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Scattering of an electronic wave packet by a one-dimensional electron-phonon-coupled structure
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We investigate the scattering of an electron by phonons in a small structure between two one-dimensional
tight-binding leads. This model mimics the quantum electron transport through atomic wires or molecular
junctions coupled to metallic leads. The electron-phonon-coupled structure is represented by the Holstein model.
We observe permanent energy transfer from the electron to the phonon system (dissipation), transient self-trapping
of the electron in the electron-phonon-coupled structure (due to polaron formation and multiple reflections at the
structure edges), and transmission resonances that depend strongly on the strength of the electron-phonon coupling
and the adiabaticity ratio. A recently developed TEBD algorithm, optimized for bosonic degrees of freedom, is
used to simulate the quantum dynamics of a wave packet launched against the electron-phonon-coupled structure.
Exact results are calculated for a single electron-phonon site using scattering theory and analytical approximations
are obtained for limiting cases.
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I. INTRODUCTION

The interaction between electrons and phonons plays an
important role for the dynamical properties of solids, in
particular for their electronic transport [1–3]. An electron
moving through a vibrating lattice can dissipate its energy,
be scattered off course, or become dressed by a cloud of
phonons, giving rise to a quasiparticle called a polaron. These
effects are very strong in low-dimensional systems such as
atomic wires [4–7] and molecular junctions [8–10]. Two very
recent studies [11,12] have also demonstrated the realization
of polaronic physics in Bose-Einstein condensates of ultracold
atomic gases. Thus various fields of physics would benefit
from a better understanding of the nonequilibrium dynamics
of particles coupled to bosonic degrees of freedom.

The problem of interacting electrons and phonons out of
equilibrium is too complex to be solved analytically. Thus
simplified yet nontrivial many-body models are often used to
obtain insights into the physics of these systems. One model of
this type is the Holstein model [13] that couples tight-binding
electrons linearly to quantum harmonic oscillators, which
describe the lattice vibrations. The equilibrium properties of
this model are relatively well understood but studying its
nonequilibrium dynamics remains a challenge, which has
attracted much attention recently [14–21]. Indeed, strongly
fluctuating bosonic degrees of freedom make analytical and
even numerical studies cumbersome, due to the large Hilbert
space dimension that must be taken into account.

In this work we use a newly developed method [22]
that combines the time-evolving block-decimation algorithm
(TEBD) [23] with a local basis optimization (LBO) [24] to
simulate an electronic wave packet scattering off a phonon
structure. In previous studies, electronic wave packets were
directly injected into electron-phonon-coupled (EPC) chains
[14,16]. Here the EPC structure is modeled by a Holstein-type
chain and is attached to long tight-binding leads at each end
[22]. Its length varies between a single site (impurity) and
up to 100 sites (wire). As shown in Fig. 1, the electronic
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wave packet is initially a Gaussian distribution in the left lead
with a momentum toward the EPC structure, where it interacts
with the phonon degrees of freedom and becomes temporarily
self-trapped, and finally it is partially transmitted and reflected.

Preliminary results for this polaron scattering problem
were presented in a previous work [22] to demonstrate the
TEBD-LBO method. Here we extend the investigation of the
rich physics offered by this simple model. We study the time
evolution of the electronic wave packet coupled to the phonon
degrees of freedom. A transient self-trapping of the electron
on the EPC sites is observed due to polaron formation and to
multiple reflections at the edges of an EPC wire. Depending
on the phonon frequency and the electron-phonon coupling
strength, the wave packet can be scattered into several smaller,
transmitted or reflected, wave packets with various velocities,
see Fig. 1. We also study asymptotic expectation values like
the reflection and transmission coefficients and the dissipated
energy (i.e., the permanent energy transfer from the electron
to the phonon system). We find distinct resonances in the
anti-adiabatic regime, which blur with decreasing phonon
frequency and vanish in the adiabatic regime. These results
can be understood using the scattering theory for one EPC
impurity. For adiabatic weakly coupled systems, the analysis
can be extended to structures made of several EPC sites
assuming a multiple single-site reflection ansatz.

The model and initial conditions are presented in Sec. II,
a brief summary of the TEBD-LBO algorithm is given in
Sec. II A, the scattering theory for one EPC site is explained
in Sec. II B, and the method used to compare scattering
theory and wave packet simulations is detailed in Sec. II C.
Our numerical results are discussed in Sec. III A for the
transmission probability, in Sec. III B for the dissipated energy,
and in Sec. III C for the transient self-trapping. Finally, we
conclude in Sec. IV.

II. PROBLEM AND METHODS

We investigate a one-dimensional lattice model that consists
of three parts: a small segment of LH electron-phonon-coupled
sites in the middle and two noninteracting tight-binding leads
of length LTB � LH at both sides. The Hamiltonian for the
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FIG. 1. The electronic density distribution calculated with
TEBD-LBO for a six-site EPC wire with phonon frequency ω0 =
2.25t0/h̄ and electron-phonon coupling γ = t0 at three instances of
time: before (red solid line), during (black dots), and after (blue
dashed line) the main scattering processes. The index 1 � j � L =
560 numbers the lattice sites. The red solid and blue dashed curves
are multiplied by factors 2 and 10, respectively. The inset shows an
enlarged view of the region around the EPC wire. Thin vertical lines
show the position of the first and last EPC sites.

whole lattice reads

H = −t0

L−1∑
j=1

(c†j cj+1 + c
†
j+1cj )

+
LTB+LH∑
j=LTB+1

[h̄ω0 b
†
j bj − γ (b†j + bj )nj ], (1)

where L = LH + 2LTB is the total number of sites while bj

and cj annihilate a phonon (boson) and a (spinless) fermion on
site j , respectively, and nj = c

†
j cj . The model parameters are

the phonon frequency ω0 > 0, the electron-phonon coupling
γ , and the hopping integral t0.

