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A new modified embedded-atom method (MEAM) force field is developed for liquid tin. Starting from the
Ravelo and Baskes force field [Phys. Rev. Lett. 79, 2482 (1997)], the parameters are adjusted using a simulated
annealing optimization procedure in order to obtain better agreement with liquid-phase data. The predictive
capabilities of the new model and the Ravelo and Baskes force field are evaluated using molecular dynamics
by comparing to a wide range of first-principles and experimental data. The quantities studied include crystal
properties (cohesive energy, bulk modulus, equilibrium density, and lattice constant of various crystal structures),
melting temperature, liquid structure, liquid density, self-diffusivity, viscosity, and vapor-liquid surface tension.
It is shown that although the Ravelo and Baskes force field generally gives better agreement with the properties
related to the solid phases of tin, the new MEAM force field gives better agreement with liquid tin properties.
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I. INTRODUCTION

Tin has played a significant role in the course of human
history. It is an essential component of bronze which saw
widespread use throughout the world during the Bronze Age
(around 3300–1200 BC). During this time, the creation of
tools, weapons, and ornaments utilized bronze and therefore
relied on tin. Humans needed to possess some understanding
of the properties of liquid tin in order to create the bronze used
in these artifacts. The necessity to understand liquid tin still
holds today as evidenced by its importance in many modern
technologies. For example, knowledge of liquid tin properties
is useful for soldering. Soldering is important in several
applications such as electronics, plumbing, and jewelry. Tin-
lead alloys are common solders; however, environmental and
ecological concerns sparked a search for lead-free solders es-
pecially when certain policies, such as the Waste Electrical and
Electronic Equipment Directive which limits the use of lead
in electronics, were implemented. Many alternative candidate
alloys still contain tin as one of the main components [1,2].
Examples include binary alloys such as tin-copper, tin-silver,
tin-gold, tin-zinc, tin-bismuth, and tin-indium [3] or even
ternary alloys such as tin-silver-copper [4].

Liquid metals, including liquid tin and lithium-tin alloys
[5–7], are currently being considered as alternative plasma-
facing materials in tokamak fusion reactors for several reasons,
such as the fact that liquid walls can self-replenish and they
offer easier means of remote maintenance [6,8]. An under-
standing of the properties of these liquid metals is also needed
in order to properly assess their potential use as plasma-facing
materials. Relevant liquid metal properties include viscosities,
diffusivities, hydrogen solubilities, and wetting properties.
Recently, experimental studies have been performed focusing
on the understanding of properties of liquid lithium [9,10] and
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liquid tin [11,12] in the context of plasma-facing materials.
Unfortunately, experimental studies on these properties, at
conditions of interest, are not complete, especially for lithium-
tin alloys. In addition, the effect of impurities in experiments
can be significant, which complicates the understanding of the
behavior of pure materials. For instance, oxygen impurities
were reported to have significant effects on properties of
lithium droplets [13] and tin thin films [14] on molybdenum
surfaces. Computational studies for liquid metals can provide
predictions where experimental data are lacking and also
eliminate the effect of impurities on phenomena relevant to
plasma-facing applications. One example is studying how
liquid metals behave when bombarded with high-energy
particles that escape the plasma in a tokamak reactor. An
accurate computational approach to studying liquid tin would
also be useful for examining various aspects of tin-based
solders.

First-principles quantum mechanics (QM) methods, such
as Kohn-Sham density functional theory [15,16], are widely
used to simulate solid materials. However, these methods
are computationally demanding for simulating liquids. In
particular, QM methods cannot simulate very large system
sizes or access long times. Many of the properties calculated
in this work require system sizes of thousands of atoms
and simulations times on the order of several nanoseconds.
These size and time scales are not easily accessed using
QM approaches. For example, the calculation of viscosity
typically requires simulation times on the order of tens of
nanoseconds. Classical molecular dynamics is an alternative
method that can overcome these difficulties. However, it
requires the specification of an interatomic force field to
describe the interactions between atoms. The embedded-atom
method (EAM) force fields [17] are widely used to simu-
late metallic systems. The modified embedded-atom method
(MEAM) force fields [18] represent an extension of the EAM
framework in which directional bonding is included in order
to accurately describe different local structures, thus allowing
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these models to be applied to a wider range of materials. Before
these potentials can be used to predict properties relevant to
plasma-facing or soldering applications, careful development
and validation of the potentials needs to be done. This has
already been performed for lithium EAM and MEAM force
fields, by examining predictions for various coexistence and
liquid properties [19,20]. In these studies it was shown that a
lithium force field developed by Cui et al. [21] gave accurate
predictions for several liquid-phase properties. A tin MEAM
force field that accurately predicts liquid-phase properties
would be useful not only for examining pure tin, but could
also be used to study the liquid phase of lithium-tin alloys
and the wetting properties of tin on solid substrates used in
tokamak reactors. The tin force field could also be combined
with other EAM force fields developed for different metals to
investigate various tin alloys for their potential use as solder.

In this work, we present a critical evaluation of both
an existing and new MEAM force field using geometry
optimization and molecular dynamics. The existing tin force
field was developed in 1997 by Ravelo and Baskes [22].
Although it performs well for the solid phases of tin, we show
that it is not optimal for the liquid phase. We develop the
second force field by tuning the parameters of the Ravelo and
Baskes potential using a simulated annealing procedure with
the goal of obtaining better agreement with liquid properties.
For each force field, we calculate the cohesive energy, bulk
modulus, and equilibrium volume of several crystal structures.
We also calculate the melting temperature, density of the
liquid phase, liquid-phase radial distribution functions, self-
diffusivity, viscosity, and vapor-liquid surface tension. In each
case, we compare the properties obtained from force fields to
available experimental or QM data to assess the performance
of each of the models.

We note that there are several other tin force fields available
in the literature that we did not consider in this work.
For example, an EAM force field was developed for the
high-pressure crystal phases of tin [23]; however, we are not
concerned with these phases in this work. Several studies
utilize pair potentials (as opposed to the many-body EAM
formalism) to study liquid tin [24–27]. These were not used
in this work because it is known that treating metallic systems
with a single pair potential cannot cover a wide range of
conditions. This is illustrated in work by Canales et al. [28]
in which the authors developed effective pair potentials for
liquid lithium but mentioned that the potentials are dependent
on the thermodynamic conditions being simulated. This is not
practical for our purposes because we aim to study liquid
tin over a broad range of temperatures and developing a
new effective pair potential for each temperature would be
cumbersome. There also exists work in which a nickel-tin
MEAM potential was developed using the Ravelo and Baskes
tin force field with one parameter changed [29]. However,
this slightly modified Ravelo and Baskes force field was not
examined in this work.

This paper is organized as follows. Section II reviews the
MEAM model and the optimization procedure used to develop
the new tin MEAM force field. Section III discusses the
computational methods used to calculate various properties
of solid and liquid tin. Section IV presents and discusses the
results. Finally, Sec. V concludes the paper by summarizing

our findings and outlines the strengths and drawbacks of each
tin MEAM force field.

