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Finite-strain Landau theory applied to the high-pressure phase transition of lead titanate
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Standard Landau theory coupled to infinitesimal strain allows a concise description of the temperature-driven
ferroelectric tetragonal-to-cubic phase transition in PbTiO; at ambient pressure. Unfortunately, it fails to cover
its high-pressure counterpart at ambient temperature. For example, the experimental transition pressure is vastly
underestimated, and neither the change from first to second order with increasing pressure nor the unusual
pressure dependence of the tetragonal unit cell parameters observed in experiment are reproduced. Here we
demonstrate that a combination of density functional theory and a recently constructed finite-strain extension of
Landau theory provides a natural mechanism for resolving these discrepancies between theory and experiment.
Our approach also allows us to determine the full tetragonal-cubic phase boundary in the (P, T) plane including
an estimate of the tricritical point. We show that a careful analysis of the thermal elastic baseline is an essential

ingredient to the success of this theory.
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I. INTRODUCTION

Understanding the combined effects of temperature and
pressure in inducing structural phase transitions is of vital
interest to a large range of scientific disciplines. In particular,
the study of crystals of perovskite type with structural formula
ABXj3; (A=Ba, Ca, Mg, Pb, Sr, Ln, Y, ..., B=Ti, Zr, Si,
La, Mn, etc., X=0, F) attracts a major interest, in both
materials research and earth science. As to the latter, a
prominent example is the perovskite-postperovskite transition
in (Mg,Fe)SiOs. It was the discovery of this transition [1],
which occurs only at extreme pressures up to 125 GPa and
temperatures of some 2500 K, that finally elucidated the
unusual seismic properties of the earth’s core-mantle D”
boundary layer. In addition to external hydrostatic pressure [2],
electronic, magnetic, and optical properties of materials may
also be strongly affected by chemical pressure [3] or uniaxial
stress [4]. High pressure also plays an important role in the
synthesis of bulk multiferroic materials and provides insight
into the complex interplay between magnetic and electronic
properties and structural instabilities [5].

The paradigm formed by traditional Landau theory (LT)
[6,7] and the closely related lattice-dynamical theory of
“soft modes™ [8] is a cornerstone of our understanding of
structural phase transitions. In transitions driven by changing
the temperature at ambient pressure, strain effects are usually
small enough to warrant a harmonic treatment of the elastic
contributions to the Landau potential (LP), and this approach
also works for transitions driven by moderate external stress.
However, the last two decades have seen a rapid improvement
of the experimental capabilities for studying materials at
extreme pressures [9]. It has become routine to control
stresses that frequently represent sizable fractions of the elastic
constants of the materials investigated. Under such conditions,
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a description of pressure-induced transitions based on linear
elasticity is bound to fail. A pressing need arises for an
adequate extension of traditional LT to include nonlinear
elastic effects at high stress and strain.

In Ref. [10] such a high-pressure extension of an ex-
isting ambient-pressure LP has been constructed. The most
important input required by this finite-strain Landau theory
(FSLT) is a set of pressure-dependent elastic constants of
the high-symmetry phase which are calculated from density
functional theory (DFT). Introducing additional parameters
to capture the remaining nonlinear pressure evolution of the
order parameter—strain coupling coefficients then allows to
give a concise numerical description of the room-temperature
high-pressure phase transition Pm3m <> [4/mcm of the
archetype perovskite strontium titanate SrTiO3 (STO) whereas
a traditional Landau approach based on truncating the elastic
energy at harmonic order fails quantitatively.

The purpose of the present paper is threefold. First, it
illustrates the capabilities of our theory for the example of
lead titanate PbTiO3 (PTO). As we shall demonstrate below,
traditional LT fails in this case not only on the quantitative but
even on the qualitative level.

Of course, it would be desirable to work out a true ab initio
description [11,12] rather than relying on a theory that involves
both input from DFT and a certain number of free parameters
that need to be determined from fits to experimental data.
However, electronic structure methods like DFT reside at zero
temperature. Imposing an arbitrary external pressure poses
no particular problem in DFT, but including effects of high
temperatures is difficult. On the other hand, experimentalists
have accumulated a wealth of data on the temperature
dependence of structural phase transitions and encoded them
in terms of published sets of numerical parameters for the
corresponding LPs over the years (for ferroelectric perovskites
see, e.g., Appendix A of Ref. [13]). Our second goal is
to present FSLT as a general framework for extending this
thermal information from ambient to high pressure.
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Third, we shall see that separating spontaneous and back-
ground strain must be done carefully when extracting Landau
parameters from experimental data.

The paper is organized as follows. Section II presents
a critical survey of the main predictions obtained from
conventional LT for PTO. Section III reviews basic FSLT.
Finite-temperature effects are treated in Sec. IV. Section V
is devoted to the application to PTO. Section VI closes the
paper with a discussion of results. Some technical arguments
with the potential of distracting the reader’s attention from the
paper’s main objective are gathered in Appendices A-D.

