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Mode mixing induced by disorder in a graphene pnp junction in a magnetic field
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We study the electron transport through the graphene pnp junction under a magnetic field and show that mode
mixing plays an essential role. By using the nonequilibrium Green’s function method, the space distribution of
the scattering state for a specific incident mode as well the elements of the transmission and reflection coefficient
matrices are investigated. All elements of the transmission (reflection) coefficient matrices are very different
for a perfect pnp junction, but they are the same at a disordered junction due to the mode mixing. The space
distribution of the scattering state for the different incident modes also exhibits similar behaviors, i.e., that they
distinctly differ from each other in the perfect junction but are almost the same in the disordered junction. For
a unipolar junction, when the mode number in the center region is less than that in the left and right regions,
the fluctuations of the total transmission and reflection coefficients are zero, although each element has a large
fluctuation. These results clearly indicate the occurrence of perfect mode mixing and play an essential role in a
graphene pnp junction transport.
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I. INTRODUCTION

Graphene, a monolayer carbon hexagon lattice, has re-
ceived much attention in recent years for its novel electronic
properties. Its conduction band and valence band are only
consisted of π bonds under the effect of sp2 hybridization.
In pristine graphene, conduction and valence bands contact
exactly on the Fermi surface at the corners of the Brillouin
zone, and form linear Dirac cones [1]. This linear dispersion
leads to a high carrier mobility and makes carriers obey the
massless Dirac equation, which usually occurs in quantum
electro-dynamics [2]. Thus, graphene presents some relativis-
tic properties such as Klein tunneling [3]. When an intense
magnetic field perpendicularly exerts on the graphene plane,
graphene presents an anomalous integer quantum Hall effect
with its Hall plateaus at the half-integer value 4(n + 1/2)e2/h,
where the number 4 is from the spin and valley degeneracy.

The high carrier mobility and tunable band structure of
graphene make it a promising candidate of new electronic
material [4]. Nowadays, various electronic components have
been fabricated of graphene, such as switch [5], pn junc-
tion [6], transistor [7,8], and even integrated circuit [9]. As
an elementary building block of other electronic components,
the graphene pn junction has invoked great interest. In many
schemes, it is constructed on a graphene stripe, which is
divided into two regions with Fermi energy tuned differ-
ently [10,11]. Some attractive prediction of a graphene pn

junction has been reported. For example, a sharp graphene
pn junction can focus electrons emitted from one point
source [12]. On the other hand, a smooth pn junction transmits
only those carriers whose momenta are almost perpendicular
to the pn interface [13]. When a perpendicular magnetic
field is applied, some snake states zigzag along the pn

interface [14–18].
The pnp junction is consisted of two pn junctions arranged

back to back. In many schemes, graphene pnp junction is
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built of a graphene nanoribbon, with a top gate and back gates
controlling the carrier type and density in the emitter region,
central base region, and collector region [19–23]. For example,
Nam et al. designed a high-quality graphene pnp device using
a local gate to tune the central base region, and a global gate to
tune both collector and emitter regions [24,25]. Furthermore, a
graphene pnp junction has also been fabricated chemically, of
which energy band is tuned by substrate [26] or doping [27,28].

There have been many works on transport properties
of graphene pnp junctions. For example, this device is
an appropriate platform to study Klein tunneling, where a
conductance oscillation due to Fabry-Perot interference would
appear under some particular condition [22,29], and it can
act as a Veselago lens or beam splitter by the advantage of
electrons focusing property of a graphene pn junction [12,30].

When a vertical strong magnetic field is applied on a
graphene pn or pnp junction, drifting electrons gather at the
edge of each region under the effect of Lorenz force. Therefore,
edge modes in each region act as conducting channels and
carriers travel along the pn interface. Because electron (n
region) and hole (p region) suffer opposite Lorenz force, the
propagating direction is the same in both the p region and n

region at pn interface. These boundary states at pn interface
will mix up in the presence of disorder, and such mixing will
also happen among the edge modes [31]. The degree of mixing
affects the magnitude conductance. Under the assumption of
complete mixing, the conductance of pn or pnp junction can
be achieved. In the case of a pn junction, in the unipolar
regime where the filling factor ν1 holds the same sign of
the filling factor ν2 sign, the conductance g = min{|ν1|,|ν2|},
and in bipolar regime where ν1,ν2 hold different signs, g =
|ν1||ν2|

|ν1|+|ν2| [32]. These predictions have been supported by a num-
ber of experiments [6,11,23], as soon as they were put forward.
Soon after, it was verified by numerical simulation [33]. The
conductance of a pnp junction has also been analytically given
and certified by many experiments [25,34–36], and we will
present the expressions of the conductance in Sec. III.

However, these expressions of the conductance are based on
a hypothesis that all the modes are completely mixed. In fact,
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it has been verified that without mode mixing the conductance
is smaller than the case with fully mixed modes. For example,
Morikawa et al. fabricated an ultraclean graphene npn junction
with h-BN dielectrics, in which the disorder-induced mode
mixing was strongly suppressed [37], In high magnetic fields,
this device acted as a built-in Aharonov-Bohm interferometer,
whose two-terminal conductance oscillates with magnetic
field, compared with the conductance plateau in the fully mixed
case [25,34–36]. These experiments highlight the significance
of disorder for mode mixing. However, although there has
been some work on the effect of disorder in a graphene
pn junction [38–41], systematic research for mode mixing
procedure in a graphene pnp junction is still lacking, which is
carried out in this paper.

In this paper, we study the space distribution of the
scattering wave function and the current density, as well the
transmission and reflection coefficient matrices in a graphene
pnp junction. Sanvito and Lambert have developed a method
to solve the transmission coefficient matrix in a two-terminal
scattering system [42]. Here, we extend its application to
the multiterminal system, and the primitive cell of each
terminal can be multiple layers. Furthermore, the formulas
of the reflection coefficient matrix as well the scattering wave
function in the real space are derived. With the help of these
formulas, we carry out a series of numerical investigations
on the electron transport through a graphene pnp junction.
For a perfect pnp junction, the elements of the transmission
and reflection coefficient matrices are very different, and the
space distribution of the scattering wave function for different
incident modes has a large difference as well. However, for a
disordered pnp junction in which the disorder is stronger than
a critical value, all elements of the transmission (reflection)
matrix are the same regardless of unipolar or bipolar junctions,
so are the scattering wave functions for different incident
modes. This clearly indicates the occurrence of perfect mode
mixing. In addition, the mode mixing process is relevant to
the intensity of the magnetic field and disorder nature. For a
unipolar pnp junction, while the mode number in the center
region is less than that in the left and right regions, all elements
of transmission and reflection matrices have large fluctuations,
although the fluctuation of the sum of all elements is exactly
zero. This means that the mode mixing occurs in this case also.

The rest of this paper is organized as follows. In Sec. II,
based on the nonequilibrium Green’s function method, we
derive the expressions of the reflection amplitude and transmis-
sion amplitude for the incident electron from a specific mode in
the multiterminal scattering system. In Sec. III, these expres-
sions are applied in a graphene pnp junction to reveal the mode
mixing process. Finally, the results are summarized in Sec. IV.

