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The effect of a slow noise in nondiagonal matrix element J (t) that describes the diabatic level coupling
on the probability of the Landau-Zener transition is studied. For slow noise, the correlation time τc of J (t) is
much longer than the characteristic time of the transition. Existing theory for this case suggests that the average
transition probability is the result of averaging of the conventional Landau-Zener probability, calculated for a
given constant J , over the distribution of J . We calculate a finite-τc correction for this classical result. Our main
finding is that this correction is dominated by sparse realizations of noise for which J (t) passes through zero
within a narrow time interval near the level crossing. Two models of noise, random telegraph noise and Gaussian
noise, are considered. Naturally, in both models the average probability of transition decreases upon decreasing
τc. For Gaussian noise we identify two domains of this falloff with specific dependencies of average transition
probability on τc.
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I. INTRODUCTION

A standard expression [1–4] for the probability of the
Landau-Zener transition between the two diabatic levels
±vt/2 reads

PLZ = 1 − QLZ, QLZ = exp

(
−2πJ 2

v

)
, (1)

where J is the off-diagonal matrix element. Correspondingly,
QLZ is the probability to stay on the initial diabatic level.

The dynamics of the transition is governed by the following
system:

iȧ1 = vt

2
a1 + Ja2,

iȧ2 = −vt

2
a2 + Ja1, (2)

where a1, a2 denote the amplitudes for the particle to reside
on diabatic levels 1 and 2, respectively.

The question about the value of PLZ when the transition
is driven by noise so that J is a random function of time
was first put forward and answered in Refs. [5,6]. The answer
depends on whether the noise is slow or fast. More precisely,
on whether the noise correlation time τc is longer or shorter
than the time of the Landau-Zener transition. For large matrix
element J � v1/2 when PLZ is close to 1, this transition time
is given by

τLZ = J

v
. (3)

Fast noise corresponds to τLZ � τc, i.e., the matrix element
oscillates many times in the course of the transition. Then it
is apparent that both outcomes of the transition are almost
equally probable. In other words, QLZ differs from 1/2 only
slightly. It was demonstrated in Ref. [6] that, for the fast noise,

〈QLZ〉 = 1

2

[
1 + exp

(
−4πJ 2

c

v

)]
, (4)

where 〈· · · 〉 denotes the averaging over the realizations of J (t)
and J 2

c is defined via the noise correlator,

〈J (t)J (t ′)〉 = J 2
c K(t − t ′), (5)

at coinciding times, where K(0) = 1.
In the opposite limit of slow noise τc � τLZ, the result

obtained in Ref. [6] is also physically transparent. Namely,
one can neglect the change in J (t) during the transition. This
suggests that the expression Eq. (1) should be simply averaged
over the distribution P(J ) of the matrix element,

〈QLZ〉 =
∫ ∞

−∞
dJ P(J ) exp

{
−2πJ 2

v

}
. (6)

Further developments in the theory of the noise-driven
Landau-Zener transition in Refs. [7–23] included: (i) consid-
eration of specific microscopic models of the environment
leading to random J (t), (ii) extension of Eq. (4) to the case
when J (t) has both constant and fluctuating components
(Pokrovsky-Sinitsyn formula), and (iii) generalization of the
theory of the fast noise to the case of three and more crossing
levels.

With regard to the papers [7–23], we note that the results for
the average transition probabilities were obtained only in two
“extreme” cases: τc → 0 for the fast noise and τc → ∞ for the
slow noise. The corrections in small parameters τc/τLZ for the
fast noise and τLZ/τc for the slow noise were not found. There
is actually a fundamental reason for this, which can be traced
back to the techniques employed in Ref. [6] and subsequent
works. Namely, in Ref. [6], QLZ was presented as expansion
in powers of J 2 and then averaged over random realizations of
J (t) term by term. As we will see below, this technique does
not allow to describe a crossover between the limits Eqs. (4)
and (6) and even to capture finite-τc corrections.