II. SURVEY OF EXISTING RESULTS FOR THE
FERROELECTRIC TRANSITION OF LEAD TITANATE

PTO is one of the most extensively studied ferroelectrics
and is generally considered as a model material for understand-
ing structural phase transitions. Moreover, PTO is an end mem-
ber of high piezoelectric materials [14] like PbZr;_,(TiO3),
(PZT) or (Png1/3Nb2/3O3)1_x(Ti03)x (PMN—PT), both of
which exhibit a giant electromechanical (piezoelectric) re-
sponse [15] near the so-called morphotropic phase boundary.
They are thus of great technological importance. In view of
the vast amount of literature on PTO, here, we only provide a
short summary of results that are relevant for the present work.

Our focus is on the ferroelectric displacive transition from
the tetragonal space group P4mm to the prototypical cubic
perovskite structure Pm3m. At ambient pressure, this transi-
tion is of first order at a reported Curie temperature of 7, ~
492 °C. Following its discovery in 1950 [16,17], the underlying
soft-mode dynamics was studied by neutron scattering [18]
and Raman spectroscopy [19,20]. Guided by previous work
[21,22], Haun et al. [23] constructed a Landau-Devonshire
theory [24] that accounts for all possible [25] transitions
from the cubic parent phase to tetragonal, orthorhombic, or
rhombohedral phases under application of external stress. In
what follows, we shall use small Latin letters for 3d vector
indices i,j,...=1,2,3 and Greek ones u,v,...=1,...,6
for Voigt indices. Using this convention, the phenomenological
Gibbs potential density of Haun ef al. includes all symmetry-
allowed polynomial invariants up to sixth order built from the
three components P; of the spontaneous polarization P that
serves as the primary order parameter (OP), linear-quadratic
couplings between the components o, of the external stress
and the primary OP components, as well as a “bare” harmonic
elastic energy. We shall focus on a single domain description
by setting P, = P, = 0, with P; playing the role of the primary
OP. Then it suffices to work with the Gibbs potential density

G(P3,01,02,03) = G(P3) + G.(P3,01,02,03)
+ Go(01,02,03), (1

where

G(P;) = a1 P{ +a Py + o PY,  (2a)

Go(Ps,01,02,03) = — P} un%, (2b)
I
1 3
Go(01,02,05) = =5 3, 5,0u0:. (20)
n,v=1
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TABLE 1. Landau parameter values used in our present cal-
culations for dimensionless order parameter Q. The compliance
components SY; and SY, are taken from Ref. [26] and agree with
those listed in Table I of Gao ef al. [27] or Table 5 on p. 368 of
Ref. [13].

Parameter Value

@ 7.644 x 104 GPaK~! x (T, — T)
Ty 75195 K

@ —7.252 x 1072 GPa

A 2.602 x 107! GPa

qn 8.92 x 1072

G 2.6 x 1072

S9, 8.0 x 10712 Pa

59, —2.5x 1072 Pa

Here ng are the bare elastic compliances of the cubic

high-symmetry phase and q; = g2 = g12, g3 = ¢ in the
parametrization of Haun et al. In Ref. [23] numerical val-
ues for the parameters o,o11,2111,911,912 are given. Their
behavior follows the traditional Landau prescription; i.e., o
depends linearly on temperature while all other coefficients
are independent of 7. The polarization P; has dimension
C/m?. In the present context, however, we prefer to work with
a dimensionless OP instead, since the coupling coefficients
then acquire the same units as the pressure. Rescaling P; =
1C/m2 - Q, the coefficients ay,01,00111 and g, get replaced
by rescaled versions &j,&11,&111 and §,. Table I lists those
rescaled parameters that are needed in our present context.

Instead of stresses, FSLT requires a parametrization in
terms of strains. Mathematically, this amounts to replacing
the Gibbs by the Helmholtz potential by performing a partial
Legendre transform

F(Q.€1,62,6) = G(Q.6e) + Y 5.0, (3)
"

of the LP of Haun e al. At fixed P, the required equilibrium
strains are

G
R = 0%, Z S0,00- )

Solving (4) for6, =", Cﬁa(ea —Gu 0?) where Cga denote
the cubic elastic constants, we find

Q%) Coplucs
ap

o* 0~ 1 0
+ BN ;qﬂCwqa + 3 %: Cop€acp. (5)

F(Q7€11627E3) = G(Q) -

Using a more traditional parametrization, we obtain
A, B , C
F(Q,€1,6,63) = EQ + ZQ + EQ

1
+ Q2 Z D€, + 3 Zeucgaev, (6)
p= s
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where
A =24, @)
B =4a11 +2)_4,Cl,Ga- ®)
e
C = 6ay, )]
D, ==Y Cha. (10)

v

Figures 4 and 5 of Ref. [23] suggest that for vanishing
stress, the potential G (or equally F') is capable of offering a
remarkable concise numerical description of both equilibrium
OP as well as spontaneous strain components over a wide
temperature range of nearly 500 K. In this parametrization the
spontaneous strain components

&u(T) =, 0%(T) (11)

appear to be exactly proportional over this temperature
range with a T-independent proportionality factor g,. In
Refs. [13,26-28] the parameters published by Haun et al. in
Ref. [23] have been taken over without any changes and can
thus be regarded as well established in the literature. We shall
reconsider the validity of this parametrization later on.