II. MODEL AND OPTIMIZATION PROCEDURE

A. MEAM force field

The potential energy in the MEAM framework is given by

Epot =
∑

j

Gj (φj ) + 1

2

∑
j

∑
k �=j

ϕjk(rjk). (1)

The term Gj is called the embedding energy and is a function
of the effective electron density φj at the site of atom j . Gj

can be interpreted as the energy it takes to embed atom j into
an effective background electron density φj (which is due to
the surrounding atoms). The embedding energy accounts for
metallic bonding. The next term, ϕjk(rjk), is a pair potential,
which accounts for effective electrostatic interactions between
atoms j and k with rjk being the distance between them.

In the MEAM formalism, the embedding energy, effective
background electron density, and pair potential are compli-
cated functions containing many parameters. These parameters
can be varied to give agreement to experimental and QM data.
For the sake of brevity, we will not reproduce the forms of
the aforementioned functions but will point the reader to a
resource that provides this information [30]. We note that
there is one occurrence where the form of a specific function
differs between the Ravelo and Baskes force field and the new
force field presented in this work. This appears in one of the
contributions, φ(3)

j , to the effective background electron density
(Eq. (4.7d) in Gullet et al. [30]). The new MEAM force field
developed here takes the following form for this function:
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while the Ravelo and Baskes force field uses
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where the x, y, and z superscripts denote their respective
components of the rjk vector. φ

a(3)
k is a radial function that

describes part of the contribution of atom k to the effective
electron density at the site of atom j . Sjk is the value of the
screening function for the interaction between atoms j and
k. Equation (2) is used in more recent MEAM force fields in
order to make the contributions to the effective background
electron density orthogonal to one another [31].

Both force fields were implemented using the LAMMPS
simulations package (15 May 2015 version) [32]. We note that
the screening function implemented in LAMMPS [30] differs
from the one used in the original Ravelo and Baskes paper.
The screening function implemented by Ravelo and Baskes
was outlined in a 1994 paper by Baskes et al. [33]. However,
we were able to reproduce the reported α-tin (cubic diamond)
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TABLE I. MEAM Parameters for the tin force fields examined in
this work.

Ravelo and Baskes [22] New MEAM

Ec 3.08 3.06
rlat

a 4.860 4.794
α 6.20 6.11
A 1.00 1.01
β (0) 6.20 6.33
β (1) 6.00 6.04
β (2) 6.00 4.69
β (3) 6.00 5.92
t (0) 1.00 1.00
t (1) 4.50 4.51
t (2) 6.50 6.50
t (3) −0.183 0.029
Cmin 0.8 0.8
Cmax 2.8 2.8
rc 5.5 4.8
�r 0.1 0.2

aThis is the lattice constant of the reference structure (which
LAMMPS takes as an input).

and β-tin crystal energies and equilibrium volumes at 0 K and
therefore concluded that the different screening function did
not have a large effect on the properties calculated in this work.
Both MEAM force fields in this work use the face-centered
cubic (fcc) crystal as the reference structure. Although tin
includes 10 stable isotopes, our calculations have assigned a
common mass to all particles, where that assigned mass is an
average determined by the natural occurrence frequencies of
those isotopes (118.71 atomic mass units).

The MEAM parameters for the Ravelo and Baskes force
field and the force field developed in this work are shown in
Table I. It should be noted that many of the parameters of
the new MEAM force field are very similar to the parameters
of the Ravelo and Baskes force field. This is largely due to
the fact that the Ravelo and Baskes parameters were used as a
starting point for the optimization. In our attempt to accurately
capture both solid and liquid properties of tin, most parameters
were kept close to their initial values. More optimization
details are provided in the next subsection. The LAMMPS files
implementing these force fields are available as Supplemental
Material [81].

B. Optimization of new MEAM force field

Here we describe the steps used to generate the new tin
MEAM force field. The initial parameters of the MEAM force
field were taken from the Ravelo and Baskes potential [22]
with the exception of the cutoff distance (rc) and the length
of the smoothing distance for the cutoff function (�r). Both
rc and �r were chosen to match those used for the lithium
MEAM force field of Cui et al. [21]. This was done for the
convenience of the future development of cross parameters for
lithium-tin alloys because LAMMPS defines a universal value
of rc and �r for all species in alloy systems.

The target function is composed of both solid and liquid tin
properties in an attempt to create a more robust and accurate

force field that captures properties of different phases of tin.
The target function is defined as

∏
(x) =

N∑
i=1

wi |yi − fi(x)|, (4)

where wi is a weight factor and yi is a target value for the ith
physical property of tin. The target value for a given property is
taken from either simulations or experiments. fi(x) is the same
property obtained with a trial set of MEAM parameters x. N is
the total number of physical properties used in the optimization
procedure. It is our goal to obtain a parameter set that produces
a force field that yields predictions in agreement with the target
values. This is equivalent to minimizing the target function.
Eleven parameters were optimized, Ec, rlat, α, A, β(0), β(1),
β(2), β(3), t (1), t (2), and t (3). The other five parameters, Cmin,
Cmax, t (0), rc, and �r , were fixed. The reason for fixing rc

and �r has already been explained. Cmin and Cmax were fixed
for both simplicity and because the values chosen are known
to be appropriate for a MEAM force field that uses an fcc
crystal as the reference structure. As pointed out by Baskes,
t (0) can be set to unity without loss of generality [18]. The target
function is composed of three contributions that are specified
below. Simulated annealing was used to minimize the target
function [34]. All of the properties used in the optimization
procedure along with their contributions to the target function
and reference data are outlined in Table II.

The first contribution includes properties of α-tin, β-tin,
and the simple cubic (sc) solid crystal structures, specifically,
the cohesive energies Ec, equilibrium volumes V0, and bulk
moduli B0 of these crystal structures at 0 K. The target values
chosen for these properties are given here. For α-tin, we use

−3.14 eV as the target cohesive energy [35], 34.05 Å
3
/atom

as the equilibrium volume [37], and 42.617 GPa as the bulk
modulus from experiments [36]. Several different values for
the energy difference between α-tin and β-tin at 0 K are
available in the literature. For example, Ihm and Cohen [38]
show that β-tin has a cohesive energy 0.04 eV/atom higher
than α-tin from density functional theory calculations using the
Wigner interpolation formula [40] for electron exchange and
correlation, while Cheong and Chang [41] report a difference
of 0.034 eV/atom using the local density approximation for
electron exchange and correlation. Ihm and Cohen [38] also
report that β-tin has a cohesive energy 0.015 eV/atom higher
than α-tin based on experimental data. We choose the energy
difference reported by Ihm and Cohen [38] from their density
functional theory calculations. This gives a target cohesive
energy of −3.10 eV/atom for β-tin. This was done in order
to give a clear distinction between the cohesive energies
of α-tin, β-tin, and the theoretical sc crystal structure. The

equilibrium volume, 27.07 Å
3
/atom [37], and bulk modulus,

57.037 GPa [36], for β-tin were taken from experiments. For
each crystal structure, the lattice spacing was varied until
the energy minimum was found. From this analysis the three
aforementioned properties could be calculated. It is important
to note that β-Sn has an anisotropic crystal structure which
results in two independent lattice parameters. Due to the
fact that the cohesive energy, equilibrium volume, and bulk
modulus depend on the two independent lattice parameters,
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TABLE II. Target functions utilized in tuning tin MEAM force fields. Ec, B0, V0, P0, and D0 correspond to the cohesive energy (in
eV/atom), bulk modulus (in GPa), equilibrium volume (in Å3/atom), pressure (in GPa), and diffusion coefficient (in Å2/ps), respectively. The
reference values are from experiment (EXP), quantum mechanics (QM) calculations, or classical calculations using the Ravelo and Baskes
potential. Weights for each component of the target function are also shown.