Calculation of a finite-τc correction for the case of a
slow noise is the main subject of the present paper. We will
demonstrate that this correction comes from nonperturbative
effects, or in other words, not from typical but rather from
sparse noise realizations. To illustrate the message, consider
the particular model of telegraph noise as in Ref. [17] when
J (t) switches randomly between the two values ±J0. We will
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FIG. 1. Schematic of the Landau-Zener transition driven by slow
telegraph noise. For a typical noise realization the matrix element
switches from J0 to −J0 at time t0 ∼ τc � τLZ. For such realizations
the probability QLZ to stay on the same diabatic level is exponentially
small. However, for sparse realizations with t0 � τLZ, the value QLZ

is close to 1. Thus, it is these sparse realizations that are responsible
for the finite-τc correction.

demonstrate that it is particularly the switchings which take
place near the level crossing t = 0 that have a dramatic effect
on QLZ. This situation is illustrated in Fig. 1.

Without switching near t = 0, the probability QLZ is
exponentially small. On the other hand, with switching, as
we will demonstrate below, QLZ is close to 1. Since the
probability that the switching takes place at t0 � τLZ is
∼τLZ/τc, the correction to QLZ can be estimated as ∼τLZ/τc.
This correction becomes important even at large enough τc

since in the limit τc → ∞ the value of QLZ is exponentially
small. In the next section we justify the above picture by
a rigorous calculation. In Sec. III we study the case of a
Gaussian noise when J (t) is a smooth function of time. We
show that in this case the finite-τc correction to QLZ, again,
originates from the sparse realizations of noise when J (t)
passes through zero near the moment of the level crossing.
In addition to the finite-τc correction, the realizations with
J (t0) = 0 for t0 	 τc determine the behavior of QLZ upon
decreasing in the correlation time. We identify two domains
of τc with distinctively different QLZ(τc) dependence. In
Sec. IV, which concludes the paper, we speculate on the
form of the finite-τc correction to QLZ in the limit of fast
noise τc 	 τLZ.

II. TELEGRAPH NOISE: SWITCHING NEAR t = 0

Consider the system Eq. (2) and assume that the coupling
constant is equal to J0 for t < t0, whereas for t > t0 it switches

to −J0, see Fig. 1. Solutions of the system for t < t0
are expressed via the parabolic cylinder functions [24] as
follows:

a1 = Dν(z),

a2 = −i
√

νDν−1(z), (7)

where the argument z is defined as z = √
veiπ/4t and the index

ν is given by

ν = − iJ 2

v
. (8)

The solution Eq. (7) ensures that a2(−∞) = 0, i.e., that the
particle is in state a1 away from the crossing.

For t > t0 the solution of the system represents a linear
combination of two parabolic-cylinder functions,

a1 = ADν(z) + BDν(−z),

a2 = i
√

νADν−1(z) − i
√

νBDν−1(−z). (9)

The fact that the coefficient in front of Dν−1(z) in a2 is equal to
−A, unlike Eq. (7), is the consequence of the switching. The
coefficients A and B are found from continuity of a1 and a2 at
t = t0. The corresponding system reads

Dν(z0) = ADν(z0) + BDν(−z0),

Dν−1(z0) = −ADν−1(z0) + BDν−1(−z0), (10)

where z0 = √
veiπ/4t0. From this system we readily derive the

following expressions:

A =
Dν−1(−z0)
Dν−1(z0) − Dν (−z0)

Dν (z0)
Dν−1(−z0)
Dν−1(z0) + Dν (−z0)

Dν (z0)

, B = 2
Dν−1(−z0)
Dν−1(z0) + Dν (−z0)

Dν (z0)

. (11)

Without switching, we would have A = 1, B = 0. Suppose
now that the switching took place at t0 = 0. Then from Eq. (11)
we have A = 0 and B = 1. This illustrates the dramatic effect
of switching on the probability QLZ. Indeed, in the limit
z0 → ∞, the ratio |Dν(z0)/Dν(−z0)|2 approaches a small
value of exp(−2πJ 2

0 /v), which is the value of QLZ without
switching. By contrast, with B = 1 as a result of switching,
QLZ is equal to 1.