Unfortunately, the good agreement between data and theory
for the temperature-driven transition at ambient pressure is
spoiled for the pressure-driven case at ambient temperature.
For hydrostatic stress o;; = —PJ;; the above Landau Gibbs
potential density becomes

2

P
G(Q,P) = T [o1 + 2q12 + 1) P1Q?

o1 Q% + a1 0°, (12)

where K denotes the bulk modulus of the cubic parent phase.
Note the linear P dependence of the harmonic contribution in
contrast to the P independence of «;. For 1y < 0 this yields
a first-order phase transition at

G+ @2
Haun _ @1 4111 (13)
¢ qn +2q1

with a corresponding OP discontinuity

AQ, = |1 (14)
200111

at 7. and accompanying jumps
Ae, = AQ*G,, n=123 (15)

of the spontaneous strain components. Note that with the given
parametrization these jumps are mere constants independent of
both P and T. At room temperature 7, the parameter values
listed in Table I produce

P (Tg) = 2.92 GPa, (16a)
Haun __ —0.0036, wu=1,2,
A€, = {+0.0124, L=3 (16b)
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Our present work is motivated by the fact that these
predictions are both qualitatively and quantitatively strikingly
far from experiment. Instead, at room temperature in both the
classic Raman study Ref. [29] and the high-pressure x-ray and
Raman experiments conducted by Janolin ef al. in Ref. [30] a
second-order phase transition at a much larger critical pressure
was detected.

In the single-crystal Raman experiments of Ref. [29],
the merging of the tetragonal Raman-active E(j70O) and
A1(jT O) modes is observed at P, & 12 GPa, beyond which
they are reported to vanish abruptly. In addition, close to
P, the squared frequencies of the lowest modes E(17O)
and A{(1TO) are found to vanish like |P — P.|. Early x-
ray diamond anvil cell experiments [31] on U-doped PTO
confirmed the absence of any transition up to 6 GPa at room
temperature and yielded a similar estimate for P.. On pure
PTO, both x-ray and Raman scattering measurements were
finally carried out at room temperature in Ref. [30], covering
a much larger pressure range from ambient pressure up to
63 GPa. Up to 12 GPa, the x-ray results are consistent with the
P4mm space group, while from 12 GPa to 20 GPa the unit cell
parameters appear to be metrically cubic. The accompanying
Raman data, which were obtained from powder, point more
towards P. ~ 13 GPa but also show some features that are
not well understood. Nevertheless, the fact that some Raman
modes continue to be observed above this pressure and are
found to harden again is not necessarily incompatible with
the assignment of the prototypical cubic perovskite structure
Pm3m to this cubic phase. Similar observations are also made
in the Raman spectra of BaTiOs; and KNbO;3; (KNO) and
are attributed to the existence of so-called nanopolar regions
(cf. Ref. [32] and references therein). Summarizing, there is
little doubt [33] that at room temperature lead titanate is of
Pm3m symmetry within the pressure range of 12-20 GPa.
In passing we note that above 20 GPa, further tetragonal
phases are reported in Ref. [30], which hints at the rather
complicated topology of the full phase diagram of PTO in
the (P,T) plane [34]. Concise DFT calculations [35] reveal
that at zero temperature a tetragonal ground state is followed
by monoclinic and rhombohedral phases, but below some
200 K the existence of a cubic phase seems to be ruled out
[34].

In quantitative terms, a discrepancy of some 300% between
the experimentally observed critical pressure P, and the
prediction P14 deduced from the theory of Haun et al. should
be sufficient to make advocates of the traditional Landau
approach scratch their heads. To illustrate the even more severe
qualitative failures, Fig. 1 shows a compilation of powder and
single-crystal x-ray results from Ref. [30] up to 20 GPa. Two
aspects of these data appear to be particularly remarkable.
(i) On the one hand, the transition appears to be continuous
within experimental resolution. Tentatively calculating the
jumps that the lattice parameters would undergo according
to the prediction (16b), we would obtain discontinuities
Aa = Ab~ —0.014 A and Ac =0.048 A. Jumps of this
magnitude are, however, clearly ruled out by experiment (cf.
Fig. 1). Indeed, the second-order character of the transition at
elevated pressure and the possibility of a tricritical point has
already been noted some time ago in the classic Raman study
Ref. [29]. Interestingly, such a change from first to second
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FIG. 1. Raw axis data for PTO obtained in Ref. [30] in the
pressurerange 0 < P < 20 GPa. The value P, = 12 GPais indicated
by the vertical line. The unobserved first-order jumps predicted from
(16b) are marked by the two horizontal lines.

order character with increasing pressure is not only observed
in the tetragonal-to-cubic transition of PTO but, for instance,
also in that of KNO [32]. (ii) Equally puzzling is the observed
curvature of the data that seems to increase as one lowers the
pressure from P, to ambient pressure. Given a second-order
transition, the traditional Landau approach would predict a
linear pressure dependence of the squared order parameter,
inducing a similar P dependence of the spontaneous strain
on top of the elastic background. In contrast, the observed
behavior is neither expected nor explainable using standard
Landau theory.