The initial state

|ψ(t = 0)〉 =
L∑

j=1

ψjc
†
j |∅〉e⊗|∅〉p (2)

is a tensor product of the phonon vacuum and an electronic
Gaussian wave packet

ψj =
√

a

σ
√

2π
e
− a2(j−j0)2

4σ2 +iKja
, (3)

with a width σ sufficiently larger than the lattice spacing a.
The center of the wave packet j0 is always set in the left lead
at j0 = LTB − 10σ/a. The initial wave packet velocity v ≈
2 t0a

h̄
sin(Ka) > 0 is set by the wave number 0 < K < π/a.

Our goal is to compute the time evolution of expectation
values for the state

|ψ(t)〉 = exp

(
−i

H t

h̄

)
|ψ(t = 0)〉 , (4)

such as the electronic density distribution

nj (t) = 〈ψ(t)|nj |ψ(t)〉, (5)

shown in Fig. 1. The total energy

E = 〈ψ(t)|H |ψ(t)〉 ≈ −2t0 cos(Ka) (6)

is a constant of motion. For all numerical simulations presented
here, the initial variance is σ 2 = 25a2 and the initial wave num-
ber is K = π

2a
corresponding to an initial velocity v ≈ 2at0/h̄.

ΓO R†

d
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R†
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FIG. 2. Schematic representation of the matrix-product state used
by the TEBD-LBO algorithm. The � matrices and the diagonal λ

matrices have dimensions smaller or equal to D and have the same
properties as in the original TEBD algorithm [23]. The matrix R

describes the local transformation from the d-dimensional local bare
basis to the dO -dimensional optimized subbasis.

Thus the average total energy is E ≈ 0. This corresponds to the
middle of the electronic tight-binding band −2t0 � E � 2t0.
These parameters provide a relatively broad, fast moving, and
stable initial wave packet. For all numerical data shown here,
we use the energy scale t0 = 1 and a lattice spacing a = 1. In
addition, we set h̄ = 1 so that the time unit is h̄/t0 = 1.

This system is expected to behave widely differently in dif-
ferent parameter regimes. For instance, the phonon subsystem
can react instantaneously (for h̄ω0 � t0) or with significant
retardation (for h̄ω0 	 t0) to the passage of the electron.
In addition, it was previously determined that dissipation
can occur only for small enough phonon frequencies [22].
As another example, the ratio g = γ /(h̄ω0) determines how
strongly the electrons are dressed dynamically by phonons
[17]. Therefore, we are interested in all parameter regimes
from the adiabatic limit h̄ω0 	 t0 to the anti-adiabatic limit
h̄ω0 � t0 and from the weak-coupling regime γ 	 h̄ω0,t0 to
the strong-coupling regime γ � h̄ω0,t0.

A. TEBD-LBO

The TEBD method has proven to be a very versatile
and effective numerical method for simulating the quantum
dynamics (4) in one-dimensional correlated lattice systems
[23]. It is based on a matrix-product-state representation of the
quantum state |ψ(t)〉. In a recent work [22] this algorithm was
extended and optimized for large local Hilbert spaces such
as the ones needed to represent strongly fluctuating bosons.
Instead of working in the occupation number basis (bare
basis) that is defined by b |0〉p = 0 and b†b |n〉p = n |n〉p, we
use the eigenbases of the single-site reduced density matrices
(optimal basis) for each site [24]. The structure of the resulting
matrix-product state is sketched in Fig. 2. These optimized
bases can change significantly in time [17,22], so we have
to recalculate them at every time step. This algorithm is faster
than the bare basis TEBD when the number dO of optimal states
needed to represent the quantum state |ψ(t)〉 is much smaller
than the number d of required bare states. In that case, the
computational cost drops from O(d3D3) to O(d3D2), where
D is the bond dimension of the matrix-product state.

In this work we have used up to d = 386 bare boson states in
the most difficult regime, i.e., in the adiabatic strong-coupling
regime. The number of optimized boson states reaches up to
dO = 21 with a cutoff of 10−13 for the eigenvalues of the local
reduced density matrix. We use separate optimized bases for
a site occupied by the electron and for an empty site. (Note
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that for the case of one EPC impurity site, there is exactly one
optimal mode in the occupied-site basis because the rest of the
system is always in the vacuum state.)

We always start the TEBD simulations with the lowly
entangled state (2) corresponding to D = 2. The highest bond
dimension reached in the simulations presented here is D = 84
with a cutoff of 10−15 for the eigenvalues of the bipartite
reduced density matrices (i.e., the squares of the diagonal
elements of the matrices λ). The increase of the bipartite
entanglement (and thus of the necessary bond dimension D)
is mainly influenced by the length LH of the interacting
structure and the ratio g = γ /(h̄ω0). Thus the computational
time increases faster than linear with the EPC structure size LH

because of the higher bond dimensions. (The TEBD updates
for noninteracting sites take a negligible amount of time.)

We study EPC chains with up to LH = 100 sites in the
weak-coupling regime (where the LBO method is not needed)
and up to LH = 6 for general coupling strengths (where
LBO is required), while the total system length reaches up
to L = 580 sites. This system length L and the maximal time
tmax are tuned so that reflections of the wave packets at the
outer edges of the leads do not play any role. As the Gaussian
wave packet always starts close to the middle of the system,
the maximal time is given by tmax ≈ La/(2v) ∼ 102h̄/t0. We
typically use a time step 	t = 5 × 10−4h̄/t0 for the TEBD-
LBO algorithm and thus ∼ 105 time steps are carried out for
each simulation. The required memory is negligible (below 2
Gb) in all simulations but the CPU time, up to 150 h for a
single simulation, is a real limiting factor.