The situation t0 = 0 is most favorable for enhancement of
QLZ. In order to find the average enhancement, we should
analyze the expressions for A and B, given by Eq. (11),
as a function of z0. The fact which allows for carrying out
this analysis analytically is that the typical value of QLZ is
small. This is also equivalent to the condition J 2

0 � v or
|ν| � 1. Conventionally, the behavior of the parabolic cylinder
functions at large |z0| � 1 is obtained from the semiclassics.
The condition |ν| � 1 justifies the semiclassical analysis even
for small z0. This analysis is carried out in the Appendix.
Substituting Eqs. (A8) and (A10) into Eq. (11), we obtain the
following expression for B:

B = 2

⎡
⎢⎢⎣

(√
4ν−z2

0−iz0√
4ν−z2

0+iz0

)ν+1/2
+ eiνπ+(iz0/2)

√
4ν−z2

0

e(iz0/2)
√

4ν−z2
0 + eiνπ

(√
4ν−z2

0−iz0√
4ν−z2

0+iz0

)ν+1/2
+

(√
4ν−z2

0−iz0√
4ν−z2

0+iz0

)ν−1/2
− eiνπ+(iz0/2)

√
4ν−z2

0

e(iz0/2)
√

4ν−z2
0 − eiνπ

(√
4ν−z2

0−iz0√
4ν−z2

0+iz0

)ν−1/2

⎤
⎥⎥⎦

−1

. (12)
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The above expression for B allows a dramatic simpli-
fication. It is achieved upon adding the two fractions and
subsequently rewriting the result in the form of a single
fraction. The result reads

B = iz0 + i
√

4ν sin(φ + νπ )√
4ν − z2

0 sinh(|ν|π )
, (13)

where the phase φ is defined as

φ = −z0

2

√
4ν − z2

0 − iν ln

(√
4ν − z2

0 − iz0
)2

4ν
. (14)

In a similar way, from Eq. (11) we get a simplified
expression for A,

A = − i
√

4ν sin φ + iz0 cosh(|ν|π )√
4ν − z2

0 sinh(|ν|π )
. (15)

The exact expression for the probability to stay on the
same diabatic level in the presence of the switching is
QLZ = |a1(∞)/a1(−∞)|2. From Eq. (9) we can express this
probability in terms of A and B as follows:

QLZ = |A|2e−2π |ν| + (A∗B + B∗A)e−π |ν| + |B|2. (16)

Let us first check that for large |z0| � |ν|1/2 Eq. (16)
reproduces QLZ = exp(−2π |ν|) as is expected on physical
grounds. Indeed, in this limit, we can replace A by −1 and
B by 2 exp(−π |ν|). Then the second and the third terms in
Eq. (16) cancel out.

To study the behavior of QLZ in the domain of |z0| ∼ |ν|1/2,
we notice that only the third term does not contain any
exponentially small factor. Hence, for this term, we can use
the asymptotic expression in which corrections on the order of
exp(−π |ν|) are neglected. Namely, B ≈ (z2

0/4ν − 1)−1/2e−iφ .
This immediately leads to the following expression for QLZ in
which we return to the original notations t0 and τLZ:

QLZ = 4

4 + (
t0

τLZ

)2 . (17)

In Fig. 2 the dependence of QLZ on the moment of switching is
shown schematically. It is described by the Lorentizian Eq. (17)
for t0 ∼ τLZ and approaches exp(−2π |ν|) for t0 � τLZ.

As we established above, the switching at t0 = 0 leads
to the probability QLZ = 1. Then Eq. (17) suggests that the

FIG. 2. The dependence of the probability to stay on the initial
diabatic level at t → ∞ is shown schematically versus the moment of
switching t0. The probability QLZ(t0) is described by the Lorentzian
Eq. (17) for t0 ∼ τLZ and approaches asymptotically to exp(−2π |ν|)
for t0 much bigger than the time τLZ of the Landau-Zener transition.