In summary, we observe serious inconsistencies between
the traditional Landau approach and the experimental facts.
Thus, it comes as no surprise that up to date we are not aware

J
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of any attempt to analyze these data further within the Landau
framework. In what follows we shall demonstrate that our
recently developed extension of Landau theory [10] allows us
to carry out such an analysis successfully. However, the case
of PTO turns out to pose some special challenges that may
not be encountered in simpler applications of this theory. We
therefore add a short discussion of the cornerstones of our
flavor of Landau theory before we present its application to
PTO in detail.

III. FINITE-STRAIN LANDAU THEORY

In a Landau-type approach, it is essential to recognize
that a possible dependence on an external stress can be fully
encoded in a double expansion of the Landau free energy
F(Q,n; X) in powers of the OP components Q; and the
components of the total strain tensor 7, ; defined with respect
to the zero-pressure (“lab”) system X. In previous literature,
to capture strain effects beyond linear elasticity, some authors
have tried to modify LPs of the above type by introducing
P-dependent potential parameters in a more or less ad hoc
manner. Frequently, this leads to “Landau potentials” in which
both strains and stresses appear simultaneously. Such a strategy
is neither mathematically consistent nor physically satisfying.
Our present method strictly employs expansions in the strain
components, even though our final results are parametrized
by the underlying external pressure P, which nevertheless has
always the status of a derived quantity, i.e., is a function of the
applied strain. This is also very natural from the perspective
of DFT.

Considering for simplicity the case of a scalar order
parameter Q, in the laboratory system X such an expansion
generally reads

F(Q.n; Xo) 52;, f*;lmn [Xo]
O X +) —5— ’hﬂ71d+ > N +
0 ijkl ijklmn

(2N 2) (2N,3)
[Xo] D [ Xo]
I jkl 0 i klmn 0

N S S A L
klmn

where

AlX B[X X
B(0: Xo) = [ O]Q2+ [ O]Q4+C[ ol

6
2 4 6Q+

(18)

denotes the “pure” OP contribution. Unfortunately, as it stands
such an expansion is of very little use in practical applications.
The presence of any strain powers beyond harmonic order
results in a set of nonlinear coupled equilibrium equations
which are extremely hard to handle. Furthermore, evaluating
these powers would require knowledge of the numerical values
of arapidly increasing number of third, fourth, and higher order

elastic constants C, kimn.. [Xo] as well as of the higher order

coupling parameters Di(]. a0 '[Xo], neither of which are easily
available in general. Consequently, the “traditional” attempts
to apply Landau theory (LT) in a high-pressure context thus

(

continue to regard 1;; as “infinitesimal” and truncate the above
expansion at harmonic order in the strain. The terms ignored
by such a crude approximation are precisely the ones that
encode the nonlinear elastic effects inevitably accompanying
high pressure. In cases where nonlinear effects are too obvious
to be swept under the rug, the infinitesimal strain approach is
therefore frequently augmented by ad hoc assumptions about
an additional pressure dependence of elastic constants and
strain-OP couplings that are difficult to justify.

On the other hand, one should realize that an expansion
of type (17) actually contains much more information than
needed. In fact, if we knew (17) to high orders, this would in
principle allow us to compute the response of the system to an
arbitrary external stress o;;. When only hydrostatic external
stress is applied, however, all effects of elastic anisotropy
necessarily originate solely from the emergence of a nonzero
OP coupled to strain that effectively exerts a nonhydrostatic
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internal stress. A much more economic approach should
therefore exist for determining the response to hydrostatic
external stress. Indeed, such a theory has recently been
presented in Ref. [10] and was shown to yield a concise
description of the ambient-temperature high-pressure phase
transition in STO. We refer to Ref. [10] for a more detailed
exposition of the machinery underlying FSLT. Here we content
ourselves with summarizing its core ideas.

We start by emphasizing that “strain” is a relative concept.
An expansion of a structure similar to (17) must therefore be
possible also for another choice X p of elastic reference system.
To identify a particularly convenient “background” system, we
argue that even though the total observed strain may be large, at
least near P, of a second-order or weakly first-order transition
the spontaneous strain caused solely by emergence of nonzero
equilibrium OP must necessarily be small enough to warrant
a harmonic treatment. Thus we decompose the total strain

n:ij = n;;(P) into
Nij = eij + ki€, (19)

where «;; denotes the deformation tensor [10] relating the
zero-pressure ambient (“lab”) system X, to the chosen
background system X p, which is therefore defined as the
(hypothetical) equilibrium state of the system with the OP
constrained to zero, and e;; = %(Zn i Oy — Oir) 1S the—
possibly large—Lagrangian background strain. We emphasize
that it is only with respect to the decomposition (19) that we
are allowed to write

F(Q.€:.Xp) -
P A 00 Xp) + 0*D;;[X ple;; + Zfij[XP]a'j
V[Xp] T
1 ~
+§%l:cijkl[XP]/€\ij€kl- (20)
ij

For the pure OP potential part we assume
A[Xp] B[Xp] Xpl
2 4 6

with coefficients yet to be d_etermined. As shown in Ref. [10],
the OP equilibrium value Q minimizes a renormalized back-
ground pure OP potential density

Ar[Xp] Br[Xp]

B(Q; X p) = 0+ 0t + SXrl e oy

CrlXp]