II. MODEL AND METHOD

We consider a multiterminal scattering system as shown
in Fig. 1(a). The crucial physical quantities for the scattering
problem are the reflection amplitude rjβ,lβ and transmission
amplitude tjα,lβ , in which tjα,lβ describes the amplitude of
the outgoing electron at the mode j in the terminal α for
the incident electron from the mode l in the terminal β, and
rjβ,lβ is the amplitude of the reflection electron at the mode
j in the same terminal β. In this section, we deduce the

FIG. 1. (a) Schematic of a multiterminal scattering system. The
center scattering region is connected to an injecting lead (lead β) and
several outgoing leads (lead α). (b) Wires with primitive cell consisted
of a simple layer (upper) and multiple layers (lower). Suppose the
Hamiltonian between each of the two adjacent layers is invertible. A
primitive cell in the upper wire contains only one layer, so that the
Hamiltonian H1 between two adjacent primitive cells is invertible.
However, the Hamiltonian H1 is noninvertible in the lower wire whose
primitive cell contains multiple layers.

formula of the reflection amplitude and transmission amplitude
by using the nonequilibrium Green’s function method. About
two decades ago, Sanvito and Lambert developed a Green’s
function method to solve the transmission amplitude in a
two-terminal device [42]. However, this method is under a
strong restriction in the form of Hamiltonian of the terminals,
i.e., that the matrix of the hopping Hamiltonian is required
to be invertible. Here, we relax this restriction and expand its
application in the case of a multiterminal system. In addition,
the expression of reflection amplitude is derived also.

In the tight-binding representation, the Hamiltonian of the
multiterminal scattering device [see Fig. 1(a)] consisting of
the center scattering region connecting with several leads is

H =
∑

i

εia
†
i ai +

∑
i,j

tij a
†
i aj , (1)

where ai (a†
j ) is the annihilation (creation) operator on the

site i. Here, the leads are assumed to be perfect and without
scattering. The transport can be described by a pure scattering
state when the system length scale is small compared to elastic
mean-free path or phase-relaxation length. Suppose a Bloch
wave eiklβzφ(lβ) injects to the center scattering region from the
mode l in the lead β, and then is scattered into other leads. The
scattering state ψ (lβ) takes the form of the following equation:

ψ (lβ)(z) =
⎧⎨
⎩

φ(lβ) e
iklβ z

√
vlβ

+ ∑
j rjβ,lβ φ̄(jβ) e

ik̄jβ z

√
vjβ

lead : β,∑
j tjα,lβφ(jα) e

ikjαz

√
vjα

lead : α �= β.

(2)

The coordinate z is the index of the primitive cell in the lead
and it is set according to the following rules: in injecting
lead (labeled by β), the lead starts from the center scattering
region where z = 0, and then extends to infinity denoted by
z = −∞; in other leads, each lead starts at z = 0 and then
extends to z = ∞. The indices l and j here indicate a different
mode in an infinite wire. Wave function and wave vector
transporting along the +z axis are denoted by φ and k, while
the opposites are denoted by φ̄ and k̄. tjα,lβ and rjβ,lβ are the

064205-2



MODE MIXING INDUCED BY DISORDER IN A GRAPHENE . . . PHYSICAL REVIEW B 95, 064205 (2017)

transmission and reflection amplitudes which are the crucial
physical quantities to be solved below. After tjα,lβ and rjβ,lβ are
solved, the transmission coefficient from the lead β to the lead
α is Tαβ = ∑

j,l |tjα,lβ |2, and the conductance can be obtained
from the Landauer-Büttiker formula straightforwardly [43].

Next, we solve the wave functions (φ(lα) and φ̄(lα)) and
wave vectors (klα and k̄lα) of a specific lead α. For the sake
of simplicity, the index α is omitted in the rest of this paper.
Consider an infinite lead, which can be viewed as a periodical
arrangement of primitive cells [see Fig. 1(b)]. Its Hamiltonian
can be expressed in the form of a block matrix according to
the primitive cell, and the Schrödinger equation is⎡
⎢⎢⎢⎢⎣

. . .

H
†
1 H0 − E H1

H
†
1 H0 − E H1

. . .

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

...
φ(z)

φ(z + 1)
...

⎤
⎥⎥⎥⎥⎦ = 0,

(3)

where H0 denotes a Hamiltonian within a single cell, and H1

denotes a Hamiltonian between two adjacent cells. The wave
function is denoted by coordinate index z. Further, the Bloch
theorem preserves φ(z) = eikzφ.

In the previous work by Sanvito and Lambert [42], the
hopping matrix H1 was required to be invertible. Here, we
expand to noninvertible H1. Suppose the primitive cell can
be divided into n layers, and the hopping matrix between
every adjacent layers is invertible [see Fig. 1(b)]. The modified
method can apply in this situation even if the whole H1 between
two adjacent primitive cells is not invertible. In this case, the
matrix in Eq. (3) can be substituted by

H0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

h11 h12 0 . . . 0
...

...
· · · h

†
i−1,i hii hi,i+1 · · ·

...
...

0 . . . 0 h
†
n−1,n hnn

⎤
⎥⎥⎥⎥⎥⎥⎦

,

H1 =

⎡
⎢⎣

0 . . . 0
...

. . .
...

hn1 . . . 0

⎤
⎥⎦, (4)

φ(z) = [
φ1(z), . . . ,φn(z)

]T
,

where hii and hi,i+1 are the Hamiltonian of the ith layer and
the hopping Hamiltonian between the ith and (i + 1)th layers.
Here, all the hij are invertible, although H1 is noninvertible.
φi(z) is the wave function at the ith layer in the cell z.
Substituting Eq. (4) and Bloch wave φ(z) = eikzφ into Eq. (3),
we have⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h11 − E h12 0 . . . e−ikh
†
n1

...
...

. . . h
†
i−1,i hii − E hi,i+1 . . .

...
...

eikhn1 . . . 0 h
†
n−1,n hnn − E

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

φ1
...
φi

...
φn

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0

(5)

and an equation of Bloch vector k is acquired:∣∣∣∣∣∣∣∣∣∣∣∣∣

h11 − E h12 0 . . . e−ikh
†
n1

...
...

. . . h
†
i−1,i hii − E hi,i+1 . . .

...
...

eikhn1 . . . 0 h
†
n−1,n hnn − E

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (6)

This is a rational expression equation of x = eik whose highest
order is N and lowest order is −N , so there are 2N roots in
total, where N is the number of atoms in each layer as well as
the dimension of each matrix block. Moreover, the Hermiticity
of this matrix guarantees that if vector k satisfies the equation,
k∗ satisfies as well. This results in a balance between leftward
states and rightward states which can be seen if an infinitesimal
imaginary number i0+ is added on the eigenenergy E: Accord-
ing to k ∼ E relation dk = dE

h̄vk
, those leftward k (vk > 0) hold

a positive infinitesimal imaginary part, while the rightward
(vk < 0) hold a negative one. For this reason, every leftward
mode, both evanescent (whose k hold a positive finite imagi-
nary part) and transporting (whose k hold a positive infinitesi-
mal imaginary part) have its conjugate rightward counterpart.