−vt
2

vt
2

τc
tt0

FIG. 3. If the matrix element J (t) turns to zero at some t = t0
close to the crossing of the diabatic levels (blue curve), the calculation
of the transition probability reduces to the Landau-Zener problem
with renormalized velocity and coupling both depending on t0. The
moment t0 also defines the shift of minima of adiabatic levels from
t = 0. This shift is smaller than t0, see Eq. (22).

enhancement of QLZ takes place in the domain of t0 ∼ ±2τLZ.
Since t0 is random, we average Eq. (17) over t0 to get the net
enhancement of QLZ and present the final result in the form

1 − PLZ = exp

{
−2πJ 2

v

}
+ 1

τc

∫ ∞

−∞
dt0

4

4 + (
t0

τLZ

)2

= exp

{
−2πJ 2

v

}
+ 2π

τLZ

τc

. (18)

It is important to note that the condition of applicability of
Eq. (17) is τLZ 	 τc. Under this condition, the second term of
Eq. (18) can greatly exceed the first term, which is the result
corresponding to no switching.

III. GAUSSIAN NOISE

Suppose that J (t) changes continuously as in Fig. 3 and that
the typical J is much bigger than v1/2 so that the typical PLZ

is close to 1. As J slowly changes with time, the maximum
contribution to QLZ will come from the time domain when
it takes small values of J � v1/2. Since the portion of these
domains is ∼v1/2/J , the ratio v1/2/J determines the average
QLZ. This is how the analytical result of Ref. [6] can be
interpreted. This result applies for very long correlation times
τc → ∞.

As we are interested in a finite-τc correction, we will
study the domains of small J in more detail. A nontrivial
consequence of small J values is that, when the noise takes
these values, the Landau-Zener transition time is much shorter
than the typical τLZ. This, in turn, suggests that even when the
condition of slow noise is violated for typical J , it can still be
met for anomalously small J , which determines QLZ. Thus,
one can expect a nontrivial behavior of QLZ upon decreasing
the correlation time.

Naturally, small J values are realized in the vicinity of zeros
of J (t). Similar to the previous section, the most relevant are
the realizations of noise when a zero occurs in the vicinity
of t = 0 when the levels cross. For these realizations we can
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linearize J (t) as follows:

J (t) = (t − t0)J ′, (19)

where J ′ is the slope and t0 is much smaller than the correlation
time.

Our prime observation is that the system Eq. (2) can be
solved exactly with J (t) in the form Eq. (19). This is achieved
by introducing new variables,

b1 = a1 cos ϕ + a2 sin ϕ,

b2 = a1 sin ϕ − a2 cos ϕ, (20)

where angle ϕ is defined as

tan(2ϕ) = 2J ′

v
. (21)

It is straightforward to check that the system of equations for
b1, b2 has the form

iḃ1 = v

2

[t − t0 sin2(2ϕ)]

cos(2ϕ)
b1 + v

2
t0 sin(2ϕ)b2,

iḃ2 = −v

2

[t − t0 sin2(2ϕ)]

cos(2ϕ)
b2 + v

2
t0 sin(2ϕ)b1. (22)

We see that the system has reduced to the original system
Eq. (2) with renormalized velocity ṽ = v/ cos(2ϕ) and the
coupling J̃ = vt0 sin(2ϕ)/2. The established mapping allows
us to write the answer for QLZ straightaway [25],

QLZ(t0) = exp

{
−2πJ ′2t2

0

v
| cos3(2ϕ)|

}
. (23)

Using Eq. (21), the above expression can be recast into the
form

QLZ = exp

{
−2πJ ′2t2

0

v

(
v2

v2 + 4J ′2

)3/2}
. (24)

The crucial assumption made in the course of deriving Eq. (24)
is that the linearization Eq. (19) is valid during the entire
renormalized transition time τ̃LZ. We are now in position to
check this assumption. Indeed,

τ̃LZ = J̃

ṽ
= J ′v

v2 + 4J ′2 t0. (25)

Since the first factor does not exceed 1, we conclude that the
condition t0 	 τc is the only condition necessary for Landau-
Zener transition to be dominated by a local zero of J (t).

Contribution of the realizations with t0 	 τLZ to the
probability QLZ is given by the average,

QLZ =
∫ ∞

−∞

dt0

τc

QLZ(t0) =
(

v

2

)1/2 1

|J ′|τc

(
v2 + 4J ′2

v2

)3/4

.