System T (K) Property Target Function Reference Value

Ec 1.0 × |−3.14 − Ec| −3.14 eV/atom (EXP [35])
α-tin 0 B0 0.05 × |42.617 − B0| 42.617 GPa (EXP [36])

V0 0.01 × |34.05 − V0| 34.05 Å
3
/atom (EXP [37])

Ec 1.0 × |−3.10 − Ec| −3.10 eV/atom (QM [38])
β-tin 0 B0 0.05 × |57.037 − B0| 57.037 GPa (EXP [36])

V0 0.10 × |27.07 − V0| 27.07 Å
3
/atom (EXP [37])

Ec 1.0 × |−3.08 − Ec| −3.08 eV/atom (Ravelo et al. [22])
sc-tin 0 B0 0.05 × |59.0 − B0| 59.0 GPa (Ravelo et al. [22])

V0 0.01 × |28.48 − V0| 28.48 Å
3
/atom (Ravelo et al. [22])

P0 1.0 × |P0| 0.0 GPa
NVT-MDa 773 D0 20.0 × |0.50 − D0| 0.50 Å

2
/ps (EXP [39])

P0 1.0 × |P0| 0.0 GPa
1273 D0 20.0 × |1.10 − D0| 1.10 Å

2
/ps (EXP [39])

NPT-MDb 580 D0 20.0 × |D0| 0.0 Å
2
/ps

610 D0 20.0 × |D0| 0.0 Å
2
/ps

640 D0 20.0 × |D0| 0.0 Å
2
/ps

aSimulation of 216 liquid tin atoms for 5 ps with a time step of 1.0 fs.
bSimulation of 216 solid β-tin atoms for 10 ps with a time step of 2.0 fs.

calculation of the contribution of β-tin to the objective function
becomes more complicated when compared to the α-tin and
simple cubic crystal structures. To get around this, during the
optimization we only varied the larger lattice parameter and
kept the ratio of the independent lattice parameters constant.
We chose the ratio of the two lattice parameters (small to large)
to be 0.546, which is taken from an experimental value [37]. We
will refer to the larger lattice parameter of the β-tin structure as
a and the smaller lattice parameter as c. It was found that this
constraint on the optimization still yielded reasonable results
for β-tin. For the simple cubic crystal structure, target values
were set to those calculated using the Ravelo and Baskes force
field because of a lack of experimental data. The α-tin and β-tin
crystal properties were included in the optimization because
they are stable solid phases at ambient pressure. The simple
cubic crystal properties were included because we found that
if we did not include these properties in the optimization
procedure, the simple cubic crystal was often more stable than
the α-tin and β-tin crystal structures at 0 K. Other crystal
structures were not explicitly included in the optimization
procedure because we found that they were consistently less
stable than both α-tin and β-tin.

The second contribution is composed of liquid properties,
specifically densities and self-diffusion coefficients. During
each step of the optimization procedure, we ran molecular
dynamics simulations in the canonical ensemble (constant
NVT) with the Nosé-Hoover thermostat [42,43] on two systems
that contain 216 tin atoms at 773 and 1273 K. Two target liquid

number densities were taken to be 0.03459 and 0.03289 Å
−3

for 773 and 1273 K, respectively, from experimental data [44].
The simulations were run for 5.0 ps with a time step of 1.0 fs

starting from a liquid-like configuration. We computed the
average external pressure acting on the cell and self-diffusion
coefficients of tin atoms from the last 2.0 ps of the trajectory.
We use the pressure as an indirect way to fit the densities
because we are running NVT simulations at the specified
target densities. The target value for the pressure is set to
be 0 GPa because many of the experimental measurements of
the liquid density of tin are taken at saturation conditions.
Due to the fact that tin has a low vapor pressure at the
temperatures at which we are performing the fit, setting
the target pressure to 0 GPa is a good approximation to
the saturation pressure. The target values of self-diffusion
coefficients were chosen from experimental work [39] and set

to be 0.50 and 1.10 Å
2
/ps for 773 and 1273 K, respectively. The

self-diffusion coefficients were computed from mean-square
displacements (MSD) using the Einstein relation (given in
the “Self-diffusivity” subsection) for the same simulations
described above.

The final contribution was included in the target function
in an attempt to obtain better agreement with the experimental
zero-pressure melting temperature of 505 K [45]. Before
adding the contribution, we found that the melting temperature
of many early versions of the new force fields tended to
be low, sometimes as low as 350 K. Therefore, we added a
contribution to the target function in an attempt to improve the
melting temperature. Specifically, we ran simulations in the
isothermal-isobaric (constant NPT) ensemble on a 216-atom
β-tin structure using the Nosé-Hoover thermostat [42,43]
and Nosé-Hoover barostat [46,47] at zero pressure and three
different temperatures (580, 610, and 640 K as listed in
Table II). We chose temperatures higher than the experimental
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melting point of Sn (505 K) because bulk solid simulations can
be superheated. The length of the simulations was 10 ps with a
time step of 2.0 fs. We monitored the phase of each simulation
by tracking the MSD: if the MSD saturated to a finite value
and thus had zero slope with respect to time (corresponding to
a zero diffusion coefficient) for a majority of the trajectory, the
system was deemed to be solid, while if the MSD continued
to rise and thus displayed a nonzero slope with respect to time
(corresponding to a nonzero diffusion coefficient) the system
was deemed to be liquid. The target values of the diffusivity
of these simulations was zero to ensure the simulations stayed
in the β-tin phase. We note that this method is not an accurate
way of obtaining the melting temperature of a force field as
superheating can be observed in bulk simulations. However,
it provides a means to roughly estimate this property without
performing expensive molecular dynamics simulations, and is
therefore a useful method for tuning the melting temperature
in our optimization procedure. A more accurate method to
estimate the melting point will be discussed below.

As mentioned earlier, the parameters for the new MEAM
force field of tin are listed in Table I along with the parameters
of the Ravelo and Baskes force field. The new force field
parameters were obtained by running the simulated annealing
method for approximately 5000 iterations. In one iteration
each parameter is individually updated in an attempt to
further minimize the target function. During the optimization
procedure we used relatively small system sizes (216-atom
cell) and short simulations times (5–10 ps) during molecular
dynamics runs in order to increase the efficiency of the
optimization. Although we should expect size effects to
affect the predicted properties, especially with respect to the
calculated self-diffusion coefficient (as will be discussed later
in the paper), the rough estimation of these properties from
the runs described was found to be sufficient to tune the new
MEAM force field parameters.