In order to acquire all possible wave vectors k and wave
functions φ in Eq. (5), the transition matrix is introduced:

ti =
[

0 1

−h−1
i,i+1h

†
i−1,i −h−1

i,i+1(hii − E)

]
. (7)

It can be simply deduced from Eqs. (3) and (4) that

t1

[
φn(z − 1)

φ1(z)

]
=

[
φ1(z)

φ2(z)

]
,

ti

[
φi−1(z)

φi(z)

]
=

[
φi(z)

φi+1(z)

]
, (8)

tn

[
φn−1(z)

φn(z)

]
=

[
φn(z)

φ1(z + 1)

]
.

The transition matrix Ti is defined as Ti = ti−1 . . . t1tn . . . ti ,
thus, we get

Ti

[
φi−1(z)

φi(z)

]
=

[
φi−1(z + 1)

φi(z + 1)

]
= eik

[
φi−1(z)

φi(z)

]
. (9)

On the one hand, Eq. (9) shares the same solution k and φ

with Eq. (5). On the other hand, Eq. (9) is an eigenvalue
equation, and the eigenvalues eik and eigenfunctions can be
easily solved. As we have analyzed before, with a infinitesimal
imaginary number i0+ added on the eigenenergy E, Ti have N

eigenvalues that |eik| < 1 indicating leftward wave vectors and
N corresponding rightward with |eik| > 1. The transporting
modes can be distinguished from those evanescent modes
because for transporting modes |eik| � 1, while for evanescent
modes |eik| hold a certain deviation from 1. Sorting all
eigenfunctions [φi−1

φi
] into a matrix by the ascending order of

|eik|, we have

Ti

[
	L,i−1 	R,i−1

	Li 	Ri

]
=

[
	L,i−1 	R,i−1

	Li 	Ri

][
χL 0

0 χR

]
.

(10)
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χL (χR) is a diagonal matrix, whose diagonal is arranged by
the ascending order of all eik (eik̄). The wave functions φ (φ̄)
of all modes exist in corresponding matrices 	Li and 	Ri :

χL =

⎡
⎢⎣

eik1 0
. . .

0 eikN

⎤
⎥⎦, χR =

⎡
⎢⎣

eik̄1 0
. . .

0 eik̄N

⎤
⎥⎦,

(11)

and

	Li = [
φ

(1)
i , . . . ,φ

(N)
i

]
, 	Ri = [

φ̄
(1)
i , . . . ,φ̄

(N)
i

]
. (12)

After solving the wave functions φ (φ̄) and wave vectors k

(k̄), the surface Green’s function of the lead can be obtained
straightforwardly. Suppose the lead is leftward infinite and
truncated at the ith layer of cell 0, the surface Green’s function
is

Gr
surf =

{(
1 − 	Rnχ

−1
R 	R1

−1	L1χL	Ln
−1

)
/Vn for i = 1,

(1 − 	R,i−1	Ri
−1	Li	L,i−1

−1)/Vi−1 for i = 2 . . . n,
(13)

where

Vi =
{

h
†
n1

(
	Lnχ

−1
L 	L1

−1 − 	Rnχ
−1
R 	R1

−1
)

for i = 1,

h
†
i−1,i(	L,i−1	Li

−1 − 	R,i−1	Ri
−1) for i = 2 . . . n.

(14)

Next, we solve the transmission amplitude tjα,lβ and reflection amplitude rjβ,lβ with the help of nonequilibrium Green’s
function. The Green’s function Gr

sys has been obtained in previous references [44]. The Green’s function of the whole system
Gr

sys is defined from the equation (E − H )Gr
sys(z,i; z

′,i ′) = δzz′δii ′1. Notice that the scattering state ψ (lβ) in Eq. (2) satisfies the
Schrödinger equation (E − H )ψ (lβ)(z,i) = 0, which is similar with the definition of Gr

sys except at z = z′ and i = i ′. So, we can
structure the Green’s function by using the scattering state ψ (lβ):

Gr
sys(z,i; z

′,i ′)

=

⎧⎪⎪⎨
⎪⎪⎩

	Liαχz−z′
Lα

√
vLα

−1
tα,β

√
vLβ	Li ′β

−1V −1
i ′β , z in the lead α

	Liβχz−z′
Lβ 	Li ′β

−1V −1
i ′β + 	Riβχz−z′

Rβ

√
vRβ

−1rβ,β
√

vLβ	Li ′β
−1V −1

i ′β , z > z′ or z = z′ with i � i ′ in the lead β

	Riβχz−z′
Rβ 	Ri ′β

−1V −1
i ′β + 	Riβχz−z′

Rβ

√
vRβ

−1rβ,β
√

vLβ	Li ′β
−1V −1

i ′β , z < z′ or z = z′ with i � i ′ in the lead β.

(15)

Here, we explain some notation in Eq. (15). (z,i) indicates the
field layer in Green’s function, where z denotes the primitive
cell and i denotes the layer in cell, and (z′,i ′) indicates the
source layer. The source layer is fixed in the incident lead
β. Here, 	Liβ,	Riβ, χLβ, χRβ, vLβ, vRβ and the reflection
amplitude rβ,β all are the matrix with the dimension Nβ × Nβ ,
the transmission amplitude tα,β is a matrix with the dimension
Nα × Nβ . vL is a diagonal matrix of velocity vkl

, which can be
acquired by

vkl
= i

h̄
〈φl|H1e

ikl − H
†
1 e−ikl |φl〉 (16)

and vR is its rightward counterpart.
From Eq. (15), taking z at the lead α, the transmission

amplitude matrix tα,β can be deduced:

tα,β = √
vLαχz′−z

Liα 	Liα
−1Gr

sys(z,i; z
′,i ′)Vi ′β	Li ′β

√
vLβ

−1
.

(17)

Taking z = z′ at the lead β, the reflection amplitude matrix
rβ,β can be obtained:

rβ,β = √
vRβ	Riβ

−1
[
Gr

sys(z,i; z,i) − V −1
iβ

]
Viβ	Liβ

√
vLβ

−1
.

(18)

Technically, evanescent modes which hold a complex velocity
v can be replaced by a 0 in matrix vL/R and v−1

L/R , ensuring
that only transporting modes remain. After obtaining the

transmission and reflection amplitudes, the transmission and
reflection coefficients Tαj,βl = |tαj,βl|2 and Rβj,βl = |rβj,βl|2.

Comparing Eqs. (2) and (15), the scattering wave function
�β in the whole system can be obtained also:

�β(z,i) = Gr
sys(z,i; z

′,i ′)Vi ′β	Li ′β, (19)

where z is required to be larger than z′. The matrix �β can be
written as

�β = [
ψ (1β), . . . ,ψ (Nβ)], (20)

and ψ (lβ) is the scattering wave function in the whole system
(including the center scattering region) for the incident electron
from the lead β at the mode l. After obtaining the scattering
wave function, the current density j (lβ) for a specific incident
mode can be solved straightforwardly.