B. Scattering theory

For the special case of a single-site EPC impurity (LH = 1),
we can obtain some interesting information from the stationary
scattering states. The stationary results should correspond
to the expectation values of the Gaussian wave packets for
asymptotic times t → ∞ in the limit LTB − j0,j0 � σ/a �
π/(Ka).

We want to solve the time-independent Schrödinger equa-
tion for the Hamiltonian (1) with LH = 1. The solution should
describe an incident plane wave coming from the left with
a wave number π/a > K > 0 and being scattered by the
impurity with no initial phonon excitation. After shifting the
lattice indices so that the EPC impurity corresponds to j = 0,
we can write a stationary scattering state as

|ψ〉S =
∑
j,n

ψ(j,n) |j 〉e⊗|n〉p , (7)

with the (bare) phonon mode index n = 0,1, . . . ,∞ and the
lattice site index j = −L/2, . . . ,L/2. Far from the impurity
|j | � 1, the electronic state for a given number of phonons
n must be a plane wave with a wave number kn given by the
energy conservation

E = −2t0 cos(Ka) = nh̄ω0 − 2t0 cos(kna). (8)

Therefore, the stationary scattering state has the form

ψ(j,n) =
{
AeiKjaδn0 + Bne

−iknja, j � 0,

Cne
iknja, j � 0,

(9)

with k0 = +K and the amplitudes of the reflected and
transmitted plane waves Bn and Cn, respectively. Using the
uniqueness of the wave function at j = 0, we get the conditions

A + B0 = C0,

Bn = Cn, ∀ n � 1.
(10)

This implies that the amplitudes for reflected and transmitted
plane waves are equal for a given number of phonon excitations
n � 1. (This generic result agrees with our TEBD-LBO
simulations for the Gaussian wave packet.) From (8) we obtain

kna =
{

arccos
(

nh̄ω0−E

2t0

)
, n < nB,

i arcosh
(

nh̄ω0−E

2t0

)
, n � nB,

(11)

where nB � 1 is defined as the smallest index n for which
nh̄ω0 > 2t0[1 − cos(Ka)]. The components (9) with n � nB
correspond to electronic states bound around the impurity
while the components with nB > n � 0 correspond to scat-
tering electronic states. Inserting (9) with (8) and (10) in the
time-independent Schrödinger equation, we obtain an infinite
system of recursive linear equations

0 = 2i t0(C0 − A) sin(k0a) + γ C1,

0 = 2i t0Cn sin(kna) + γ
√

nCn−1 + γ
√

n + 1Cn+1. (12)

As the normalization of the quantum state requires that Cn →
0 for n → ∞, we can solve these equations backwards by
setting Cn = 0 for all n larger than a high cutoff and then
verify that the results do not depend on that cutoff. We can then
calculate some stationary properties such as the transmission
coefficient

T (K) =
nB−1∑
n=0

sin(kna)

sin(k0a)

∣∣∣∣Cn

A

∣∣∣∣
2

(13)

for an incident wave number K = k0. For an elastic scattering
process (nB = 1), one recovers the usual result T (K) =
|C0/A|2.

In the anti-adiabatic limit h̄ω0 � t0,nB = 1 and we can
solve the equation system (12) exactly when the incident plane
wave has an energy

E = Em = −εp + mh̄ω0 (14)

with an integer m � 0 and the polaron energy εp = γ 2/(h̄ω0).
In particular, we find that

T (E = Em) = 4t2
0 − E2

4t2
0

. (15)

The energies Em are equal to the eigenenergies of the EPC
impurity site when it is occupied by an electron and is
disconnected from the leads. Thus the condition E = Em

corresponds to a resonant tunneling of the incident electron
with energy E through the EPC impurity.

C. Wave packet averaging

Results such as T (K) in (13) are valid for a plane wave with
a sharp wave number K . In our TEBD-LBO simulations, the
initial electronic wave packet (3) is a Gaussian distribution of
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finite width ∝ 1/σ around K in Fourier space. Therefore, we
must average quantities such as transmission coefficients over
this distribution to compare the scattering theory predictions
with the TEBD-LBO data.

The discrete Fourier transform of (3) is

F[ψ](k) =
√

σ

√
2

π
e−σ 2(k−K)2−ij0(k−K)a, (16)

where the prefactor is chosen so that F[ψ](k) is normalized
if k is a continuous variable. This is justified by the fact that
we consider the limit of infinitely long tight-binding leads
L → ∞. The transmission coefficient for this wave packet is
then

T av(K) =
∫

T (k)|F[ψ](k)|2dk. (17)

Since T (k) has to be calculated through the costly solution of
the equation system for every k, we approximate this integral
by a discrete sum

T av(K) = 	k
∑
m

|F[ψ](m 	k)|2T (m 	k), (18)

with intervals of length 	k = π
2a

· 10−2.