III. METHODS

In this section we provide details on the methods used to
calculate various properties of tin from simulations using the
two MEAM force fields. Comparing the results to experimental
and QM data will allow us to comment on the predictive
capability of each force field.

A. Solid tin

We calculated the cohesive energy, equilibrium volume, and
bulk modulus of several crystal structures of tin at 0 K. The
crystal structures we examined are α-tin, β-tin, face-centered
cubic (fcc), body-centered cubic (bcc), simple cubic (sc),
hexagonal-close-packed (hcp), and body-centered tetragonal
(bct). We varied the volume of each crystal structure within
two percent of the equilibrium volume in order to obtain the
cohesive energy, bulk modulus, and equilibrium volume by
fitting to the Murnaghan equation of state [48].

B. Melting temperature

The melting temperature at zero pressure for each force field
was obtained by calculating the Helmholtz free energies of the
β-tin crystal and liquid tin as a function of temperature. We

focus on the β-tin crystal because at ambient pressure it is the
experimentally stable crystal phase at melting. Due to the fact
that the simulations are run at conditions corresponding to zero
pressure, the melting temperature is the temperature at which
the Helmholtz free energy of the β-tin crystal intersects with
the Helmholtz free energy of the liquid. For each phase, we
calculated the Helmholtz free energy for three temperatures:
300, 400, and 500 K. The procedure used is explained below.

1. Helmholtz free energy of the β-tin crystal

Before calculating the free energy, the temperature depen-
dence of the lattice constants of the β-tin crystal at zero
pressure were calculated by first running NPT molecular
dynamics (using the Nóse-Hoover thermostat [42,43] and
Nóse-Hoover barostat [46,47]) at zero pressure and at the
aforementioned temperatures. The anisotropic dimension of
the box was allowed to fluctuate independently of the other
two dimensions. The “Einstein crystal method” [49] was used
to compute the free energy of β-tin crystal in the NVT ensemble
using the box dimensions from the NPT simulations. The ideal
Einstein crystal is used as the reference state for this method.
It has been shown [50] that the Helmholtz free energy of a
crystal can be expressed as

Fsolid = FEC
0 + �F1 + �F2, (5)

where FEC
0 is the Helmholtz free energy of the ideal Einstein

crystal with the same structure as the crystal of interest. �F1

is Helmholtz free energy difference between the ideal Einstein
crystal and an “interacting Einstein crystal.” The “interacting
Einstein crystal” is identical to the ideal Einstein crystal
except that particles also interact through the force field of
interest (Ravelo and Baskes MEAM or the new MEAM).
The last term �F2 is the Helmholtz free energy difference
between the “interacting Einstein crystal” and the real crystal.
Calculating Fsolid using LAMMPS has been described in detail
by Aragones et al. [51]. However, we will briefly describe how
to calculate each term based on their work.

FEC
0 can be calculated analytically from the following

equation:

FEC
0

NkBT
= 3

2

(
1 − 1

N

)
ln

(
β�Eλ2

π

)

+ 1

N
ln

(
Nλ3

V

)
− 3

2N
ln(N ), (6)

where N is the number of atoms, kB is the Boltzmann
constant, T is temperature, β = 1

kBT
, �E is the harmonic

spring constant, λ is the thermal de Broglie wavelength, and
V is the volume. We set the harmonic spring constant to

be �E = 7500 kBT /Å
2
. This value was chosen following the

empirical rule given by Aragones et al. [51]. The authors state
that a good choice of �E is one that yields a value of �F1

to be about 0.02NkBT higher than Ulattice. Ulattice is defined in
the next paragraph.

To calculate �F1, 4000 atoms were set up in a perfect
β-tin structure. Each atom was tethered to its position in the
lattice by a spring with the aforementioned spring constant.
A 6.5 ns molecular dynamics simulation was run in the NVT
ensemble in which the atoms did not interact with one another,
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using a time step of 0.5 fs (all following sets of simulations
described in this work also used this time step). Temperature
was kept constant by velocity rescaling because the Nóse-
Hoover thermostat yields pathological behavior for harmonic
potentials [43]. The system was allowed to equilibrate during
the initial 1.5 ns. During the final 5 ns of the simulation 105

configurations were saved. The potential energy was found not
to drift from a time-independent average during the production
run so the system was deemed to be in equilibrium. (This check
was performed on all molecular dynamics simulation runs
described in this work to ensure equilibrium was reached.)
Using either the Ravelo and Baskes force field or the new
MEAM force field, the potential energy of each configuration
was then calculated. �F1 was then calculated from

�F1

kBT
= Ulattice

kBT
− ln

〈
exp

[
− (Usol − Ulattice)

kBT

]〉
, (7)

where Ulattice is the potential energy of the perfect lattice for a
given force field, and Usol is potential energy of a configuration.
The angled brackets denote an ensemble average.

�F2 was calculated by slowly weakening the springs that
tie each atom to its initial lattice position. It can evaluated from
the following integral,

�F2 = −
∫ �E

0
〈�r(t)2〉d�′

E, (8)

where 〈�r(t)2〉 is the mean-squared displacement of atoms at
time t with respect to their initial lattice positions. The integral
in Eq. (8) was evaluated using the Gaussian quadrature method.
However, due to the fact that the integrand in Eq. (8) changes
over several orders of magnitude during the integration, it
is useful to implement a change of variables from �′

E to
ln(�′

E + c) so that the integral can be evaluated with a
reasonable number of quadrature points [49,50,52]. We chose
c = exp(3.5) because it has been shown to be a good value to
obtain a good estimate of the integral [49,50]. After the change
of variables Eq. (8) becomes

�F2 = −
∫ ln(�E+c)

ln(c)
〈�r(t)2〉(�′

E + c)d[ln(�′
E + c)]. (9)

The integral in Eq. (9) was evaluated using the Gaussian
quadrature method with 15 values of �′

E (15 quadrature
points). In order to ensure that 15 quadrature points were
enough to evaluate the integral, Eq. (9) was also calculated
with 30 quadrature points. No significant differences were
observed. For each quadrature point, 4000 atoms were again
set up in a perfect β-tin structure. Each atom was tethered to
its position by a spring with a spring constant of �′

E . At each
point, a 6.5 ns simulation was run in the NVT ensemble where
atoms interact with one another using one of the tin force
fields. Temperature was kept constant by velocity rescaling.
The system was allowed to equilibrate during the initial 1.5 ns.
The mean-squared displacement with respect to the initial
lattice position was computed during the final 5 ns of the
simulation and used to evaluate Eq. (9).

2. Helmholtz free energy of the liquid tin

Before calculating the Helmholtz free energy of the liquid,
the temperature dependence of the density at zero pressure

had to be determined. This was done by performing NPT
simulations. See the “Liquid density” subsection for more
details.