III. RESULTS AND DISCUSSIONS

In this section, we employ the above method to investigate
mode mixing in a graphene pnp junction. This is a two-
terminal system and the center scattering region is a pnp

junction as shown in Fig. 2. The Hamiltonian of a graphene
pnp junction can be written

H =
∑

i

(εi + ωi)a
†
i ai +

∑
〈i,j〉

teiφij a
†
i aj +

∑
〈〈i,j〉〉

t ′eiφij a
†
i aj ,

(21)
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FIG. 2. This is a map of onsite energy for a random disorder
configuration. The graphene pnp junction consists of the left and
right p regions and the center n region. The center scattering region
includes the center n region and a part of the left and right p regions.
The disorder only exists in the center scattering region near the
boundary of nanoribbon and pn interface.

where ai (a†
i ) annihilates (creates) an electron on carbon

atom i, t and t ′ are the nearest- and second-nearest-neighbor
hopping energies. In this paper, t = 2.7 eV and t ′ = 0.2t .
The magnetic factor eiφij comes from Peierls substitution and
φij = ∫ j

i
A · d l/	0 where A is magnetic vector potential and

	0 = h̄/e [45]. The onsite energy εi can be controlled by
gate voltage, and ωi is disorder potential. We set εi = VG in
the left and right p regions due to a global gate which can
control them in the experiment, and εi = VL in the center n

region which can experimentally be tuned by a local gate.
We take the disorder term ωi = WR(i) where W denotes the
disorder strength and R(i) is a random factor drawn from the
standard normal distribution. This is a short-range disorder
and we will apply this type of disorder throughout this paper
except in Figs. 5(c) and 5(d) where we are discussing the effect
of long-range disorder. The simulated disorder distribution is
shown in Fig. 2. Instead of adding disorder on the whole pnp

region, disorder is added only near the boundary of nanoribbon
and the interfaces of pn junctions (see Fig. 2), where the
wave-function amplitude is most significant. In addition, if
disorder exists in the middle of nanoribbon, it would lead
the scattering among edge states on the upper and lower
sides of the nanoribbon, which is significant in the simulated
small system but strongly depressed in the experiment’s
large device. The Green’s function of the whole system can
be calculated from Gr

sys = (E − Hcen − �r
L − �r

R)−1, with
the Hamiltonian Hcen of the center scattering region. Here,
the center scattering region includes the center n region and
parts of the left and right p regions. The retarded self-energy
�r

L/R = HcL/RGr
surf,L/RH

†
cL/R , where HcL/R is the hopping

Hamiltonian between the center region and the left/right
leads and Gr

surf,L/R is the surface Green’s functions which
can be calculated numerically from Eq. (13). Our following
researches are made in armchair graphene nanoribbon, whose
primitive cell contains two layers. The results are almost the
same for the zigzag ribbon.

In the ballistic regime, when different modes com-
pletely mix up, the conductance G of pnp device is given

FIG. 3. (a) The conductance versus onsite energy VL with
different disorder strengths, while the theoretical conductance is given
as black dashed line. (b) The conductance versus disorder strength
with different onsite energy VL (i.e., filling factors νL). The onsite
energy VL is 1.0, 0.3, −0.3, 2.2, and 2.8 eV, from upper to lower in
the legend. The onsite energy VG is fixed on 0.15 eV with the filling
factor νG = 3, and the magnetic field φ = 0.1 for a hexagonal lattice.

as [24]

unipolar G = 2e2

h
|νL|, |νG| > |νL|

unipolar G = 2e2

h

(
1

|νG| − 1

|νL| + 1

|νG|
)−1

, |νG| � |νL|

bipolar G = 2e2

h

|νLνG|
|νG| + 2|νL| , (22)

where νL,νG = · · · − 3, − 1,1,3 . . . refer to the filling factor
in the center n region and left/right p region, and the factor
2 comes from spin degeneracy. A numerical simulation of a
170-layer armchair pnp device is performed in this section.
The pnp device is consisted of a 70-layer center n region
and the 50-layer left/right p region, and each layer contains
200 atoms. Except where noted, this device is exerted in
a strong vertical magnetic field whose magnetic index is
φ = 0.1 for a hexagonal lattice, and the onsite energy VG in
left/right p region is fixed to 0.15 eV, corresponding to filling
factor νG = 3 with Fermi energy E = 0 eV. In the numerical
calculation, all curves are averaged over up to 1000 random
configurations.

Figure 3(a) depicts the conductance G versus onsite energy
VL with different disorder strengths W , while the ideal
conductance plateaus described by Eq. (22) is given as a
black dashed line. At W = 0 eV, the conductance oscillates
in bipolar regime, which is consistent with the experimental
result [37]. The conductance plateaus emerge in the numerical
simulation for the disorder strength W about from 0.5 to 1.5 eV,
and these plateau values are well consistent with the theoretical
predictions and experimental results [24]. This is clearer in
Fig. 2(b) which shows the conductance G vs W , that every
plot presents a plateau, which is exactly a theoretical value. In
the unipolar regime (e.g., νL = 1, 3, and 5), the conductance
is large at the perfect pnp junction (W = 0). In the bipolar
regime (that νL = −1 and −3), G is small at W = 0 and raises
with disorder in weak strength W , indicating a promotion
to transport resulted from mode mixing. Then, the plateaus
emerge at medium W . The plateaus for the lowest filling factor
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FIG. 4. Numerical simulation for (3,5,3) armchair graphene pnp

junction. (a), (b) Show the nine elements of the transmission coef-
ficient matrix Tjl and the nine elements of the reflection coefficient
matrix Rjl versus the disorder strength W . In panel (a), the three
curves with the value being about 1 at W = 0 are T11, T22, and T33.
While at W ∼ 0.6 eV, nine curves in (a) and (b) converge together
and they almost overlap in W > 0.6 eV. VL = −0.3 eV and the other
parameters are same as in Fig. 3.

(e.g., νL = 1 and −1) can keep in a very large range of W ,
and the plateaus for higher filling factors are slightly narrow.
All plateaus are succeeded by a decline regime because the
system enters the insulator regime at strong W .

In order to show the mode mixing process specifically, a
detailed inspection is taken on the effect of disorder at different
filling factor νL. In the following context, (a,b,a) pnp junction
symbolizes a graphene pnp junction with νG = a and νL =
b. We perform numerical simulations on (3,5,3), (3,1,3), and
(3,−1,3) pnp junctions in sequence, corresponding to three
different situations in Eq. (22). All parameters are the same as
in Fig. 3, except for onsite energy VL of the center n region
and the disorder strength W .