III. RESULTS

A. Transmission

We first examine the transmission probability of an electron
through the EPC structure. For TEBD-LBO simulations of
Gaussian wave packets we define the transmission coefficient
as the asymptotic value of the total electronic density in the
right lead

TN(t) =
∑

j>LTB+LH

nj (t). (19)

We see in Fig. 3 that TN(t) seems to converge for very long
times. A similar saturation is observed for the reflected part of
the Gaussian wave packet, i.e., the total density in the left lead,
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FIG. 3. Time evolution of the numerical transmission coefficient
(19) calculated with TEBD-LBO for various cases: free particle (red
solid line), EPC impurity (LH = 1) in the adiabatic strong-coupling
regime with h̄ω0 = 0.2t0 and γ = 1.9t0 (blue dotted line) as well
as with h̄ω0 = 0.6t0 and γ = 3.9t0 (purple dashed line), and EPC
structure with one site (black dashed-dotted line) and three sites (gray
double-dashed line) in the intermediate regime (h̄ω0 = 1.6t0 and γ =
1.85t0). The center of the wave packet reaches the first EPC site at
time t ≈ (LTB − j0)a/v ≈ 25h̄/t0 in all cases.
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FIG. 4. (a) Transmission coefficients calculated using TEBD-
LBO (lines) and with scattering theory and wave packet averaging
(symbols) for an EPC impurity (LH = 1). Results are plotted as a
function of the electron-phonon coupling γ for the adiabatic regime
h̄ω0 = 0.4t0 (gray solid line and triangles), the intermediate regime
h̄ω0 = 1.35t0 (blue dotted line and squares), and the anti-adiabatic
regime h̄ω0 = 10t0 (red dashed line and dots). For h̄ω0 = 10t0,γ is
divided by a factor 10. (b) Components |〈n|ψ〉|2 of the occupied-site
optimal mode |ψ〉 in the bare boson basis |n〉 calculated with
TEBD-LBO for h̄ω0 = 10t0 and γ = h̄ω0 (red solid line) as well
as γ = √

2h̄ω0 (blue dashed line). Also shown are the first (circles)
and second (triangles) excited states of the single-site Holstein model
occupied by one electron.

while the probability to find the electron in the EPC structure
becomes negligibly small for long times. Therefore, we define
the transmission coefficient for each simulation of a Gaussian
wave packet as the value T = TN(ta) at some large enough
time ta . For a free wave packet (γ = 0), we can estimate ta �
[(LTB − j0)a + 4σ ]/v ≈ 35h̄/t0 but for interacting systems
the required times become longer as shown in Fig. 3. This
is due to a transient self-trapping of the electron in the EPC
structure, which is discussed in Sec. III C.

In Fig. 4(a) we compare this quantity T with the trans-
mission coefficient (18) obtained using the scattering theory
and the wave packet averaging for an EPC impurity. Both
approaches agree perfectly for all parameter regimes. This
confirms not only the validity of the transmission coefficients
calculated using (19) but also the overall accuracy of the
TEBD-LBO simulations.

In the anti-adiabatic regime, we see clear transmission
resonances and blockades as a function of the electron-phonon
coupling strength γ in Fig. 4(a). The positions of the peaks
agree perfectly with the resonance condition (14). Indeed,
the (average) energy of the incident electron is E = 0 and
thus Eq. (14) yields the condition γ = √

mh̄ω0 with m =
0,1, . . . ,∞.

As mentioned above, for a single-site EPC structure the
local reduced density matrix has only one eigenstate with
finite weight when the impurity is occupied by the electron.
While in general this optimal mode changes during time, we
have found that it is practically constant during the whole
simulation of the scattering process in the anti-adiabatic
regime. At the transmission peaks this quasistationary mode
is essentially an eigenstate of the EPC impurity disconnected
from the leads, i.e., the single-site Holstein model occupied
by one electron. The Hamiltonian corresponds to a shifted
harmonic oscillator and its eigenstates are coherent states with
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FIG. 5. (a) Transmission coefficients calculated with TEBD-LBO
in the anti-adiabatic regime (h̄ω0 = 10t0) as a function of the electron-
phonon coupling γ for several EPC wire lengths: LH = 1 (red dashed-
dotted line), LH = 2 (blue dashed line), LH = 3 (black dotted line),
and LH = 4 (gray solid line). (b) Components |〈n|ψ〉|2 of the two
most important optimal modes |ψ〉 for a site occupied by an electron
in the bare boson basis |n〉 calculated with TEBD-LBO for LH = 2
and h̄ω0 = γ = 10t0 at two points in time: First (red solid line) and
second (orange dashed line) optimal modes at t = 25h̄/t0 and first
(gray dotted line) and second (blue dashed-dotted line) optimal modes
at t = 75h̄/t0. Also shown are the ground state (circles) and first
excited state (squares) of the single-site Holstein model occupied by
one electron.

the eigenenergies (14) [17]. Thus the optimal mode for the
occupied impurity is the eigenstate with energy Em = 0. This
is shown explicitly in Fig. 4(b), which compares the TEBD-
LBO optimal modes and the Holstein model eigenstates in the
bare phonon basis for the peaks at γ = h̄ω0 (first excited state
m = 1) and γ = √

2h̄ω0 (second excited state m = 2).
This resonance mechanism can be easily understood. As

the phonon degrees of freedom are much faster than the
electronic ones in the anti-adiabatic limit, they adapt instantly
to the presence of an electron in the EPC structure and thus
the system tunnels directly between eigenstates of the EPC
Hamiltonian for fixed numbers of electrons. In an extended
EPC structure this implies that the phonons follow the electron
“adiabatically” (with a small constant delay) as shown in the
Supplemental Material [25] for a 100-site EPC structure with
h̄ω0 = 2.9 and γ = 0.25.