The Helmholtz free energy for liquid tin was calculated
using thermodynamic integration. Starting from an ideal gas
reference state, the system was compressed along an isotherm
to a volume V F calculated from the NPT calculations. Next,
the system was cooled down at constant volume to reach the
desired state point of the liquid phase. The Helmholtz free
energy can be calculated from the following equation,

Fliquid = F IG + �Fisothermal + �Fisochoric, (10)

where F IG is the Helmholtz free energy of the ideal gas
reference state, �Fisothermal is the Helmholtz free energy
change due to the isothermal compression step, and �Fisochoric

is the Helmholtz free energy change due to the constant-
volume cooling step. F IG can be calculated analytically from
the expression

F IG

NkBT
= − ln

(
V

λ3N

)
− 1. (11)

For both tin force fields, the ideal gas reference state was
chosen to be 6750 tin atoms at T IG = 50 000 K and V IG =
1.25 × 108 Å

3
. It was found that simulations run at these con-

ditions closely obeyed the ideal gas law. We are also confident
that the temperature chosen is above the critical temperature
because when we attempted to run vapor-liquid simulations
(described in more detail in the “Vapor-liquid surface tension”
subsection) at 50 000 K we did not observe a phase separation.
This is important because one wants to avoid the vapor-liquid
phase envelope when performing thermodynamic integration
to ensure the thermodynamic path is reversible.

�Fisothermal is calculated by isothermally compressing the
system and evaluating the following equation,

�Fisothermal = −
∫ V F

V IG

P dV ′, (12)

where P is the pressure. Similarly to evaluation of the
Helmholtz free energy for the β-tin crystal phase, we found
that the integrand in Eq. (12) varies over several orders of
magnitude during the isothermal compression. If we want to
evaluate the integral with the Gaussian quadrature method, we
can perform a similar change of variables in order to evaluate
the integral with a reasonable number of quadrature points.
Equation (12) then becomes

�Fisothermal = −
∫ ln(V F +c)

ln(V IG+c)
P (V ′ + c)d[ln(V ′ + c)], (13)

where c = exp(3.5). For each quadrature point, 6750 atoms
in the liquid phase were run at constant NVT conditions.
Temperature was kept constant at 50 000 K using the Nóse-
Hoover thermostat [42,43], while the value of the volume
depended on which point of the isothermal compression was
being simulated. At each point, simulations were run for 6.5 ns.
Equilibration was allowed to occur for the initial 1.5 ns, while
samples of the pressure were taken during the final 5 ns. 15
quadrature points were taken in order to evaluate Eq. (13).
No significant differences were observed when 30 quadrature
points were used to evaluate the integral.
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�Fisochoric is calculated by cooling the system at constant
volume and evaluating the equation

�

(
Fisochoric

T

)
= −

∫ T F

T IG

(
E

T 2

)
dT ′, (14)

where T F is the final temperature after cooling and E is
the total energy. Once again, it was found that integrand of
Eq. (14) changes over several orders of magnitude during the
integration. Using the methodology already mentioned we can
transform Eq. (14) to

�

(
Fisochoric

T

)
= −

∫ ln(T F +c)

ln(T IG+c)

(
E

T 2

)
(T ′ + c)d[ln(T ′ + c)],

(15)

where c = exp(3.5).
At each quadrature point, 6750 atoms in the liquid phase

were simulated in the NVT ensemble. Volume was kept
constant at V F while the temperature depended on which point
during the isochoric cooling was being simulated. At each
point temperature was maintained at T ′ using the Nóse-Hoover
thermostat [42,43] and simulations were run for 6.5 ns.
Equilibration was allowed to occur for the initial 1.5 ns, while
samples of the total energy were taken during the final 5 ns.
15 quadrature points were taken in order to evaluate Eq. (15).
No significant differences were observed when 30 quadrature
points were used.

C. Liquid structure

The structure of liquid tin is described by the radial
distribution function (RDF), g(r). Using the liquid densities
computed from NPT simulations (described in the “Liquid
density” subsection) we ran NVT simulations on a system of
6750 atoms at various temperatures for 7 ns. The Nóse-Hoover
thermostat [42,43] was used to keep temperature constant.
During the last 4 ns of the simulations we took snapshots
of 105 configurations. The configurations were then used to
compute g(r). Calculations were repeated for a system size of
2662 atoms to check for system size effects, and no significant
differences were observed.

D. Liquid density

Liquid density was calculated from simulations at constant
NPT conditions. For both force fields, simulations were run
at zero pressure and various temperatures using a system
of 6750 atoms. The Nóse-Hoover thermostat [42,43] and
Nóse-Hoover barostat [46,47] were used to keep temperature
and pressure constant. The simulations were equilibrated for
1.5 ns followed by a 2 ns production run. Liquid densities were
calculated by taking samples of the density during the 2 ns
production run. System size effects were checked by running
similar calculations for a system of 2662 atoms. No significant
differences in the calculated densities were observed.

E. Self-diffusivity

The calculated self-diffusion coefficient, Dcalc, was ob-
tained from simulations using the Einstein relation,

Dcalc = 1

6
lim
t→∞

d

dt
〈�r(t)2〉. (16)

Here, 〈�r(t)2〉 is the mean-squared displacement of atoms at
time t .

Simulations were performed at constant NVT conditions.
Temperatures were kept constant using the Nóse-Hoover ther-
mostat [42,43]. Densities for a given temperature were taken
from NPT simulations at zero pressure. For both potentials,
three different system sizes were used: 6750 atoms, 2662
atoms, and 1024 atoms. This was done in order to investigate
the effect of system size on the calculated diffusion coefficient.
An initial 1-ns-long equilibration was run, followed by a
20-ns production period. Three to five independent simulations
were run at each temperature in order to collect sufficient
statistics.

F. Viscosity

The shear viscosity was calculated using the Green-Kubo
equation relating the shear viscosity to the integral of the stress
autocorrelation function [53]:

η = V

kBT

∫ ∞

0
〈Pxy(0)Pxy(t)〉dt. (17)

In this equation, V is the volume of the system, kB is the
Boltzmann constant, T is temperature, and Pxy(t) are values
of the off-diagonal components of the stress tensor at time t .

Improved statistics can be obtained through a modified
version of this relation using all components of the stress
tensor [54]. When this is done, the relation is changed to the
following equation [55],

η = V

10kBT

∫ ∞

0

⎛
⎝∑

αβ

〈Pαβ (0)Pαβ(t)〉
⎞
⎠dt, (18)

where αβ = xx,xy,xz,yx,yy,yz,zx,zy, and zz. Here we
have

Pαβ = (παβ + πβα)/2 − δαβ

(∑
γ

πγγ

)
/3, (19)

where δαβ is the Kronecker delta and

παβ = 1

V

⎡
⎣∑

j

mjvjαvjβ +
∑

j

∑
k>j

(rjα − rkα)fjkβ

⎤
⎦. (20)

In this equation, mj is the mass of atom j . The α and
β components of the velocity of atom j are vjα and vjβ ,
respectively. rjα and rkα are the α components of the position
vectors of atom j and atom k. Finally, fjkβ is the β component
of the force on atom j due to atom k. The same set of
simulations used to calculate the self-diffusivity were also used
to calculate the viscosity.