At νL = 5, the system is a (3,5,3) unipolar pnp junction.
Because there are three incident modes in the left P terminal
and three outgoing modes in the right p terminal, the
transmission and reflection coefficient matrices T and R have
3 × 3 = 9 elements, and they as a function of the disorder
strength W are shown in Fig. 4. In a perfect graphene device
that W = 0 eV, the transmission matrix elements T11, T22, and
T33 are close to 1. The other six elements of the transmission
coefficient matrix and all nine elements of the reflection
coefficient matrix R are close to 0. This indicates a high
transparency of incident waves in perfect (3,5,3) pnp junction.
There is no mode mixing and the incident electron goes
forward along the original mode through the pnp junction.
With the increasing of disorder strength W, T11, T22, and T33

reduce and the other six elements of the T matrix increase,
and they converge together at about W = 0.6 eV. While W is
larger than a critical disorder strength Wc (about 0.6 eV), nine
elements of the T matrix are equal as well. All nine elements of
the R matrix also increase with the increasing of W , and they
are equal while W larger than a critical disorder strength Wc.
The critical Wc for the R matrix is equal to one of the T matrix,
indicating transmission modes and reflection modes mix up at
the same disorder strength. In particular, a plateau emerges in
the curves Tjl-W and Rjl-W at about 0.6 eV < W < 1.5 eV
[see Figs. 3(a) and 3(b)]. In this plateau, all nine transmission
elements Tjl keep the same value and so do the nine reflection
elements Rjl . For the unipolar junction with |νL| > |νG|, their

FIG. 5. Numerical simulation for (3,5,3) armchair graphene pnp

junction. Each panel shows the nine elements of the transmission
coefficient matrix Tjl versus the disorder strength W under different
conditions. Panels (a) and (b) are under short-range disorder like
in Fig. 4, while the magnetic flux φ = 0.05 and 0.18, respectively.
When the magnetic flux φ varies, the intervals between the Landau
levels change also. In order to let the junction keep in the (3,5,3)
case, the onsite energies are set VG = −0.6 eV and VL = −0.3 eV
while φ = 0.05, and VG = 0.3 eV and VL = 0.9 eV while φ = 0.18.
Panels (c) and (d) are under the common magnetic flux φ = 0.1, while
the disorder is long range with η = 2 and 5, respectively. The curve
which converges slowest (dark red) in (c) and (d) stands for T11. The
other parameters are same as in Fig. 3.

plateau values are

Tjl = νL

νG(2νL − νG)
, (23)

Rjl = νL − νG

νG(2νL − νG)
. (24)

For the (3,5,3) pnp junction with νL = 5 and νG = 3, Tjl = 5
21

and Rjl = 2
21 . Notice that the same of all nine Tjl and Rjl

indicate that an incident mode is either scattered into any one
of three transmission modes in equal possibility, or into any
one of three reflection modes in equal possibility, which clearly
shows the occurrence of the perfect mode mixing. While W

increases further, the system turns into the insulator regime,
then all elements of the T matrix reduce and all elements of the
R matrix increase. However, all elements of T and R matrices
stay the same.

Next, we consider the effect of the magnetic field on the
mode mixing. Figures 5(a) and 5(b) show the nine elements of
transmission coefficient matrix in a (3,5,3) unipolar junction
with the magnetic flux φ = 0.05 and 0.18, respectively. The
similar results can be obtained. In a clean pnp junction that
W = 0, T11, T22, and T33 have a large value with close to 1, and
the other six elements of the T matrix are small. At a critical
disorder strength Wc, all nine elements of the T matrix con-
verge together and they are equal as well while W > Wc. These
results clearly show the occurrence of the perfect mode mixing
while W > Wc. The critical disorder strength Wc = 0.8 eV
under φ = 0.05 and Wc = 0.55 eV under φ = 0.18. Together
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with the value Wc = 0.6 eV under φ = 0.1 in Fig. 4, it comes
to the conclusion that the critical disorder strength Wc slightly
decreases with the increase of the intensity of the magnetic
field. The larger the magnetic field is, the slower the decrease
Wc is. These features can be qualitatively explained with the
help of the cyclotron radius of the magnetic field. The large
magnetic field makes the electron trajectory closer to the in-
terfaces of the pnp junction and the boundary of the graphene
nanoribbon, and then the edge modes overlap together in space.
So, it is easy that the perfect mode mixing occurs.

Up to now, we only consider the short-range disorder. In this
paragraph, let us investigate the mode mixing under long-range
disorder. The strength of short- and long-range disorders can
not be simply compared. In order to make them more compa-
rable, for the long-range disorder case, we choose the form of
the disorder term ωi in the Hamiltonian [see Eq. (21)] as [46]

ωi =
∑

j

ω̃j exp
(−|r2

ij |/2η2
)
/A, (25)

where η is the spatial correlation parameter, |r ij | is the distance
between carbon atoms i and j , and ω̃j = WR(j ) with the
disorder strength W and the standard normal distribution
R(j ). The normalization coefficient A is chosen as

A =
√∑

i

exp
(−|r2

ij |/η2
)
. (26)

The sum in Eq. (26) is taken over an infinite graphene plane.
Using this normalization, the variance of onsite energy is equal
in short- and long-range disorders for an infinite graphene
plane. Mode mixing procedure with long-range disorder is pre-
sented in Figs. 5(c) and 5(d). For all the range η, nine elements
of the T matrix can converge together well while the disorder
strength W is a larger critical disorder strength. This means
that the perfect mode mixing can occur regardless of the short-
and long-range disorders. With the increase of the range η,
the convergence of transmission coefficient T11 is significantly
slower than other coefficients. This indicates the robustness of
the first edge mode and it is difficult to mix the first edge mode
with others. From Figs. 6(a)–6(c), we can see that the first mode
is closest to the boundary. On the other hand, under the long-
range disorder, the disorder potential ωi approximatively keeps
it in the range η. So, it needs a larger disorder strength W to mix
the first mode with others, in particular, for the large value η.

In the following, we take the magnetic flux φ = 0.1 under
the short-range disorder again. Figures 6(a)–6(l) show the
space distribution of wave function |ψ (lL)|2 and the current
density j (lL) for all three incident modes from the left lead
at the (3,5,3) pnp junction, respectively. For the perfect
graphene pnp junction with W = 0 eV, |ψ (lL)|2 and j (lL) for
the first incident mode mainly distributes at the region very
close to the lower boundary of the device and they almost
are zero at the other region [see Figs. 6(a) and 6(d)], because
that the first mode is the edge state of the first Landau level
and it is very close to the boundary. For the second and third
incident modes, the wave function |ψ (lL)|2 slightly emerges at
the interface of the pnp junction [see Figs. 6(b) and 6(c)], but
the reflection wave function and the reflection current density
are very small still. These results clearly show the incident
electron goes forward along the original mode through the

FIG. 6. The space distribution of the wave functions |ψ (lL)|2 [(a)–
(c) and (g)–(i)] and the corresponding current density [(d)–(f) and
(j)–(l)] of scattering states in (3,5,3) armchair graphene pnp junction.
The color indicates the intensity of wave function and current, and
the arrows in current density pictures indicate the orientation. Panels
(a)–(f) are for the perfect pnp junction without disorder (W = 0 eV),
where all the three scattering states are perfect conducting channel.
The disorder strength at (g)–(l) is W = 0.5 eV. The columns from left
to right are for the first, second, and third incident modes, respectively.
VL = −0.3 eV and the other parameters are same as in Fig. 3.

perfect (3,5,3) pnp junction and the mode mixing does not
occur. On the other hand, while in the presence of the disorder
(W = 0.5 eV) the mode mixing occurs, all the three scattering
states show much similarity. From Figs. 6(g)–6(i), one can
clearly see that the wave-function distributions in the center
regions for the three incident modes are almost the same.
In addition, the current density j (lL) for all three incident
modes is the same also [see Figs. 6(j)–6(l)]. This means that
the perfect mode mixing not only makes that the incident
electron has the equal probability to each outgoing (reflection)
mode, but also makes the same current density in the whole
scattering region for all incident modes.