For smaller phonon frequencies, we find smaller oscil-
lations of the transmission coefficient as a function of the
electron-phonon coupling γ , with vanishing amplitudes in
the adiabatic limit, as shown in Fig. 4(a). The position of
the extrema of the transmission coefficients can no longer be
predicted from the Holstein model eigenenergies. As phonons
do no longer relax instantly when the electron moves, the
optimal mode for the occupied impurity evolves in time but
may still approach one of the Holstein model eigenstates
for a finite period of time. In addition, for smaller phonon
frequencies dissipation becomes possible (see the next section)
and Eq. (10) implies that reflection and transmission are
equally probable when energy is transferred to the phonon
degrees of freedom. Thus we expect that T → 1

2 in the
strong-coupling adiabatic limit.

This study can be extended to EPC wires. Figure 5(a)
shows that the transmission coefficient has a similar behavior
for different wire lengths LH in the anti-adiabatic regime.

Note that transmission coefficients are slightly but systemat-
ically underestimated with increasing length LH because the
probability increases that the electron is still trapped in the
EPC structure when we evaluate (19). Interestingly, for weak
coupling γ < h̄ω0/2 the transmission probability does not
decrease systematically with increasing size of the EPC region.
We see in Fig. 5(a) that the largest transmission coefficient is
reached for each wire length at some coupling γ . We have
no explanation for this surprising increase of the transmission
with the EPC structure length.

The optimal modes are more involved for LH > 1 than
for an impurity site. First, the local reduced density matrix
for an EPC site occupied by an electron contains more
than one eigenstate with a finite weight. Thus both the
optimal modes and their weights can evolve with time. At the
transmission resonances of the anti-adiabatic limit, however,
the most important occupied-site optimal modes seem again
to approximate eigenstates of the single-site Holstein model.
Yet their relative weights vary strongly during the scattering
process.

For instance, in the strong-coupling anti-adiabatic limit the
eigenenergies of the two-site Holstein model with one electron
are approximately given by

Em,n = Em + nh̄ω0, (20)

where Em is the energy (14) of the site occupied by the electron
and the second term is the energy of the empty site. Thus for
h̄ω0 = γ � t0 the resonance condition Em,n = E = 0 yields
either the ground state of the occupied site (m = 0) with an
excited empty site (n = 1) or the first excited state of the
occupied site (m = 1) with the empty site in its ground state
(the bare phonon vacuum state n = 0). Figure 5(b) compares
the two lowest eigenstates of the single-site Holstein model
with the two most important occupied-site optimal modes at
two points in time for h̄ω0 = 10t0 and γ = 10t0. At the start of
the scattering process (t = 25h̄/t0), the most important optimal
state matches the first excited state of the Holstein model
(m = 1) while the second most important optimal state
approximates the ground state of the Holstein model (m = 0).
After the scattering process is mostly completed (t = 75h̄/t0),
however, the two most important optimal states have swapped
their positions.

Therefore, in the anti-adiabatic regime we can understand
the resonance positions and identify the most important
optimal states for LH > 1 like for an EPC impurity but we
cannot predict the time evolution of the weights of these
optimal modes. Outside the anti-adiabatic regime, however, we
cannot explain the (weaker) resonances and we have usually
not been able to identify the optimal modes.

Apart from the small region seen in Fig. 5(a), the reflection
is always larger for longer EPC structures. This is expected
because the fraction of the electronic wave packet that is
transmitted through the first site of the EPC wire can be
reflected by the next one and so forth. In the weak-coupling
adiabatic regime, the transmission coefficient T (LH > 1)
can be understood as the result of multiple independent
single-site scattering processes. We can express the reflection
coefficient R(LH ) = 1 − T (LH ) of an EPC wire of length
LH > 1 in terms of the reflection coefficient R(LH = 1) =
1 − T (LH = 1) of an EPC impurity that is obtained from the
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as a function of the electron-phonon coupling γ in the weak-coupling
adiabatic regime (h̄ω0 = 0.6t0) for EPC wires of length LH = 2
(crosses), LH = 6 (squares), and LH = 11 (circles). The lines show
the predictions of scattering theory for an EPC impurity combined
with Eq. (21) for R(2) (red solid line), R(6) (blue dotted line), and
R(11) (purple dashed line).

scattering theory in Sec. II B:

R(LH ) = LHR(1)

1 + (LH − 1)R(1)
. (21)

This formula can be proven by induction. We note that for long
system lengths T (LH ) ∝ L−1

H . Figure 6 shows that Eq. (21)
reproduces the results obtained with TEBD-LBO simulations
of Gaussian wave packets for EPC structures of various
lengths.

It is clear that this heuristic approach cannot hold for all
parameter regimes because we assume a constant impurity
transmission coefficient T (1) = 1 − R(1), but its value (13)
is only valid if the initial phonon state is the vacuum. After
multiple scattering of the electron, however, we expect that
the phonon degrees of freedom have become excited and thus
T (1) will change and no longer be equal to (13). Therefore,
Eq. (21) is valid only if the phonon state changes very slowly
and very little, i.e., in the weak-coupling adiabatic limit.

Outside the anti-adiabatic regime or the weak-coupling
regime, the computational effort required to compute the
transmission coefficients increases quickly with the EPC
structure size LH . This is essentially due to the increase
of bipartite and local entanglement and thus to the larger
matrix dimensions D and dO required. An additional effect
is the increase of the necessary simulation time ta because
the electron stays longer partially localized in the EPC
structure (see Sec. III C). Therefore, our results are limited
to smaller electron-phonon couplings γ or shorter lengths LH .
Nevertheless, all our results suggest that the transmission for
LH > 1 is qualitatively similar to the transmission through
an EPC impurity. For instance, the transmission coefficient
for LH > 1 behaves qualitatively as shown in Fig. 4(a) as a
function of the parameters ω0 and γ .

