estimation method that can be used for many
types of magnetic materials described by classical or quantum
Hamiltonians with many model parameters such as various
types of spin-spin interactions, spin-lattice interactions, and
spin anisotropy. In this case, a prior distribution, which
estimates the correct model parameters, will depend on the
types of target model parameters and the target material. Thus,
it is important to develop a method that provides a useful
prior distribution. Second, we need to improve our proposed

estimation method to produce a more robust Hamiltonian
that can simultaneously explain various physical properties
of a target material. To achieve this, the input data in the
estimation method should include multiple data sets such as
some magnetization curves at different temperatures and the
magnetic field dependences of the magnetic specific heat.
These are the future directions of our research and will be
discussed elsewhere [41].

Finally, we emphasize that our proposed estimation method
is a kind of physics-based machine learning technique because
it employs a Hamiltonian based on physical laws. Our
proposed method should form the basis for new applications
of machine learning in physics and interdisciplinary physics.
In particular, in materials informatics [42,43], which is an
interdisciplinary field between materials science based on the
physical law and informatics, our proposed estimation method
should be a useful tool to establish important concepts.
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