(26)

We are interested in the τc dependence of the probability QLZ.
The correlation time enters into Eq. (26) in two ways: First,
it is present directly in the denominator, and second, via J ′
since its typical value is J ′ ∼ Jc/τc. The remaining task is to
average Eq. (26) over the random slopes J ′. We will perform
this averaging in the domains of small and large J ′’s separately:

(i) Small J ′. In this limit, we can replace the brackets in
Eq. (26) by 1. The average over J ′ does not diverge since

J ′ cannot be smaller than the minimal value determined by
the condition t0 	 τc. Since the typical t0 is ∼v1/2/J ′, the
estimate for the minimal J ′ is J ′ < v1/2/τc. This minimal J ′
fixes the lower limit in the integral,

〈QLZ〉 =
(

v

π

)1/2 1

J ′
cτc

∫ ∞

v1/2/τc

dJ ′

J ′ exp

(
− J ′2

2J ′2
c

)
, (27)

where J ′
c is the width of the Gaussian distribution of J ′,

J ′2
c = J 2

c

∂2K

∂t2
1

∣∣∣∣
t1=t2

, (28)

and the correlator K is defined in Eq. (5). Within a number
under the logarithm, the final result for the double average
reads

〈QLZ〉 =
(

v

π

)1/2 1

J ′
cτc

ln

(
J ′

cτc

v1/2

)
. (29)

Let us compare this result with a standard expression derived
in Ref. [6]. In our limit Jc � v1/2, the result of Gaussian
averaging in Eq. (6) reads

〈QLZ〉 =
(

v

4π

)1/2 1

Jc

. (30)

Since J ′
c ∼ Jc/τc, the prefactor in Eq. (29) is on the same order

as in Eq. (30). In the particular case of a Gaussian correlator,
we have J ′

cτc = 21/2Jc so that the prefactor in Eq. (29) is two
times bigger than in Eq. (30). However, our result contains an
additional big factor ln(Jc/v

1/2). This factor originates from
realizations of noise for which J (t) passes through zero near
t = 0. The importance of these realizations leading to the
enhancement of QLZ is mentioned here.

The result Eq. (29) yields the average QLZ in the limit
τc → ∞. Calculation of the finite-τc correction is straightfor-
ward. Expanding the brackets in Eq. (26) to the first power in
the small parameter J ′2/v2 and averaging over J ′, we get

〈QLZ(τc)〉 − 〈QLZ(∞)〉 = 3

(πv3)1/2

∫ ∞

0
dJ ′ |J ′|

τcJ ′
c

× exp

(
− J ′2

2J ′2
c

)
. (31)

It follows from Eq. (31) that upon decreasing the correlation
time the correction to QLZ grows as 1/τ 2

c . It is instructive to
rewrite this correction as

〈QLZ(τc)〉 − 〈QLZ(∞)〉 = 3

(
2

π

)1/2(
Jc

v1/2

)(
1

v1/2τc

)2

.

(32)

Naturally, the applicability of Eq. (32) is terminated as τc

becomes smaller than Jc/v.
(ii) Large J ′. In this limit the brackets in Eq. (26) should be

replaced by (2|J ′|/v)3/2. Then the averaging over J ′ yields

〈QLZ〉 ≈ 2

π
�

(
3

4

)(
Jc

v1/2

)1/2( 1

v1/2τc

)3/2

, (33)
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Jc

v1/2

1/3 Jc

v1/2

Eq. (33)

Eq. (32)

1
2

v
πJ2

c
ln Jc

v1/2

QLZ

v1/2τc

FIG. 4. Probability to stay on the same diabatic level after
the transition is plotted schematically versus the dimensionless
correlation time v1/2τc. In the domain of a “true” slow noise
v1/2τc � Jc/v

1/2, the probability QLZ deviates from the asymptotic
value of ( v

πJ 2
c

)1/2 ln ( Jc

v1/2 ) only slightly. In the intermediate domain

(Jc/v
1/2)1/3 	 v1/2τc 	 Jc/v

1/2 the crossover from the slow to the
fast noise takes place.

i.e., 〈QLZ〉 grows as τ
−3/2
c upon the decreasing in the

correlation time. The lower boundary of the large J ′ domain
is determined by the condition 〈QLZ〉 ∼ 1, which yields
τc ∼ J

1/3
c /v2/3. Different behaviors of 〈QLZ〉 are illustrated

in Fig. 4.