B. Dissipation

The dissipated energy ED is the energy that is transferred
permanently from the electron to the phononic degrees of
freedom during the scattering process. As the electron remains
only transiently in the EPC structure (see next section), the
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FIG. 7. Phonon energy calculated with TEBD-LBO as a function
of time. (a) For an EPC impurity withh̄ω0 = 1.35t0 and three electron-
phonon couplings γ = 0.8t0 (red solid line), γ = 1.45t0 (blue dotted
line), and γ = 1.8t0 (black dashed line). (b) For a four-site EPC
structure in the intermediate regime (h̄ω0 = 1.6t0,γ = 1.85t0) the
phonon energies are shown separately for the first (red crosses),
second (blue squares), third (black bullets), and fourth (gray triangles)
site.

electron-phonon interaction energy vanishes for long times.
Consequently, ED is given by the loss of electronic energy
or, equivalently, by the gain of phonon energy for long times.
Thus we evaluate the time-dependent expectation value of the
phonon energy

Eph(t) = h̄ω0

∑
j

〈ψ(t)|b†j bj |ψ(t)〉. (22)

Figure 7 shows that this quantity converges for very long
times like the transmission coefficient (19). As the initial state
(2) has no phonon energy, we define the dissipated energy
for each simulation of a Gaussian wave packet as the value
ED = Eph(ta) at some large enough time ta . Obviously, this
is the same time ta that is used to determine the transmission
coefficient from (19).

Figure 7 also shows that the phonon energy Eph(t) does
not increase monotonically with time. The behavior of Eph(t)
depends strongly on the electron-phonon coupling γ , as
illustrated in Fig. 7(a), but is also different for each site of
a multisite EPC structure, as shown in Fig. 7(b). Nevertheless,
the overall behavior can be understood qualitatively. Phonons
are generated when the electronic wave packet reaches the
EPC structure. Then we observe a maximum of Eph(t) when
the electron is mostly localized on EPC sites. For longer times,
these phonons are annihilated when the electron leaves the
EPC sites. Yet some phonons may remain permanently excited
after the electron has left the EPC structure resulting in a
permanent energy transfer from the electron to the phononic
degrees of freedom. Consequently, partial wave packets are
scattered inelastically with velocities vn = v sin(kna) that are
lower than the incident velocity v ≈ 2at0/h̄ [22].

This inelastic scattering process occurs locally when the
electron moves from one EPC site to the next one, as seen in
Fig. 7(b). In this example, a permanent phonon is generated on
the first EPC site reached by the electronic wave packet with
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FIG. 8. Dissipated energies calculated using TEBD-LBO (sym-
bols) and with scattering theory and wave packet averaging (lines)
for an EPC impurity (LH = 1). Results are plotted as a function of
the electron-phonon coupling γ for the adiabatic regime h̄ω0 = 0.4t0
(gray solid line and triangles), the intermediate regime h̄ω0 = 0.9t0
(blue dotted line and squares), and close to the limit of the
nondissipative regime h̄ω0 = 1.5t0 (red dashed line and dots).

a relatively high probability. But only transient phonons are
generated on the three following EPC sites because the initial
electronic kinetic energy 2t0 is not high enough to generate
two permanent phonons with energy h̄ω0 = 1.6t0 each.

Note that the dissipated energy cannot exceed the initial
excess energy of the electron. Thus phononic degrees of
freedom with their minimal excitation energy h̄ω0 cannot
be permanently excited by the electron-phonon scattering
process if h̄ω0 is larger than this initial energy [22]. As the
initial excess energy is always 2t0 in our simulations of the
Gaussian wave packet, there is no dissipation for phonon
frequencies ω0 � 2t0/h̄. In particular, there is no dissipation
in the anti-adiabatic regime.

Additionally, Fig. 7(a) shows that the maximal phonon
energy reached during the scattering process increases mono-
tonically with the coupling strength γ . In contrast, we have
found that the dissipated energy varies in a complicated way
with ω0 and γ , as also illustrated in Fig. 8. To shed some
light on this behavior, we again examine the single-site EPC
impurity in detail.

Within the scattering theory for an EPC impurity site, we
assume that the dissipated energy is given by the average
number of excited phonons in the scattering states

ED(K) = 2h̄ω0

nB−1∑
n=1

n
sin(kna)

sin(k0a)

∣∣∣∣Cn

A

∣∣∣∣
2

. (23)

The factor 2 originates from the condition Bn = Cn for
n > 0. As nB = 1 for K = π/(2a) and h̄ω0 > 2t0, we obtain
ED[K = π/(2a)] = 0 and thus the scattering theory confirms
that there is no dissipation in the parameter regime h̄ω0 > 2t0.
To compare with the TEBD-LBO simulations, we have again
to average the quantity (23) over the Gaussian wave packet as
explained for the transmission coefficient in Sec. II C.

Figure 8 compares Eav
D (K) and the energy dissipation ED

calculated with TEBD-LBO for Gaussian wave packets. The
perfect agreement between both approaches confirms again the
accuracy of our TEBD-LBO method but also demonstrates that
the definition (23) is correct for the dissipated energy within the

scattering theory. For weak electron-phonon coupling we find
that the dissipation increases monotonically with γ . We see in
Fig. 8 however that the dissipated energy oscillates for larger
values of γ , with vanishing amplitude in the adiabatic limit.
This is reminiscent of the transmission oscillations in Fig. 4.
Neither the extrema positions nor the oscillation frequencies
(as a function of γ ) seem to coincide, however.