. _ 2 4 6

Pr(Q; Xp) = > 0"+ 1 0"+ ; 0,
(22)

which is simply related to ®(Q; X p) by
2
Dr(Q;Xp) = P(0: Xp) — % Z D;;i[X p1Siju
ijki

X [XplDulXpl, (23)

where the compliance tensor S,,,;;[ X p] is the tensorial inverse
of the Birch coefficients

Biju[Xpl = CijulXp] + %(Tjk[XP]Sil + [ X p16 4
+ [ X plik + [ X p18jk — 27;[X p161s) (24)

of the background system Xp which replace the elastic
constants [36,37] at finite strain. A comparison of common
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powers in€;; yields the following expansions of the coefficients
AR[XP],BR[XP],CR[XP], and D,’j[Xp] in powers of the
background strain e;; = e;;(P), with the laboratory couplings
constituting (17) appearing as coefficients. One obtains

IDu[Xpl = aiDi; [ Xolyj + Y otsi Disi [Xolesjen
ij ijkl
+ Z asiD,‘(f]ﬁ,)ﬂn [XO]atjeklemn +- (25)
ijklmn
JAR[X pl = A[Xo] + 2( Z Dg,b[xo]e,j

ij

1 1
2,2) (2.3)
+ 21 Z Dijkl [Xoleijen + 31 Z Dijklmn

T ijkl " ijklmn
x [Xoleijexemn + - - '>, (26)
JBg[Xp] = B[Xo] —2J Y Dyj[X p1S;jul X p1Du[ X p],
ikl
(27
JCrIX p] = C[Xol, (28)

where J := det(x;;). Relation (25) indicates a pressure de-
pendence of the strain-OP coupling constants resulting from
nonlinear elastic effects, while (26) generalizes the linear
pressure dependence of the harmonic Landau parameter
familiar from the traditional infinitesimal strain approach.
Relation (27), which is written in a compact way thanks to the
previous relation (25) for Dy [ X p], gives a pressure-dependent
generalization of the constant negative renormalization of
the fourth-order Landau parameter accompanying a linear-
quadratic strain-OP coupling. Such a shift of the fourth-order
coefficient is familiar from infinitesimal-strain Landau theory,
where it is discussed as a possible mechanism for explaining
the appearance of tricritical or first-order behavior. However,
it is crucial to note that within the simple linearized theory
no fully consistent explanation of an observed pressure-
dependent change of the order of transition (second order,
tricritical, first order) based on this device can be given. Finally,
according to (28) the sixth-order Landau parameter acquires
only a trivial renormalization with the current assumptions
made.

Superficially, the equilibrium value €,,, of the spontaneous
strain

G =—07> " Dij(Xp)SmijIX p] (29)

ij

still seems to follow the traditional Landau rule of thumb
that for linear-quadratic coupling the spontaneous strain
is proportional to the square of the OP. However, while
the accompanying proportionality factor represents a mere
constant in the infinitesimal approach, relation (29) indicates
that this factor must be expected to become pressure-dependent
in a nontrivial way as a result of the interplay between the
pressure-dependent elastic constants and coupling constants
in the nonlinear regime.
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For an application to PTO we specialize equations (26) and
(25) to a cubic background reference system X p. Then J =
V(P)/V(0), which yields a diagonal deformation tensor «;; =
ad;; with a = V/J and a diagonal Lagrangian background
strain e;; = e8;; with e = 1(a®> — 1). While this specialization
leaves (27) and (28) unchanged, Egs. (25) and (26) simplify to

«(P)D,[X p] = Dyu[Xol + e(P)E,[Xo] + ¢*(P)F,[Xo]

+e3(P)GM[X0]+ , M= 172537 (30)
o> (P)AR[X p]
e*(P)
= A[Xo] +2<€(P)D[Xo] + = ElXo]
e (P) e*(P)
+ S X+ ] G[Xo]+---> TG

where we introduced the abbreviations
D,[X]:=D}VIX], EuX]:=) D&H”IX],

FX]:=Y DZJIX]. GuX]:=)Y DZY[X],

(32)
and
DIX]:=Y D,X], E[X]:=) E.X]
iz Iz
FIX]:= ) FJX]. GIX]:=) Gu.X], ... (33
n "

FSLT is constructed to serve as a high-pressure extension of
an existing ambient-pressure LT. The minimal required input
of FSLT for a successful application in this respect consists of
the following ingredients:

(1) A preexisting ambient-pressure LT, supplying the
laboratory coefficients A[Xo],B[Xo],C[XO],fo’l)[XO] =
D,[X,] and possibly ambient-pressure elastic constants
C,w[Xo]. Obviously, such a LT constitutes a “boundary
condition” that any high-pressure extension must meet. Our
theory fulfills this requirement by construction, since X p =
X implies «;; = §;; and thus e;; = 0.

(2) The pressure dependence e;; =e;;(P), ie., o; =
a;;(P), defining the “floating” reference system X p must be
known. If the high-symmetry phase is cubic, as it is in the
present case, this amounts to knowledge of the equation of state
(EOS) V = V(P) from experiment or ab initio simulations.