IV. CONCLUDING REMARKS

(i) The main results of the present paper are the expressions
Eqs. (29), (32), and (33) for the probability QLZ to stay on the
same diabatic level after the transition. These results pertain
to the domain where this probability is small, i.e., for J 2

c � v

or equivalently for |ν| � 1 where the parameter ν is defined
by Eq. (8). Below we combine these results into a single
expression for QLZ(τ̃c), where

τ̃c = v1/2τc (34)

is the dimensionless correlation time. Then one obtains

〈QLZ〉 = 1

(π |ν|)1/2

⎧⎨
⎩

ln |ν|1/2 + 3 × 21/2 |ν|
τ̃ 2
c
, τ̃c � |ν|1/2,

2�

(
3
4

)
π1/2

( |ν|
τ̃ 2
c

)3/4
, |ν|1/2 � τ̃c � |ν|1/6.

(35)

The second line describes the crossover between the slow-
noise and the fast-noise regimes upon decreasing the correla-
tion time.

(ii) In obtaining the results Eqs. (29), (32), and (33) we
assumed that it is only the single zero in J (t) closest to the
level crossing, that is responsible for the probability QLZ.
This QLZ, which is the probability for the particle to stay
on the diabatic level, can also be viewed as the probability to
change the adiabatic level. In fact, in the domain J

1/3
c /v2/3 	

τc 	 Jc/v, many (∼Jc/vτc) zeros of J (t) will cause local
minima (maxima) in the upper (lower) adiabatic energy level as
illustrated in Fig. 5. In other words, many local Landau-Zener
transitions precede the transition near t = 0. For our results to
apply it is necessary that, in the course of each of this transition,
the particle does not change the adiabatic level. Calculation of
probability of changing the levels is performed in full analogy
to that described above for J (t0) = 0 with t0 	 τc. One has to
linearize J (t) near actual zero and perform the rotation from
(a1,a2) to (b1,b2). It is important that the time of the local
transition turns out to be ∼vτ 2

c /Jc, which is much smaller
than τc, thus confirming that the transition is indeed local. For
the probability to stay on the same adiabatic level, the above
procedure yields the result,

1 − exp

[
−2π3

(
v2τ 3

c

Jc

)(
1 − v2τ 2

c

J 2
c

)]
(36)

(the actual numerical factor in the exponent depends on the
location of the transition point within τc). For the lower
boundary τc ∼ J

1/3
c /v2/3, the number in the exponent is close

to 1 indicating that at this boundary the regime of the fast
noise takes over. At the upper boundary τc ∼ Jc/v the number
in the exponent is large (∼|ν|). Thus the particle does not

change the adiabatic level at the moments when J (t) passes
through zero at times �τc, Fig. 5.

(iii) It is important to relate our results to the pioneering
calculation in Ref. [6]. The expression for QLZ in the presence
of noise in this paper was based on the expansion of QLZ in
powers of J 2

c ,

QLZ =
∞∑

n=0

(−1)nJ 2n
c L(n), (37)

FIG. 5. In the domain of correlation times J 1/3
c /v2/3 	 τc 	 Jc/v

a crossover between the slow-noise and the fast-noise regimes takes
place. In this domain, time-dependent adiabatic levels acquire local
minima due to the randomness of J (t). The duration of the Landau-
Zener transition (shown with red) in the vicinity of each minimum is
much shorter than τc. The probability to remain on the same adiabatic
level after the transition, given by Eq. (36), is close to 1 so that only
the transition in the vicinity of t = t0 is responsible for QLZ.
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where the coefficients L(n) are the 2n-fold integrals of the type,