Nevertheless, in the special case t0 < h̄ω0 < 2t0 (⇒ nB =
2), the definition (23) and the scattering theory in Sec. II B
yield a simple relation between transmission coefficient T (K)
and dissipated energy ED(K) for the EPC impurity

ED(K) = 2h̄ω0[1 − T (K)]
sin(Ka) sin(k1a)

γ 2

4t2
0

+ sin(Ka) sin(k1a)
. (24)

This equation demonstrates that dissipation is proportional to
reflection, at least in this special case, although the dependence
of both quantities on the model parameters γ,ω0, and K is
different.

As for the transmission coefficient, the TEBD-LBO study
of the dissipated energy can be extended to multisite EPC
structures. Again the computational effort required to compute
ED increases quickly with the EPC structure size LH outside
the weak-coupling regime. Therefore, our results are limited
to smaller electron-phonon couplings γ than for the EPC
impurity or to short lengths LH . Nevertheless, all our results
suggest that the dissipation for LH > 1 is qualitatively similar
to the dissipation through an EPC impurity. For instance, ED

behaves qualitatively as shown in Fig. 8 as a function of the
parameters ω0 and γ . Moreover, transmission T and dissipated
energy ED seems to be related in some complicated way, as
discussed above.

C. Transient self-trapping

In a preliminary study [22] we reported that a fraction of the
electronic wave packet could become temporarily self-trapped
in the EPC structure and then be belatedly transmitted or
reflected. We have verified that this transient self-trapping
is quite common in the scattering problem discussed here,
although it does not occur for all values of the model
parameters. For instance, it is responsible for the occurrence
of plateaus in the time-dependent transmission coefficients for
some (but not all) model parameters, as seen in Fig. 3. Below
we examine some aspects of this phenomenon more closely.

Figure 9(a) shows a clear example of the transient self-
trapping of the electron. The electronic density measured on
the EPC impurity reveals that the wave packet reaches it at
time t ≈ 20h̄/t0, then most of the electronic wave packet has
left the EPC site by t ≈ 30h̄/t0 but a small fraction remains
there up to t ≈ 50h̄/t0. The first time scale corresponds simply
to the passage of the Gaussian wave packet over the EPC site
with negligible scattering and is set by the wave packet width
σ and velocity v (see Sec. II).

The second time scale is due to the trapping of the electron
by the effective on-site potential that its presence has induced.
The self-trapping time scale (	t ≈ 30h̄/t0) seems to be related
to the period of the phonon degrees of freedom, 2π

ω0
= 10πh̄/t0.

During that time interval the phonon system behaves like in
the single-site Holstein model occupied by one electron, i.e.,
like a coherent state in a shifted harmonic oscillator. A similar
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FIG. 9. (a) Electronic density on the EPC impurity (red solid line)
and phonon energy (blue dashed line) calculated with TEBD-LBO
as a function of time for LH = 1,h̄ω0 = 0.20t0, and γ = 1.90t0.
The electron density is multiplied by a factor 10. The black dotted
line shows Eq. (25) with toff = 24t0/h̄,Eoff = 0.12t0, and a constant
average density nj (t = 40h̄/t0) = 0.0116. (b) Electronic densities
(multiplied by a factor 100) calculated with TEBD-LBO as a function
of time on the left (red line) and right (blue dots) sites of a two-site
EPC structure with h̄ω0 = γ = 10t0.

behavior was found for the decay of a highly excited charge
carrier in the one-dimensional Holstein model [17]. Thus one
can estimate that

Eph(t) ≈ nj (t)2εp{1 − cos[ω0(t − toff)]} + Eoff, (25)

where nj (t) is the fraction of the electron density that is
currently trapped on the EPC site, toff is a time offset that
depends on the initial conditions (e.g., toff ≈ (LTB − j0)a/v =
25t0/h̄), and Eoff is an energy offset that is related to the
asymptotic phonon energy Eph(ta). Figure 9(a) confirms
that the phonon energy agrees with this equation (using
fitted parameters toff = 24t0/h̄ and Eoff = 0.12t0) during the
transient self-trapping time. Therefore, in that time interval
the system has formed a highly excited polaron (a mobile
quasiparticle made of an electron dressed by a phonon cloud)
as found for the decay problem in Ref. [17]. Note that the
fraction of the wave packet that gets trapped, nj (t), depends
mostly on the electron-phonon coupling strength γ .

In Fig. 9(a) there is a single plateau in the electronic
density indicating the generation of just one delayed partial
wave packet each for transmission and reflection. For longer
EPC structures we found previously that several partial wave
packets can be transmitted and reflected at approximately
equidistant times (see Fig. 3(a) in Ref. [22]). The transient
behavior of EPC structures with LH > 1 is indeed more
intricate than for a single-site EPC impurity because there
is a second self-trapping mechanism besides the polaron
formation. The electron induces an extended potential well in
the EPC structure. Its wave function can be (partially) reflected
multiple times at the edge of this potential well. Thus part of
the wave packet oscillates inside the EPC structure and slowly
leaks out into the leads.

This effect is illustrated in Fig. 9(b) for a two-site EPC
structure at times t � 60h̄/t0 when 99% of the wave packet has
already been transmitted or reflected. Nevertheless, we see that
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FIG. 10. The rightmost part of the electronic density distributions
nj (t) calculated with TEBD-LBO at t = 60h̄/t0 as a function of the
lattice site index j for LH = 1,h̄ω0 = 1.35t0 and several electron-
phonon couplings corresponding to transmission minima at γ = 1.5t0
(blue dotted line) and at γ = 2.45t0 (black dashed-dotted line) as well
as to transmission maxima at γ = 1.80t0 (orange dashed line) and at
γ = 2.65t0 (gray double-dashed line). The vertical black line shows
the position of the maximum of the free Gaussian wave packet (red
line).

a small fraction of the electronic density is still trapped inside
the EPC structure and jumps back and forth between both sites
with a slowly decaying amplitude. At every period t ≈ 8h̄/t0
a small wave packet is belatedly transmitted or reflected. (This
indicates that the wave packet velocity is about t0a

4h̄ inside the
EPC structure and thus about 8 times slower than for a free
wave packet.) Due to the multiple reflections, however, the
overall self-trapping time is extended greatly and it is clearly
over 	t = 150h̄/t0 in the example of Fig. 9(b). Finally, note
that this multiple scattering at the EPC structure edges should
not be confused with the multiple intersite scattering leading
to Eq. (21).