G. Vapor-liquid surface tension

Vapor-liquid surface tension was calculated employing
a direct interfacial approach. In this approach, a liquid-
phase system of 6750 atoms was first equilibrated in the
NVT ensemble. We found that a 2-ns-long simulation was
more than enough time to achieve this. After this, one box
dimension (which will be referred to as the z dimension) was
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expanded to about 2.5 times its initial size. The Nóse-Hoover
thermostat [42,43] was used to keep temperature constant.

After the simulation box was extended in the z dimension,
the simulation was equilibrated for another 1.5 ns, followed by
a 2-ns production period in the NVT ensemble. After extending
the z dimension of the box, the system would spontaneously
separate into a liquid and a vapor phase. Using the mechanical
definition of the vapor-liquid surface tension, we were able to
calculate this property using the diagonal components of the
stress tensor [56] as

γ = Lz

2
[〈Pzz〉 − 0.5(〈Pxx〉 + 〈Pyy〉)]. (21)

In this equation γ is the vapor-liquid surface tension and
Lz is the length of the box in the z dimension. Pxx , Pyy ,
and Pzz are the diagonal components of the stress tensor
corresponding to the x, y, and z directions respectively. Three
to five independent simulations were run at each temperature
in order to collect sufficient statistics. System size effects were
checked by running similar calculations for a system of 2662
atoms. No significant differences in the calculated vapor-liquid
surface tensions were observed.

IV. RESULTS

A. Solid tin

The structural properties of various crystal structures of tin
predicted using the two MEAM force fields are presented in
Table III along with experimental and QM data for comparison.
We start by observing that both the Ravelo and Baskes force
field and the new MEAM force field indicate that, of the crystal
structures studied, α-tin is the most stable at 0 K. This is in
agreement with QM calculations and should be expected since
the cohesive energies of various crystal structures were used
in the fitting procedure. We note for all crystal structures that

there is a discrepancy between the MEAM force fields and QM
calculations with respect to the values of the cohesive energy.
This is most likely due to the fact that density functional
theory using the local density approximation for electron
exchange and correlation as usual overbinds with respect to
the experimental cohesive energy, as evidenced by the α-tin
data. Aguado showed that for α-tin and β-tin, QM calculations
achieve better agreement with experimental cohesive energies
if a generalized gradient approximations for electron exchange
and correlation is used [57]. Aguado tested several forms
of the generalized gradient approximation functional and all
led to the similar results. Despite the absolute error of the
QM calculations reported in Table III, the energy differences
between different phases of tin are captured well. For this
reason, combined with the fact that the QM calculations with
the local density approximation for electron exchange and
correlation provides better prediction of structural properties,
only QM calculations using local density approximation for
electron exchange and correlation are reported in Table III.

Note that although one objective for the new MEAM force
field parameter fit was to ensure that the sc crystal structure lies
higher in energy than both α-tin and β-tin, we were only able
to achieve half of this objective: the new force field predicts
sc to lie between α-tin and β-tin in terms of stability. Also,
the Ravelo and Baskes force field provides identical results for
the cohesive energies for the fcc, bcc, hcp, sc, and bct crystal
structures, which is unphysical. The lack of differentiation
between energies of phases provides further motivation for
improving the MEAM force field.

For the bulk moduli, both force fields reproduce experiment
quite well for α-tin but overestimate this property for β-tin.
Similarly, for the other crystal structures, both force fields over-
estimate the bulk modulus with respect to QM calculations.

The Ravelo and Baskes force field provides better agree-
ment relative to the new MEAM force field for the lattice

TABLE III. Cohesive energy Ec, bulk modulus B0, equilibrium volume V0, lattice constant a, and the c/a ratio of solid tin structures. The
c/a ratio indicates the ratio between two lattice vectors for anisotropic solid structures. Quantum mechanics (QM) and experimental (Exp) data
are also included for comparison. The QM data are obtained from density functional theory calculations using the local density approximation
for electron exchange and correlation. In the Exp/QM rows, numbers in parentheses are experimental data and italicized numbers are quantum
mechanics data.

Property Method α β fcc bcc sc hcp bct

Ec (eV/atom) Ravelo and Baskes −3.140 −3.085 −3.080 −3.080 −3.080 −3.080 −3.080
New MEAM −3.219 −3.115 −3.060 −3.075 −3.129 −3.060 −3.083
(Exp), QM (−3.140) [35], −3.10 [38], −3.688 [57] −3.613 [57] −3.618 [57] −3.615 [57] −3.653 [57]

−3.723 [57]
B0 (GPa) Ravelo and Baskes 42 64 73 74 59 64 75

New MEAM 46 66 74 75 65 64 80
(Exp), QM (42.617) [36], (57.037) [36], (57.9) [59] 51.4 [57] 52.8 [57] 51.3 [57] 54.8 [57]

(54) [58]

V0 (Å
3
/atom) Ravelo and Baskes 34.05 28.32 28.70 28.46 28.48 33.13 28.69

New MEAM 31.34 26.91 27.54 27.25 26.53 31.80 27.64
(Exp), QM (34.05) [37] (27.07) [37], (26.65) [60] 26.54 [57] 26.01 [57] 26.24 [57] 27.09 [57]

a (Å) Ravelo and Baskes 6.483 5.920 4.860 3.847 3.054 4.544 3.292
New MEAM 6.306 5.681 4.793 3.791 2.983 4.480 3.036
(Exp), QM (6.483) [37] (5.831) [37], (5.8119) [60] 4.735 [57] 3.733 [57] 3.322 [57] 3.982 [57]

c/a Ravelo and Baskes 0.546 1.631 1.608
New MEAM 0.587 1.634 1.975
(Exp), QM (0.546) [37], (0.543) [60] 1.653 [57] 0.858 [57]
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FIG. 1. Helmholtz free energy at zero pressure for the β-tin
crystal and liquid tin using the Ravelo and Baskes force field. Error
bars for free energy, representing the 95% confidence intervals, are
smaller than the symbol size. Orange and green solid lines are fits to
the data points. The black solid line represents the melting point and
the black dotted lines represent the 95% confidence interval.

parameters of both α-tin and β-tin structures. Although the new
MEAM force field better reproduces the equilibrium volume
of the β-tin structure, it does not reproduce the experimental
values for a and the c/a ratio. This is due to the fact that the
new potential was optimized with the primary goal to simulate
liquid tin. Less weight was placed on the β-tin structure when
compared to the liquid phase during potential optimization.