Next, let us study the (3,1,3) unipolar pnp junction. Since
there is only one conducting mode in the center n region
which is less than three modes in the left and right p regions,
the conductance is decided by the filling factor |νL| of the
center region. In this case, some works have shown that the
mode mixing is absent and the conductance is usually 2e2

h
|νL|,

except for in the insulator regime while at the very strong
disorder W . Figures 7(a) and 7(b) show the nine elements
of the transmission and reflection coefficient matrices as well
as the total transmission and reflection coefficients versus the
disorder strength W . The total transmission coefficient T is
1 and the total reflection coefficient R is 2 in a large range
of W (from 0 to 2.6 eV), as expected. From the results of
the total T and R, it shows that the carrier seems to flow
ballistically through the pnp junction and the mode mixing
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seems to be unimportant. However, from the nine elements
of Tjl and Rjl , they clearly show the occurrence of the mode
mixing still. At the absence of the disorder (W = 0 eV), the
T11 is very large and the other eight elements Tjl are very small
[see Fig. 7(a)], which means that the incident electron from the
first mode can well go forward along the same mode through
the junction and the incident electron from the other mode is
reflected back. With the increase of W , the T11 reduces and
the other eight elements Tjl increase due to the mode mixing,
although the total T keeps 1 still. They converge together at
about W = 0.8 eV. Then, while W > 0.8 eV, all elements Tjl

and Rjl are same. While W in the range of from 0.8 to 2.6 eV,
Tjl and Rjl show the plateau with Tjl = 1

9 and Rjl = 2
9 . These

results clearly show the occurrence of the perfect mode mixing
while 0.8 eV < W < 2.6 eV.

Figures 7(c) and 7(d) show the fluctuation of each element
and total of the transmission and reflection coefficients for
the (3,1,3) pnp junction. Here, the fluctuation is defined as,
e.g., rms(T ) =

√
〈T 2〉 − 〈T 〉2 and 〈. . .〉 is the average over

the random disorder configurations. The fluctuations of the
total transmission efficient T and total reflection efficient R

are zero while W is less than 2.2 eV; this seems to show
the ballistical transport and the mode mixing are absent.
However, all elements of transmission and reflection matrices
hold a nonzero fluctuation, although the sum of them has a
zero fluctuation. This clearly indicates the occurrence of the
mode mixing. In particular, at the perfect mode mixing case,
the nine elements of Tjl and Rjl have the same fluctuations.
They exhibit the plateau while 0.8 eV < W < 2.6 eV. For the
(3,1,3) pnp junction, the plateau value of fluctuation of Tjl is√

5/18 and the plateau value of fluctuation of Rjl is
√

11/18.

FIG. 7. Numerical simulation for (3,1,3) armchair graphene pnp

junction. (a), (b) Present the nine elements of transmission and
reflection coefficient matrices vs disorder strength W , respectively.
Here, the total transmission and reflection coefficients, the sum of
all nine elements, are shown also (see the black line). (c), (d) Show
the fluctuation of each element and total transmission and reflection
coefficients vs disorder strength W . Notice that the fluctuation of
the total transmission (reflection) coefficient T (R) is not equal to
the sum of the fluctuation of the nine elements Tjl (Rjl), although
T = ∑

j l Tjl (R = ∑
j l Rjl). VL = 1.0 eV and the other parameters

are same as in Fig. 3.

FIG. 8. The space distribution of the wave functions |ψ (lL)|2 of
scattering states in (3,1,3) armchair graphene pnp junction. The color
indicates the intensity of wave function. Panels (a)–(c) are for the
perfect pnp junction without disorder (W = 0 eV), while the disorder
strength at (d)–(f) is W = 1 eV. The columns from left to right are for
the first, second, and third incident modes, respectively. VL = 1.0 eV
and the other parameters are same as in Fig. 3.

The space distributions of wave function |ψ (lL)|2 for three
incident modes in the (3,1,3) pnp junction are shown in
Fig. 8. At the disorder strength W = 0 eV, three scattering
states are very different [see Figs. 8(a)–8(c)]. For the first
incident mode, the wave function mainly distributes on the
lower boundary, and it exhibits that this incident electron goes
forward without backscattering. But, for the second and third
modes, the incident electrons are mainly backscattered along
the upper boundary. On the other hand, while W = 1 eV, three
scattering states show well similarity [see Figs. 8(d)–8(f)], this
indicates the occurrence of the perfect mode mixing, although
the total transmission coefficient T is 1 still.

A bipolar pnp junction is formed by two pn junctions
arranged back to back. Unlike in a unipolar pnp junction
where exists conducting channel and has a large conductance
at W = 0 eV, in a bipolar pnp junction pn interfaces block
the conducting channel and the conductance usually is small
at the absence of the disorder (see Fig. 3). In the bipolar
junction, disorder can promote electron transport and increase
the conductance due to mode mixing [33,47]. This can be
seen in Fig. 3(b) where the conductances of νL = −1 and
−3 raise in weak disorder case. Figure 9 shows the nine
elements of the transmission and reflection coefficient matrices
versus disorder strength W for the (3,−1,3) bipolar pnp

junction. At weak W , the nine elements of T and R matrices

FIG. 9. (a), (b) Present the nine elements of transmission and
reflection coefficient matrices vs disorder strength W in (3,−1,3)
armchair graphene pnp junction, respectively. VL = 2.2 eV and the
other parameters are same as in Fig. 3.
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FIG. 10. Numerical simulation for (3,1,3) Stone-Wales edge-
reconstructed zigzag graphene pnp junction. (a), (b) Show the nine
elements of transmission and reflection coefficient matrices as well
the total transmission and reflection coefficients vs disorder strength
W . (c), (d) Show the fluctuation of each element and total transmission
and reflection coefficients vs W . The parameters are same as in Fig. 7.

are very different. However, about at W = 0.6 eV, all nine
elements of T (R) matrices well merge together. They are
equal always for the larger W , and they exhibit the plateaus at
the large range of 0.6 eV < W < 3.5 eV, which well indicates
perfect mode mixing for W > 0.6 eV. The plateau values are
Tjl = |νL|

|νG|(|νG|+2|νL|) and Rjl = |νG|+|νL|
|νG|(|νG|+2|νL|) . For the (3,−1,3)

junction with νG = 3 and νL = −1, Tjl = 1
15 and Rjl = 4

15 ,
which is well consistent with the numerical results in Figs. 9(a)
and 9(b).