(3) Similarly, we rely on knowledge of the pressure-
dependent elastic constants C;j[Xp] = Ciju(P), constitut-
ing a relatively small set of P-dependent functions that
encode the effects of higher order elastic constants at purely
hydrostatic stress in a way that is much easier to handle.
Unfortunately, experimental high-pressure measurements of
pressure-dependent elastic constants are only available in rare
cases. While in a precursor to our present theory [38] this P
dependence had to be encoded in an expansion in powers
of P constrained only by consistency with the pressure-
dependent bulk modulus K (P), which gave rise to additional fit
parameters, in the present version pressure-dependent elastic
constants are calculated from DFT.
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Given these additional data, the only remaining free
parameters are the higher order coupling coefficients
fo,’j)[Xo],Dg;jr)m[Xo], ... appearing in the ambient pres-
sure LP (17). Theoretically it could be possible to actually
determine these coefficients (as well as higher order elastic
constant components) from some sophisticated simulation
or experiment. In practice, however, it is probably fair to
say that in a genuine application of FSLT these couplings
must be taken as unknown parameters to be determined from
fitting the predictions of the theory to a set of experimental
measurements. This may sound disturbing, since in a low-
symmetry situation the number of independent components
constituting these tensors can be quite substantial. However,
in cases where the “high symmetry” paraphase—defined by
the requirement that the OP vanishes identically—is, e.g., of
cubic symmetry, Egs. (30) and (31) indicate that only certain
sums of these coefficients actually enter into our expansions.
Thus, if the background system is highly symmetric, the actual
number of independent free parameters is drastically reduced.
For instance, Eqs. (30) and (31) reveal that to describe a
cubic-to-tetragonal transition one needs to determine only two
free parameters at each order in the background strain e. In
situations of lower symmetry we may find ourselves in a less
favorable situation. Unfortunately, however, there seems to
be no consistent way of simplifying the problem any further
without sacrificing key elements of nonlinear elasticity.

The theory we have summarized so far was developed in
Ref. [10] to describe the high-pressure extension of the 105 K
transition Pm3m <> 14 /mcm in STO. In particular, it assumes
that the low-pressure phase coincides with the high-symmetry
parent phase. For the ferroelectric transition in PTO, however,
this aspect seems to be reversed. The ambient temperature
and pressure phase P4mm of PTO is ferroelectric, and the
transition to the cubic Pm3m reference phase mediated by a
soft mode at the I" point [29] heuristically conforms to the rule
of thumb that pressure tends to suppress ferroelectricity [39]
at least up to some critical pressure [40,41]. From the point
of view of traditional LT, this difference, which also manifests
itself in the different sign of the Clapeyron slopes d P./dT
computed for both transitions, seems to be merely related to
the signs of the OP-strain coupling constants. However, in
setting up a FSLT extension, some extra care is needed. This
becomes obvious if one takes into account that at ambient
pressure and temperature the background strain e vanishes
by definition if measured with respect to the laboratory state
X, which in turn implies that the total strain n = € is all
spontaneous. This state of affairs seems to thwart our plans
developed above, which explicitly rest on the assumption that
€ would be small and e large. A remedy is, of course, to trade
the X for a different reference system X p, = X, defined for
some pressure P, > P, which is always possible, since strain,
as we once more emphasize, is a relative concept. The resulting
slight technical complications in applying FSLT are described
in Appendix A.

IV. FINITE TEMPERATURE

For notational reasons we have suppressed an additional
temperature dependence of the constituents entering the theory
sketched above. Assuming that the 7' dependence of the
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ambient-pressure LP is known, this still leaves us with
determining that of all remaining coupling parameters defined
with respect to the background reference system Xg. In
particular, we should find a way to “heat up” the EOS and
pressure-dependent elastic constants that we have obtained
from DFT to the desired temperature. If one studies a transition
at rather low temperatures one may try to get away with
ignoring effects related to finite temperature such as thermal
expansion or temperature changes in the elastic constants
in a first approximation. This applies, e.g., to the cubic-to-
tetragonal transition of STO used as a test bed for FSLT in
Ref. [10], which takes place at a modest 7, = 105 K. In the
case of PTO, neglecting finite-temperature effects would be
much harder to justify, since the ambient-pressure ferroelectric
transition takes place at the rather elevated temperature of
T, =~ 765 K.

Some time ago, a very interesting and ambitious strategy to
obtain finite-temperature results from DFT has been worked
out [42—47] with the declared objective to obtain a parameter-
free description. It consists of (i) isolating those unstable
deformation modes that initiate the symmetry breaking ac-
companying the transition, (ii) calculating an effective lattice
Hamiltonian for these modes, including couplings to further
important deformations such as lattice strain, and (iii) feeding
this into Monte Carlo [46] or molecular dynamics [48].
This approach has indeed offered remarkable qualitative and
semiquantitative insight into the mechanisms underlying, e.g.,
structural phase transitions. In addition, it also shares a lot
of common ground with Landau theory due to its strong
emphasis of group theory. However, the effective Hamiltonian
approach typically fails to reproduce the experimentally
observed critical temperatures in perovskites, sometimes by
several tens of kelvins or more. In Ref. [49] these problems
were traced back to an insufficient incorporation of noncritical
anharmonic effects.