L(n) =
n∑

m=1

∫ ∞

−∞
dτ1

∫ ∞

τ1

dτ2 · · ·
︸ ︷︷ ︸

2m

∫ ∞

−∞
dτ2m · · ·

∫ τ2n−1

−∞
dτ2n︸ ︷︷ ︸

2n−2m

×F (n)(τ1, . . . ,τ2n) exp

⎡
⎣i

v

2

2n∑
j=1

(−1)j τ 2
j

⎤
⎦, (38)

where F (n) is the product of the correlators exp(|τi − τj |/τc)
“forbidding” the variables τi and τj to differ more than τc.
It is seen from Eq. (38) that typical values of τi are v−1/2.
Thus the restrictions imposed by the correlator start to matter
for the terms with n � τcv

1/2. For smaller n the restriction is
not important, and F (n) manifests itself only in the form of
combinatorial factor = (2n − 1)!!. With this factor in front of
L(n), the sum Eq. (37), instead of exp(−2πJ 2

c /v), reduces to

QLZ = 1(
1 + 4πJ 2

c

/
v
)1/2 . (39)

The above result does not depend on the form of
correlator and is interpreted in Ref. [6] as the aver-
age of exp(−2πJ 2/v) with Gaussian distribution P(J ) =
(2π )−1/2Jc exp(−J 2/2J 2

c ). This already reveals an incon-
sistency since the particular form exp(−|ti − tj |/τc) of the
correlator chosen in Ref. [6] corresponds to the telegraph noise
with P(J ) = 1

2 [δ(J − Jc) + δ(J + Jc)]. Correspondingly, av-
eraging over the distribution of J yields exp(−2πJ 2

c /v)
instead of Eq. (39), correctly implying that for τc → ∞
switchings of J do not affect the transition probability.

For Gaussian noise, our result Eq. (29) does not coincide
with Eq. (39). The reason is that the logarithmic factor in
Eq. (29), originating from sparse realizations, is a singular
function of J 2

c and cannot be captured by expansion in powers
of J 2

c . Equally, for the telegraph noise, the finite-τc correction
Eq. (31) ∼τLZ/τc is proportional to |Jc| and, thus, is a singular
function of J 2

c . In general, the effects due to sparse realizations
cannot be captured within the perturbative expansion.

(iv) Throughout the paper we assumed that the noise is
slow and searched for finite-τ−1

c corrections to the probability
1 − PLZ to stay on the same diabatic level. We argued that
these corrections are dominated by sparse realizations of
noise. For the fast noise the probability to stay exceeds the
probability to make a transition by 1

2 exp(−4πJ 2
c /v). The

small parameter τc/τLZ ensures that the noise is fast. Below
we argue qualitatively that sparse realizations of noise can
dominate the finite-τc correction to the standard result.

Consider the case of the fast telegraph noise. During the
time τLZ, the off-diagonal matrix element switches from J0 to
−J0 approximately τLZ/τc times. However, for certain sparse
realizations, the switching happens only once at the moment
t0 ∼ τc. The probability of this realization can be estimated as
t0/τc exp(−τLZ/τc). However, as was demonstrated in Sec. II,
for such realizations, the system will stay on the initial diabatic
level. This suggests the following form of PLZ in the limit of
fast noise:

1

2
− PLZ = 1

2
exp

{
−4πJ 2

c

v

}
+ exp

{
− Jc

vτc

}
, (40)

where the second term accounts for the sparse realizations.
Note that this term dominates the first term for τc � 1/4πJc.
Remarkably, this τc belongs to the domain of fast noise. Indeed,
for τc = 1/4πJc, the ratio τc/τLZ is equal to v/4πJ 2

c , i.e., it is
small. Consequently, as in the case of the slow telegraph noise,
we again come to the conclusion that the finite-τc correction
can dominate the result.
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APPENDIX: ASYMPTOTIC BEHAVIOR OF Dν(z)/Dν(−z)

Since we are interested in the domain z ∼ |ν|, standard
z → ±∞ asymptotes of the parabolic cylinder function [24]
are insufficient. Therefore, we start from the following integral
representation:

Dν(z) =
√

2

π
ez2/4

∫ ∞

0
e−t2/2tν cos

(
zt − νπ

2

)
dt. (A1)

It is convenient to divide the integral Eq. (A1) into two parts,

Dν(z) = I+(z)e−iνπ/2 + I−(z)eiνπ/2, (A2)

where the functions I+(z) and I−(z) are defined as

I±(z) =
√

1

2π
ez2/4

∫ ∞

0
e−t2/2tνe±izt dt. (A3)

The advantage of introducing I+ and I− is that they are suited
for evaluation using the steepest descent method. To apply this
method, we rewrite I+ in the form

I+(z) =
√

1

2π
ez2/4

∫ ∞

0
ef (t) dt, f (t) = − t2

2
+izt+ν ln t.