All these aforementioned numerical simulations are based
on the armchair nanoribbon. We have also performed these
numerical calculations in the pnp junction based on the zigzag
nanoribbon, whose size matches the simulated armchair one,
that means the simulated zigzag nanoribbon is also consisted
of a 70-layer center n region and two 50-layer left and right p

regions, and each layer contains 200 atoms. We have repeated
all curves in Figs. 3–9, and obtained the same results.

In addition, this method can be applied in other materials.
We choose an edge-reconstructed zigzag pnp junction, for
example. Its boundary is reformed by Stone-Wales defects,
that pentagon-heptagon pairs which often forms at the bound-
ary of CVD-grown graphene [48]. Figure 10 presents the
transmission and reflection coefficient matrices as well as
their fluctuation versus disorder strength W . The results are
very similar with the armchair nanoribbon case (see Figs. 7
and 10). The total transmission and reflection coefficients
display the plateau beginning at W = 0 to 2.6 eV. But, the

nine elements Tjl and Rjl are not equal at W = 0. They
merge until W = 0.6 eV and then show the plateau for W

from 0.6 to 2.6 eV. While at the plateau, the fluctuations of
the total transmission and reflection coefficients are exactly
zero. However, the fluctuations of the nine elements Tjl and
Rjl are not zero, and they exhibit the plateau with the plateau
values

√
5/18 for Tjl and

√
11/18 for Rjl . These indicate the

occurrence of perfect mode mixing which is quite similar to
the armchair pnp junction case.

IV. CONCLUSIONS

In summary, we have obtained extended transmission and
reflection coefficient formulas in a two-terminal system by
Sanvito and Lambert to the multiterminal system. These
formulas can give the scattering wave function and the current
density in the real space for a specific incident mode from
an arbitrary terminal, as well as can give the transmission
and reflection coefficients from a specific incident mode to an
arbitrary outgoing mode. By using these formulas, we study
electron transport through a graphene pnp junction. While
at the perfect pnp junction, the elements of the transmission
and reflection coefficient matrices are very different, and the
space distribution of the scattering wave function for different
incident modes has a large difference as well. But, they merge
at the presence of disorder. While the disorder is stronger than
a critical value, all elements of the transmission matrix are
the same regardless of unipolar or bipolar junctions, so are
all elements of the reflection matrix. At the suitable disorder,
all elements of the transmission and reflection matrices show
the plateau structure, as well the scattering wave function for
the different incident modes are similar. These results clearly
indicate the occurrence of perfect mode mixing. Moreover,
the perfect mode mixing can occur regardless of the intensity
of the magnetic field and the disorder nature. In particular,
while the mode number in the center region is less than that
in the left and right regions in the unipolar pnp junction, an
interesting phenomenon occurs. Here, the fluctuation of the
total transmission and reflection coefficients is exactly zero,
which seems to indicate the ballistic transport. However, all
elements of transmission and reflection matrices show the
fluctuation and clearly mean the occurrence of the perfect
mode mixing in this case also.
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[34] B. Özyilmaz, P. Jarillo-Herrero, D. Efetov, D. A. Abanin, L. S.

Levitov, and P. Kim, Phys. Rev. Lett. 99, 166804 (2007).
[35] J. Velasco, G. Liu, L. Jing, P. Kratz, H. Zhang, W. Bao, M.

Bockrath, and C. N. Lau, Phys. Rev. B 81, 121407 (2010).
[36] G. Liu, J. Velasco, Jr., W. Bao, and C. N. Lau, Appl. Phys. Lett.

92, 203103 (2008).
[37] S. Morikawa, S. Masubuchi, R. Moriya, K. Watanabe, T.

Taniguchi, and T. Machida, Appl. Phys. Lett. 106, 183101
(2015).

[38] N. Kumada, F. D. Parmentier, H. Hibino, D. C. Glattli, and P.
Roulleau, Nat. Commun. 6, 8068 (2015).

[39] S. Matsuo, S. Takeshita, T. Tanaka, S. Nakaharai, K. Tsukagoshi,
T. Moriyama, T. Ono, and K. Kobayashi, Nat. Commun. 6, 8066
(2015).

[40] J.-C. Chen, T. C. Au Yeung, and Q.-F. Sun, Phys. Rev. B 81,
245417 (2010).

[41] J. Li and S.-Q. Shen, Phys. Rev. B 78, 205308 (2008).
[42] S. Sanvito, C. J. Lambert, J. H. Jefferson, and A. M. Bratkovsky,

Phys. Rev. B 59, 11936 (1999).
[43] R. Landauer, IBM J. Res. Dev. 1, 223 (1957).
[44] S. Datta, Electronic Transport in Mesoscopic Systems (Cam-

bridge University Press, Cambridge, 1997).
[45] R. Peierls, Z. Phys. 80, 763 (1933).
[46] S.-G. Cheng, H. Zhang, and Q.-F. Sun, Phys. Rev. B 83, 235403

(2011).
[47] H. Schmidt, J. C. Rode, C. Belke, D. Smirnov, and R. J. Haug,

Phys. Rev. B 88, 075418 (2013).
[48] J. N. B. Rodrigues, P. A. D. Goncalves, N. F. G. Rodrigues,