Our present approach does not aim at calculating coupling
parameters of energy contributions involving the OP. It
only requires determining the dependence of the background
system Xp on P and T for zero OP. However, X p is—by
definition—thermodynamically unstable within the broken-
symmetry phase, and therefore it is not straightforward how
to determine the 7 dependence of the EOS and elastic
constants of the high-symmetry reference phase. Of course,
this problem is not at all specific to high-pressure situations
(in the context of effective Hamiltonians cf. Ref. [42]). Indeed,
it should arise any time that a secondary OP (i.e., a tensorial
quantity that does not break as many symmetry elements
as the primary OP when assuming a nonzero value [50]) is
included in LT. To disentangle the transition anomalies related
to such a secondary OP from possible noncritical contributions,
some potentially 7-dependent “baseline” always needs to be
subtracted. Drawing such a thermal “base line” to disentangle
transition-related anomalies of a secondary order parameter
from some background not related to broken symmetry may
be considered a trivial matter. However, it is not. In the
ferroelectric literature, elastic baselines have been defined
at ambient pressure in various ways. For instance, Ref. [22]
explicitly defines a pseudocubic unit cell parameter as the third
root of the noncubic unit cell volume, whereas conveniently
imposing the condition of T independence for the coupling
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parameters between strain and polarization [23] constitutes an
implicit one. Of course, the fitted Landau parameters emerging
from such an ad hoc prescription inherit a similar degree
of arbitrariness. Moreover, the resulting elastic baseline is
likely to be incompatible with one obtained from a thermal
extension of an EOS calculated from DFT. While these issues
may remain unnoticed at modest pressures, they are bound to
surface in an attempt to construct FSLT as the high-pressure
extension of this LP.

For solid state systems, a standard way of passing from
energies to free energies is the quasiharmonic approximation
(QHA) [36,51-53]. In principle the QHA requires computing
the zero-temperature phonon frequencies at any given volume
of the high-symmetry phase which is well mastered by
DFT. By definition, however, the high-symmetry reference
structure of a structurally unstable system will exhibit at least
one unstable phonon mode characterized by an imaginary
frequency. In the lattice-dynamical description of structural
phase transitions this imaginary frequency corresponds to the
“soft mode” that becomes unstable at the transition. Indeed,
the phonon dispersions calculated for typical perovskites
generally feature several rather “flat” branches of imaginary
modes stretching into extended regions of the Brillouin zone
(see, e.g., the phonon dispersion graphs on p. 135 of Ref. [13]).
The corresponding large spikes in the phonon density of states
(DOS) g(w) make it impossible to simply neglect these phonon
branches. It is due to the presence of these imaginary phonons
that standard techniques for incorporating thermal effects such
as the quasiharmonic approximation (QHA) and Griineisen
theory [54,55] cannot be applied. Ways to overcome the
fundamental difficulties posed by the presence of imaginary
phonon modes and strong anharmonicity continue to constitute
an active area of current research (see, e.g., Refs. [56,57]).

The nonapplicability of the QHA is a recurrent theme in
high-pressure and mineral physics even in the absence of
imaginary phonons simply because precise information on the
phonon DOS is frequently unavailable due to the complexity
of the corresponding systems. In these fields different types
of Debye approximations (DAs) are therefore still essential
[58-61]. As we recall in Appendix C, where we recollect
the most relevant facts of the DA in the present context for
the reader’s convenience, the simplest forms of the DA require
only knowledge of the underlying EOS and arough guess of the
Poisson ratio o. It is these modest requirements that make the
Slater-Debye approximation equally appealing in our present
situation, in which the phonon DOS of the high-symmetry
structure is available but nevertheless unusable due to the
imaginary frequency contributions.

A general solution of the issues raised by the presence of
an imaginary contribution to the phonon spectrum must be
postponed to future work. For now, our proposed strategy for
determining the finite-temperature dependence of a (e.g., cu-
bic) high-symmetry reference structure consists of performing
constrained DFT calculations of the corresponding cubic EOS
and elastic constants followed by a subsequent application of
the DA. In view of the rather drastic simplifications implied
by such strategy, we shall take a pragmatic point of view
with respect to the choice of DA flavor described above. In a
typical problem at hand, we may have experimental volume
data at several temperatures available, and we shall choose
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the combination of DFT and DA type that exhibits the most
satisfactory overall agreement with the available data.

We close this section with some practical advice. A generic
application of this theory will typically involve fitting a set of
P-dependent strain data, for which rather precise additional
information on the actual value of the critical pressure P, may
frequently be available. By its very nature, a least-squares
fitting procedure may however numerically trade a better fit
to data points far away from the transition for a shift of P.
to some other value. To avoid such a numerical smearing
of the transition pressure region, we recommend numerically
eliminating one of the free fit parameters, say E;[X], in favor
of P.. Provided we are dealing with a second-order transition,
this can be accomplished, for example, by solving the equation
AR[XP,] = 0 for El[X()].

V. APPLICATION TO LEAD TITANATE

The above discussion has underlined that a prerequisite
for a successful description of the ambient-temperature high-
pressure phase transition in lead titanate reported in Ref. [30]
is the determination of a meaningful background system X p
at a given temperature 7. This amounts to calculating the EOS
V = V(P,T) and the elastic constants Cy1(P,T),C»(P,T)
for the cubically constrained system. At T = 0 we accomplish
this task by performing a series of standard DFT calculations.
Details are deferred to Appendix B.