It is tempting to define an overall self-trapping time as the
delay of the wave packet transmitted through the EPC structure
compared to a noninteracting wave packet. For instance, one
could attempt to use the distance to the rightmost maximum
in the density distribution. We see in Fig. 10, however, that
this definition can result in a negative self-trapping time. For
transmission minima in particular, the scattered wave packet
seems to be ahead of the free one. This is related to the Hartman
effect [26]: the transmission time of a (Gaussian) wave packet
through a potential barrier can be shorter than the time required
by a free wave packet to travel a distance equal to the barrier
width. We observe a similar effect in Fig. 10 although the
scattering is not caused by a static potential barrier but by
dynamical degrees of freedom.

This effect reveals that one has to be careful when
measuring times for quantum systems. For a wave packet
tunneling through a potential barrier, it was shown that there
is a trade-off between the speedup of the transmitted wave
packet and the damping of its amplitude [27]. As a result,
the probability for the electron to reach a certain distance
before some given time is always reduced by the tunneling
through a potential barrier compared to the probability for a
free wave packet. Our results, as illustrated in Fig. 10, agree
with Ref. [27]. Clearly the probability of finding the electron
on the right of the vertical line is larger for the free wave packet
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than for any of the scattered ones although the density maxima
are further on the right in some cases.

In all our TEBD-LBO simulations we have never observed
a permanent trapping of the electron in the EPC structure.
On the one hand, this absence of localization is expected
because a trapped electron cannot dissipate its energy in
the present model. Any emitted phonon will be sooner or
later reabsorbed if the electron remains long enough in the
EPC structure and electronic energy can only be dissipated if
the electron moves away in the noninteracting leads. On the
other hand, one intuitively expects that the electron should
progressively lose its kinetic energy to the phonons left behind
and ultimately come to rest if the EPC wire is long enough,
like a particle in a viscous environment. Actually, once the
electronic wave packet is well inside a long EPC chain, the
tight-binding leads are no longer relevant and the relaxation
dynamics should be similar to the problem of an excited
electron in the one-dimensional Holstein model, which was
thoroughly investigated in Ref. [17]. Thus one expects that
the kinetic energy of the electron (or the resulting polaron)
should be permanently transferred to the phonon system in
the adiabatic regime. Unfortunately, we have not yet been able
to simulate the conditions where this could happen, i.e., long
enough EPC chains, low phonon frequency, and high dissi-
pation rate (which implies a strong enough electron-phonon
coupling) because of the very high computational effort
required.

IV. CONCLUSION

We have studied a Gaussian electronic wave packet
scattering off a one-dimensional electron-phonon-coupled
structure connected to tight-binding leads using the TEBD-
LBO method. We have found that this simple nonequilib-
rium problem offers a rich physics including transmission
resonances, dissipation, and transient self-trapping due to
polaron formation and multiple reflections at the EPC structure
edges. Many of theses features can be understood qualitatively
using scattering theory for a single-site EPC impurity. For
asymptotic expectation values (transmission coefficients and
dissipated energy), we find a perfect agreement between our
numerical TEBD-LBO simulations and the exact scattering
theory results. This confirms the reliability of the TEBD-LBO
method even for long-time simulations. Nevertheless, further
investigations are required to understand long EPC chains
more thoroughly. Although we discuss only the case of an
incident wave number K = π/(2a) in this paper, the results

remain qualitatively similar for other wave numbers 0 < K <

π/a.
Our results have some implications for the effects of

lattice or molecular vibrations on the quantum electronic
transport through atomic wires or molecular junctions coupled
to metallic leads. Indeed, if one assumes that the electrical
conductance of a quantum conductor is determined by its
scattering properties [28], such as the Landauer formula G =
(e2/h)T in the simplest case, the transmission coefficients
provide some information on the transport properties. In the
weak-coupling adiabatic limit, we have found that T ∼ 1/LH

and thus the resistance 1/G increases linearly with the
wire length LH , as observed experimentally in macroscopic
resistors. This is also consistent with the linear increase
of the dissipated energy with the wire length in that limit.
In the anti-adiabatic regime, there is no dissipation and
we have found transmission resonances that do not depend
significantly on LH . In particular, at the resonances with
T = 1 the EPC wire is an ideal conductor. However, we
also find transmission blockades T = 0 corresponding to a
perfect insulator. More generally, the dissipated energy and the
transmission probability vary significantly and independently
with the parameters ω0,γ , and LH . Our numerical data and
the exact result (24) suggest that both quantities are related but
we do not understand the precise relation yet. In particular, the
strict classical relation between (macroscopic) dissipation and
resistance, ED ∝ G−1 does not seem to be always fulfilled in
the present microscopic model.

Another open question is the effect of the effective interac-
tion between electrons that is induced by the electron-phonon
coupling, if more than one electron is in the EPC structure at
the same time. The TEBD method can be used to determine the
linear and nonlinear transport properties of interacting wires
coupled to leads with a finite density of charge carriers [29].
Thus we plan to extend the present study of EPC wires to the
case of finite electronic density.
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