R. M. Ribeiro, J. M. B. Lopes dos Santos, and N. M. R. Peres,
Phys. Rev. B 84, 155435 (2011).

064205-10

https://doi.org/10.1038/nnano.2010.89
https://doi.org/10.1038/nnano.2010.89
https://doi.org/10.1038/nnano.2010.89
https://doi.org/10.1038/nnano.2010.89
https://doi.org/10.1021/jp505391u
https://doi.org/10.1021/jp505391u
https://doi.org/10.1021/jp505391u
https://doi.org/10.1021/jp505391u
https://doi.org/10.1126/science.1204428
https://doi.org/10.1126/science.1204428
https://doi.org/10.1126/science.1204428
https://doi.org/10.1126/science.1204428
https://doi.org/10.1103/PhysRevB.92.241301
https://doi.org/10.1103/PhysRevB.92.241301
https://doi.org/10.1103/PhysRevB.92.241301
https://doi.org/10.1103/PhysRevB.92.241301
https://doi.org/10.1103/PhysRevLett.107.036602
https://doi.org/10.1103/PhysRevLett.107.036602
https://doi.org/10.1103/PhysRevLett.107.036602
https://doi.org/10.1103/PhysRevLett.107.036602
https://doi.org/10.1126/science.1138020
https://doi.org/10.1126/science.1138020
https://doi.org/10.1126/science.1138020
https://doi.org/10.1126/science.1138020
https://doi.org/10.1103/PhysRevB.74.041403
https://doi.org/10.1103/PhysRevB.74.041403
https://doi.org/10.1103/PhysRevB.74.041403
https://doi.org/10.1103/PhysRevB.74.041403
https://doi.org/10.1103/PhysRevLett.107.046602
https://doi.org/10.1103/PhysRevLett.107.046602
https://doi.org/10.1103/PhysRevLett.107.046602
https://doi.org/10.1103/PhysRevLett.107.046602
https://doi.org/10.1103/PhysRevB.86.035429
https://doi.org/10.1103/PhysRevB.86.035429
https://doi.org/10.1103/PhysRevB.86.035429
https://doi.org/10.1103/PhysRevB.86.035429
https://doi.org/10.1103/PhysRevB.92.235438
https://doi.org/10.1103/PhysRevB.92.235438
https://doi.org/10.1103/PhysRevB.92.235438
https://doi.org/10.1103/PhysRevB.92.235438
https://doi.org/10.1038/ncomms7470
https://doi.org/10.1038/ncomms7470
https://doi.org/10.1038/ncomms7470
https://doi.org/10.1038/ncomms7470
https://doi.org/10.1038/ncomms7093
https://doi.org/10.1038/ncomms7093
https://doi.org/10.1038/ncomms7093
https://doi.org/10.1038/ncomms7093
https://doi.org/10.1103/PhysRevLett.112.196601
https://doi.org/10.1103/PhysRevLett.112.196601
https://doi.org/10.1103/PhysRevLett.112.196601
https://doi.org/10.1103/PhysRevLett.112.196601
https://doi.org/10.1103/PhysRevLett.110.216601
https://doi.org/10.1103/PhysRevLett.110.216601
https://doi.org/10.1103/PhysRevLett.110.216601
https://doi.org/10.1103/PhysRevLett.110.216601
https://doi.org/10.1016/j.ssc.2012.04.024
https://doi.org/10.1016/j.ssc.2012.04.024
https://doi.org/10.1016/j.ssc.2012.04.024
https://doi.org/10.1016/j.ssc.2012.04.024
https://doi.org/10.1088/1367-2630/11/9/095008
https://doi.org/10.1088/1367-2630/11/9/095008
https://doi.org/10.1088/1367-2630/11/9/095008
https://doi.org/10.1088/1367-2630/11/9/095008
https://doi.org/10.1016/j.nantod.2010.12.001
https://doi.org/10.1016/j.nantod.2010.12.001
https://doi.org/10.1016/j.nantod.2010.12.001
https://doi.org/10.1016/j.nantod.2010.12.001
https://doi.org/10.1088/0957-4484/22/41/415203
https://doi.org/10.1088/0957-4484/22/41/415203
https://doi.org/10.1088/0957-4484/22/41/415203
https://doi.org/10.1088/0957-4484/22/41/415203
https://doi.org/10.1103/PhysRevB.81.033301
https://doi.org/10.1103/PhysRevB.81.033301
https://doi.org/10.1103/PhysRevB.81.033301
https://doi.org/10.1103/PhysRevB.81.033301
https://doi.org/10.1038/srep09955
https://doi.org/10.1038/srep09955
https://doi.org/10.1038/srep09955
https://doi.org/10.1038/srep09955
https://doi.org/10.1039/C0JM02922J
https://doi.org/10.1039/C0JM02922J
https://doi.org/10.1039/C0JM02922J
https://doi.org/10.1039/C0JM02922J
https://doi.org/10.1063/1.3505926
https://doi.org/10.1063/1.3505926
https://doi.org/10.1063/1.3505926
https://doi.org/10.1063/1.3505926
https://doi.org/10.1038/nphys1198
https://doi.org/10.1038/nphys1198
https://doi.org/10.1038/nphys1198
https://doi.org/10.1038/nphys1198
https://doi.org/10.1103/PhysRevB.81.165425
https://doi.org/10.1103/PhysRevB.81.165425
https://doi.org/10.1103/PhysRevB.81.165425
https://doi.org/10.1103/PhysRevB.81.165425
https://doi.org/10.1103/PhysRevB.80.205423
https://doi.org/10.1103/PhysRevB.80.205423
https://doi.org/10.1103/PhysRevB.80.205423
https://doi.org/10.1103/PhysRevB.80.205423
https://doi.org/10.1126/science.1144672
https://doi.org/10.1126/science.1144672
https://doi.org/10.1126/science.1144672
https://doi.org/10.1126/science.1144672
https://doi.org/10.1103/PhysRevLett.101.166806
https://doi.org/10.1103/PhysRevLett.101.166806
https://doi.org/10.1103/PhysRevLett.101.166806
https://doi.org/10.1103/PhysRevLett.101.166806
https://doi.org/10.1103/PhysRevLett.99.166804
https://doi.org/10.1103/PhysRevLett.99.166804
https://doi.org/10.1103/PhysRevLett.99.166804
https://doi.org/10.1103/PhysRevLett.99.166804
https://doi.org/10.1103/PhysRevB.81.121407
https://doi.org/10.1103/PhysRevB.81.121407
https://doi.org/10.1103/PhysRevB.81.121407
https://doi.org/10.1103/PhysRevB.81.121407
https://doi.org/10.1063/1.2928234
https://doi.org/10.1063/1.2928234
https://doi.org/10.1063/1.2928234
https://doi.org/10.1063/1.2928234
https://doi.org/10.1063/1.4919380
https://doi.org/10.1063/1.4919380
https://doi.org/10.1063/1.4919380
https://doi.org/10.1063/1.4919380
https://doi.org/10.1038/ncomms9068
https://doi.org/10.1038/ncomms9068
https://doi.org/10.1038/ncomms9068
https://doi.org/10.1038/ncomms9068
https://doi.org/10.1038/ncomms9066
https://doi.org/10.1038/ncomms9066
https://doi.org/10.1038/ncomms9066
https://doi.org/10.1038/ncomms9066
https://doi.org/10.1103/PhysRevB.81.245417
https://doi.org/10.1103/PhysRevB.81.245417
https://doi.org/10.1103/PhysRevB.81.245417
https://doi.org/10.1103/PhysRevB.81.245417
https://doi.org/10.1103/PhysRevB.78.205308
https://doi.org/10.1103/PhysRevB.78.205308
https://doi.org/10.1103/PhysRevB.78.205308
https://doi.org/10.1103/PhysRevB.78.205308
https://doi.org/10.1103/PhysRevB.59.11936
https://doi.org/10.1103/PhysRevB.59.11936
https://doi.org/10.1103/PhysRevB.59.11936
https://doi.org/10.1103/PhysRevB.59.11936
https://doi.org/10.1147/rd.13.0223
https://doi.org/10.1147/rd.13.0223
https://doi.org/10.1147/rd.13.0223
https://doi.org/10.1147/rd.13.0223
https://doi.org/10.1007/BF01342591
https://doi.org/10.1007/BF01342591
https://doi.org/10.1007/BF01342591
https://doi.org/10.1007/BF01342591
https://doi.org/10.1103/PhysRevB.83.235403
https://doi.org/10.1103/PhysRevB.83.235403
https://doi.org/10.1103/PhysRevB.83.235403
https://doi.org/10.1103/PhysRevB.83.235403
https://doi.org/10.1103/PhysRevB.88.075418
https://doi.org/10.1103/PhysRevB.88.075418
https://doi.org/10.1103/PhysRevB.88.075418
https://doi.org/10.1103/PhysRevB.88.075418
https://doi.org/10.1103/PhysRevB.84.155435
https://doi.org/10.1103/PhysRevB.84.155435
https://doi.org/10.1103/PhysRevB.84.155435
https://doi.org/10.1103/PhysRevB.84.155435