B. Melting temperature

The results for the free energy calculations of the Ravelo
and Baskes force field are shown in Fig. 1. For each phase, we
fit a quadratic function to the points and find the intersection
of these fits in order to determine the melting temperature.
The intersection is shown as the solid black vertical line in
the figure. Although it cannot be seen in the figure, each point
has a small uncertainty associated with it, which carries over
to an uncertainty in the fit. The uncertainty in the fit is not
shown for clarity. Ultimately, this leads to an uncertainty in
the predicted melting temperature. This is shown as black
dotted lines. The predicted melting temperature for the Ravelo
and Baskes force field is 334.5 ± 8.6 K. We note that this
is in poor agreement with the experimental melting point of
505 K [45]. The reported melting temperature for this force
field in the original work is 453 K [22]. While this number was
obtained using free energy calculations, there are differences in
the procedure employed for these calculations that can account
for the discrepancy. In the original work, the Helmholtz free
energy of the liquid phase was calculated using a different
thermodynamic path than the one we used here. The path
taken in their work connects the ideal gas to the real liquid
by slowly turning off interactions between atoms. This path
will most likely encounter a vapor-liquid phase transition and
is therefore not a reversible thermodynamic path. Also, the
authors calculated the Helmholtz free energy of the solid using
a similar procedure (“Einstein crystal method”) to the one we
described; however, it is unclear whether the authors used
an appropriate thermostat when doing this. They cite that
they used the Nóse-Hoover thermostat [42,43]; however, as

FIG. 2. Helmholtz free energy at zero pressure for the β-tin
crystal and liquid tin using the new MEAM force field. Error bars for
free energy, representing the 95% confidence intervals, are smaller
than the symbol size. Orange and green solid lines are fits to the data
points. The black solid line represents the melting point and the black
dotted lines represent the 95% confidence interval.

mentioned earlier this gives rise to pathological behavior with
harmonic potentials. Due to these possible sources of error
in the free energy calculations of Ravelo and Baskes, we are
confident that our results more accurately represent the true
melting point of the potential.

The results for the free energy calculations of the new
MEAM force field are shown in Fig. 2. Following the same
procedure for the Ravelo and Baskes force field, we found
the melting temperature for the new MEAM force field to be
410.2 ± 7.5 K. This model also underestimates the melting
point, however it is closer to the experimental value than the
Ravelo and Baskes force field.

We would like to note that we also performed direct
interface simulations as an alternative method to calculate
the melting temperature in order to provide an independent
check to our free energy calculations. We found that these
calculations provided slightly inconsistent results for the
melting temperature. For example, using this method, the
new MEAM force field yields a melting temperature of
about 435 ± 3.0 K. Although this prediction gives slightly
better agreement with experiment, its disagreement with the
prediction from the free energy calculations raises some
concern. We note that similar discrepancies have been found
for solubility predictions of salts in water [61] and work is
currently under way to find an explanation. For the Ravelo
and Baskes force field, we found that at temperatures lower
than the melting temperature, the liquid portion of the direct
interface simulation crystallized into a structure different than
the β-tin. This suggests that, for this force field, β-tin is not the
stable crystal structure at these conditions. However, we did
not attempt to investigate this behavior in more detail. For now,
we note that based on our free energy calculations both force
fields give poor predications of the melting temperature if we
assume the β-tin crystal structure is the stable solid phase at
the conditions we are examining. The new MEAM force field
provides better agreement with experimental data relative to
the Ravelo and Baskes force field. This improvement can be
attributed to the indirect means of fitting the melting point
through the third contribution to the objective function.
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FIG. 3. A comparison of the predicted radial distribution func-
tions g(r) for the two MEAM force fields with experimental data.
Experimental data are taken from Itami et al. [25]. The radial
distribution functions at higher temperatures have been vertically
shifted for clarity.

C. Liquid structure

The radial distribution functions of the two force fields
along with experimental data [25] are shown in Fig. 3 for
three different temperatures. At all three temperatures, the
Ravelo and Baskes force field overestimates the height and
position of the first peak. At 573 K the new MEAM force
field underestimates the height and position of the first peak.
However, this underestimation becomes less severe as the
temperature increases. The peak height and position is only
slightly off at 1073 K and matches perfectly at 1873 K.
We point out that the RDFs were not used during the
fitting procedure of the new MEAM force field, illustrating
the robustness of this model for prediction of liquid-related
structural properties.

D. Liquid density

The results for liquid densities are shown in Fig. 4. We
compare both force fields to several sets of experimental
data [44,62–64]. We note the data from Assael et al. [62]
are recommended values determined by examining several
experimental studies. It is clear that the new MEAM force
field better reproduces the experimental liquid densities than
the Ravelo and Baskes force field over the temperature range
examined. This is not surprising, as liquid densities were used
in the optimization procedure to fit the parameters of the
new force field. The Ravelo and Baskes force field captures
the liquid density dependence on temperature; however, it
significantly underestimates experimental values.

E. Self-diffusivity

Figure 5 displays the predicted self-diffusivities along
with experimental data [39,65–67]. At temperatures less than
1200 K, all four sets of experimental data are in excellent
agreement. However, at temperatures greater than 1200 K
some discrepancy exists between the experimental data of
Itami et al. [66] and Bruson and Gerl [39]. One source of
discrepancy may be due to the fact that the experiments by

FIG. 4. A comparison of the predicted liquid densities for the
two MEAM force fields with experimental data. Experimental data
are taken from Assael et al. [62], Dalakova et al. [63], Nasch and
Steinemann [44], and Gancarz et al. [64]. Error bars for simulation
results, representing the 95% confidence interval, are smaller than the
symbol size.

Itami et al. [66] were performed at microgravity conditions,
while the experiments by Bruson and Gerl [39] were not. Mea-
surements of the self-diffusion coefficient under microgravity
conditions are less susceptible to convective effects [24].

The new MEAM force field better reproduces the exper-
imental self-diffusivity than the Ravelo and Baskes MEAM
force field, which consistently underestimates this property.
This underestimation becomes more pronounced at higher
temperatures. Although the new MEAM force field also under-
estimates most of the experimental data, this discrepancy is not
as severe as in the case of the Ravelo and Baskes potential. As
with the liquid density, the improved agreement with experi-
mental data is not surprising, since experimental self-diffusion
coefficients [39] were used in the optimization procedure.

As stated in the “Methods” section, three different system
sizes were simulated in order to examine the effect on the

FIG. 5. A comparison of the predicted self-diffusion coefficients
for the two MEAM force fields with experimental data. Experimental
data are taken from Careri et al. [65], Bruson and Gerl [39], Itami
et al. [66], and Frohberg et al. [67]. Error bars for simulation results,
representing the 95% confidence interval, are smaller than the symbol
size.
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calculated self-diffusion coefficient. As expected, there was a
significant system-size effect; however, there are two methods
that can be used to correct for this. The first is to calculate
the diffusion coefficient at several different system sizes and
extrapolate to infinite system size ( 1

L
= 0 where L is the

box length). The second option is to use the size correction
introduced by Yeh and Hummer [68]. In this procedure, one
can obtain the corrected self-diffusion coefficient, Dcorr, using
the following relation,

Dcorr = Dcalc + kBT ξ

6πηL
. (22)

In this equation, kB is the Boltzmann constant, T is
temperature, ξ is a constant equal to 2.837297, η is the
viscosity, and L is the length of the simulated cubic cell.
The viscosity is calculated from Eq. (18). We checked both
correction methods and obtained statistically indistinguishable
results. The results shown in Fig. 5 are from the extrapolation
correction method using the three system sizes mentioned in
the “Methods” section.