(A4)

The extrema of f (t) correspond to t± = iz
2 ±

√
4ν−z2

2 . The
real part of t+ is positive and thus lies within the domain
of integration. By contrast, Re t− is negative, and t− should
therefore be excluded.

Expanding f (t) near t+, we get from Eq. (A4),

I+(z) ≈
√

1

2π
ez2/4ef (t+)

∫ ∞

−∞
d(t − t+)

× exp

[
−1

2

(
1 + ν

t2+

)
(t − t+)2

]
. (A5)

Upon performing the Gaussian integration, the result can be
cast in the form

I+(z) ≈ exp

(
iz

√
4ν − z2

4
− ν

2

)
(4ν − z2)−1/4

×
(

iz + √
4ν − z2

2

)ν+1/2

. (A6)

The condition of applicability of the steepest descent method
is that typical (t − t+) contributing to the integral Eq. (A5)
is much smaller than t+. It is easy to see that for z ∼ |ν|
this condition is satisfied when |ν| � 1, i.e., in the case
we are interested in. The calculation of I−(z) is similar to
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the above calculation. The saddle points are −t±, and only
t = −t− contributes to the integral. The result reads

I−(z) ≈ exp

(
− iz

√
4ν − z2

4
− ν

2

)
(4ν − z2)−1/4

×
(−iz + √

4ν − z2

2

)ν+1/2

. (A7)

Naturally, the result Eq. (A7) is consistent with the relation
I+(z) = I−(−z), which follows from Eq. (A3). If one takes a
limit z � |ν| in Eqs. (A6) and (A7) and substitutes the result
into Eq. (A2), one would recover the textbook asymptotes of
Dν(z). We are interested in the ratio Dν(−z)/Dν(z). Using
Eqs. (A5) and (A6), this ratio can be presented in a concise
form

Dν(−z)

Dν(z)
= I−(z) + eiνπ I+(z)

I+(z) + eiνπ I−(z)

≈
(√

4ν−z2−iz√
4ν−z2+iz

)ν+1/2 + eiνπ+(iz/2)
√

4ν−z2

e(iz/2)
√

4ν−z2 + eiνπ
(√

4ν−z2−iz√
4ν−z2+iz

)ν+1/2
. (A8)

To verify that Eq. (A8) has the right limit we recall that
for z → ∞ it should reproduce Q

−1/2
LZ . Indeed, in this limit,

the denominator in the fraction turns to exp ( iz
2

√
4ν − z2),

whereas the numerator turns to exp ( iz
2

√
4ν − z2 + iνπ ).

Consequently, Eq. (A8) yields exp(π |ν|). Furthermore, for
z → 0, the ratio becomes 1 as expected.

Next we turn to the calculation of Dν−1(−z)/Dν−1(z). Since
the integral representation of Dν(z) contains ν in the form of
tν in the integrand, evaluation of the asymptote of Dν−1(−z)
with the steepest descent simply amounts to dividing the result
for I+(z) by t+ and the result for I−(z) by −t−. This yields

Dν−1(z) ≈ 2e−i(ν−1)π/2

iz + √
4ν − z2

I+(z) + 2ei(ν−1)π/2

−iz + √
4ν − z2

I−(z).

(A9)

Then the ratio Dν−1(−z)/Dν−1(z) can be cast in a form similar
to Eq. (A8),

Dν−1(−z)

Dν−1(z)
= I−(z) + eiνπ I+(z)

I+(z) + eiνπ I−(z)

≈
(√

4ν−z2−iz√
4ν−z2+iz

)ν−1/2 − eiνπ+(iz/2)
√

4ν−z2

e(iz/2)
√

4ν−z2 − eiνπ
(√

4ν−z2−iz√
4ν−z2+iz

)ν−1/2
. (A10)
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