F. Viscosity

Calculated viscosities and experimental data [62,69–75] of
liquid tin at different temperatures are displayed in Fig. 6. The
Ravelo and Baskes force field gives predicted viscosities that
consistently overestimate the experimental values shown. The
new force field gives values that are in better agreement with
the experimental data, although it does slightly overestimate
the viscosity with respect to each experimental data set, with
the exception of the data from Tan et al. [75]. As with
their reported density data, the viscosity data from Assael
et al. [62] are recommended values by examining several
experimental studies. As was the case with calculation of the
self-diffusion coefficient, three system sizes were examined
in order to check for system-size effects on the calculated
viscosity. However, no significant differences were observed.
We note that experimental viscosities were not used during the
optimization procedure when obtaining the parameters for the

FIG. 6. A comparison of the predicted viscosities for the two
MEAM force fields with experimental data. Experimental data are
taken from Assael et al. [62], Rothwell [69], Kanda and Colburn [70],
Jones and Daives [71], Kanda and Falkiewicz [72], Thresh and
Crawly [73], Schenck et al. [74], and Tan et al. [75]. Error bars
on simulation results represent 95% confidence intervals.

FIG. 7. A comparison of the predicted vapor-liquid surface
tensions for the two MEAM force fields with experimental data.
Experimental data are taken from Friedrichs et al. [76], Keene [77],
Dalakova et al. [63], Alchagirov et al. [78], Allen and Kingery [79],
Cahill and Kirshenbaum [80], and Gancarz et al. [64]. Error bars
for simulation results, representing the 95% confidence interval, are
smaller than the symbol size.

new MEAM force field. As with the liquid-phase RDFs, the
new MEAM force field’s accurate prediction of the viscosity
demonstrates the model’s robustness for predicting liquid tin
properties.

G. Vapor-liquid surface tension

Figure 7 displays vapor-liquid surface tensions from di-
rect interfacial simulations and several sets of experimental
data [63,64,76–80]. Both the new MEAM force field and the
Ravelo and Baskes force field overestimate all experimental
vapor-liquid surface tension data at temperatures up to 1200 K.
At this temperature, the Ravelo and Baskes potential starts to
give values in agreement with some of the experimental values,
while the new MEAM potential continues to overestimate
this property. Both force fields seem to also overestimate the
magnitude of the slope of the vapor-liquid surface tension
with respect to temperature. The poor agreement of both
force fields with the experimental data can be explained by
the fact that the vapor-liquid surface tension was not used in
the fitting procedure for either force field. We would expect
better agreement if experimental values were included as part
of the optimization procedure. However, the computational
cost of the vapor-liquid coexistence simulations that would be
required in order to compare with experimental data is too
demanding to include within the optimization procedure.

V. CONCLUDING REMARKS

In this work, a critical evaluation of both an existing and a
new tin MEAM force field using geometry optimization and
molecular dynamics was performed. The first force field was
developed by Ravelo and Baskes [22]. The second force field
was developed in the current work by refitting the parameters
of the aforementioned model using a simulated annealing
procedure. This was done in order to obtain a force field
that yields better agreement with liquid tin properties. In
order to compare the two force fields, several properties were
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calculated. These properties include crystal properties such
as cohesive energy, bulk modulus, and equilibrium volume
at 0 K. We also calculated the melting temperature, liquid
density, liquid-phase RDFs, self-diffusivity, viscosity, and
vapor-liquid surface tension. All properties of the force fields
were compared to experimental or first-principles quantum
mechanics data to assess their predictive capabilities.

For the crystal properties of tin, the Ravelo and Baskes force
field provides better agreement with experimental or quantum
mechanics data for most properties examined, especially with
respect to α-tin and β-tin phases. For example, this force field
gives better agreement with the lattice parameters for both
α-tin and β-tin. The worse performance of the new MEAM
force field for crystal properties is not surprising because in
developing this force field, we placed more weight on the
accurate prediction of liquid-phase properties. However, the
new MEAM force field does predict that the α-tin crystal
structure is the most stable crystal at 0 K (in agreement with
quantum mechanics calculations and the Ravelo and Baskes
force field) and reasonably reproduces the bulk modulus of
this crystal structure.

Based on free energy calculations, both force fields provide
poor predictions of the melting temperature at zero pressure.
However, the new MEAM force field provides better agree-
ment relative to the Ravelo and Baskes force field. There is
also an observed discrepancy between the melting temperature
calculated using free energies and the melting temperature
from direct interface simulations for the new MEAM force
field. The source of this discrepancy is not yet known, but
ionic salts also exhibit a similar effect [61].

The new MEAM force field yields better agreement with a
variety of liquid properties. For the liquid-phase RDFs, the new
MEAM force field is in excellent agreement with experiments
at higher temperatures. At lower temperatures, the agreement
becomes worse. By contrast, at all temperatures examined, the
Ravelo and Baskes force field provides poor agreement with
experimental data. We point out that the liquid-phase RDFs
were not used during force field optimization. Therefore, the
agreement of the predictions from the new force field with
experimental data highlights the robustness of the new model
in terms of accurately predicting liquid properties. The new
MEAM force field also better reproduces the liquid density
of tin, while the Ravelo and Baskes force field consistently
underestimates this property with respect to the experimental
data. We reiterate that this improved agreement for the liquid
density is to be expected because this property was used in the
fitting procedure.

Dynamic properties of the liquid phase are also examined
by calculating the self-diffusivity and viscosity. As expected,
the new MEAM force field yields more accurate self-diffusion
coefficients of liquid tin when compared those produced by

the Ravelo and Baskes force field. Again, this improvement is
not surprising because experimental self-diffusion coefficients
were part of the fitting data set. However, the new MEAM force
field also agrees better with the experimental measurements for
viscosity, a property not used in the optimization procedure.
This again speaks to the robustness of the new force field with
respect to the prediction of liquid tin properties.

Finally, we also examined how each force field predicts the
vapor-liquid surface tension. Neither model agrees well with
the experimental data over the entire range of temperatures
examined. We attribute this to the fact that the vapor-liquid
surface tension was not used when fitting the parameters for
either force field.

Based on the assessment performed in this work, we
conclude that the new tin MEAM force field more accurately
describes the liquid phase of tin when compared to the Ravelo
and Baskes force field. As with all classical force fields,
the new model is not perfect. It is possible that changes to
the parameter set could be made in order to achieve better
agreement with other physical properties. However, due to the
fact that the new force field accurately describes a wide range
of liquid properties over a broad temperature range, we are
confident that this potential will prove to be useful, especially
with respect to simulation studies relevant to liquid metal
plasma-facing materials. There may be a fundamental reason
explaining why the new tin MEAM force field accurately
models the liquid phase while performing poorly for the
solid phases. Tin undergoes a semiconductor-metal transition
between α-tin and β-tin, while the liquid phase retains many
metallic characteristics. It is not clear if the MEAM formalism
is robust enough to handle this type of transition; it is therefore
possible that the new MEAM force field is better suited for
the metallic phases of tin, especially the liquid phase. As
mentioned at the beginning of this paper, this force field can be
combined with a lithium force field to develop cross parameters
in order to study the liquid phase of the lithium-tin alloy, or can
be used to study the wetting behavior of liquid tin on relevant
tokamak-related solid surfaces. It can also be used to study
tin-based alloys that have the potential to be used as solders.
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