The behavior of the resulting elastic baselines at finite
temperature and pressure is analyzed using the GIBBS2 package
[52,53]. Further details can be found in Appendix C. As stated
above, we take a pragmatic point of view and try to single
out the type of DA that yields the best overall agreement
of the thermally extrapolated cubic EOS V = V(P,T) with
the available data. On the one hand, at ambient pressure, this
function should reproduce the one of Haun et al. [23] for T >
T.. On the other hand, at room temperature it should match the
volume data of Janolin ef al. [30] for 12 GPa < P < 20 GPa.
In addition, between 0 and 7.8 GPa high-temperature cubic
EOSs have been measured rather recently using synchrotron
x-ray diffraction by Zhu et al. [33] at temperatures T =
674 K, 874 K, and 1074 K. Unfortunately, no matter which
type of the DAs implemented in GIBBS2 was invoked, it
proved to be impossible to perfectly match these requirements
simultaneously.

In detail, the Dugdale-McDonald and Vaschenko-Zubarev
flavors of Debye-Grueneisen approximations (see Ap-
pendix C) admittedly produced the best-fitting baseline to the
volume data of Janolin et al. Also, they yielded good agreement
with those of Zhu er al. However, these approximations
produced a certain small but non-negligible offset to the
T > T, part of the baseline of Haun et al. Concise agreement
with the high-temperature part of this baseline must, however,
be regarded as an important constraint in our search, since our
set of Landau coefficients is directly based on these data.

Interestingly, the simple DA is not only found to perform
excellent in this respect (Fig. 2), but also to produce an
ambient-temperature baseline for the high-temperature vol-
ume data that is in reasonable agreement with the volume data
of Janolin et al. between 12 and 20 GPa (cf. Fig. 2), which
is an indispensable prerequisite for application of our FSLT.
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FIG. 2. Comparison of raw volume data of Janolin er al. [30]
(black line) to the thermal EOS derived from the PBEsol functional
and the DA (red line). To illustrate the effect of thermal expansion,
the EOS resulting from zero-temperature DFT is also shown (blue
line).

The values obtained from the simple DA are, however, in
excess of the synchrotron data of Zhu et al. by some 3.5%.
The reason for the discrepancy is currently not understood. It
may very well result from the intrinsic imperfections of the
DA (as well as those of the QHA) at high temperatures. On
the other hand, Zhu et al. also report certain disagreements of
the accompanying values they obtained for the bulk modulus
with those previously obtained by other authors.

In summary, for our present purposes a combination of
PBEsol and a simple DA emerged as a reasonable choice for
producing a suitable 7- and P-dependent EOS. Based on the
strategy outlined in Appendix C, this also allows us to extend
the pressure-dependent elastic constants obtained from DFT
from zero to finite temperature.

Looking at Fig. 3, one notices that upon lowering the tem-
perature from 7, down to T our new baseline steadily deviates
from the one of Haun ef al., and the spontaneous strain com-
ponents emerging from these data have to be redefined with
respect to this new baseline. This, in turn, requires revising the

4.2 . — . . .
baseline of Haun et al.
< 415 new baseline
> a(
5 41 o(T) ——
©
e 405}
g
g 4
S 395 —
S 39}
3.85

300 400 500 600 700 800
T[K]
FIG. 3. Comparison of elastic baseline used in Haun et al. [23]
(black) to our new baseline (red) as obtained from the Debye
approximation. The temperature-dependent ambient pressure unit

cell parameters a(7T") (green) and c(T) (blue) are also shown for
convenience.
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FIG. 4. Comparison of the T-independent coupling coefficients
values g;; obtained by Haun et al. (black horizontal dashed lines; cf.
Table I) to those obtained from redefining the elastic baseline using
PBESsol and the DA [red data points, fitted by Eqs. (D1) (red line)].

values of the T -independent coupling coefficients g, of Haun
et al. As demonstrated in Appendix D, one obtains a new set
of somewhat shifted and slightly T -dependent coupling coeffi-
cients g, = ¢,,(T). In principle, the thereby acquired 7 depen-
dence may still appear rather weak (cf. Fig. 4) and could very
well be neglected. More importantly, however, Fig. 4 reveals
that the overall levels of the couplings have also undergone cer-
tain small but definitely non-negligible shifts. These readjust-
ments of the OP-strain coupling parameters may appear small.
Nevertheless, in retrospect they proved to be crucial for ob-
taining a good fit of FSLT to the high-pressure transition data.
Once the thermal baseline and a redefined set of strain-OP
couplings have been established, we can extract (Lagrangian
[36]) spontaneous strain components from the raw data of
Janolin et al. The results, which are shown in Fig. 5, reveal that
any discontinuous behavior of these components with respect
to variations in the pressure cannot virtually exceed the size of
the error bars, and certainly must be at least much smaller than
the first-order discontinuities observed in the corresponding
spontaneous strain components at the critical temperature of

0.07 ' ' ; glgp;TRg ]
0.06 L &P =0,Tg) (P, Tp) m—
0.05 P
0.04 |
0.03 }
0.02 } llan(p _ 0 T,)
0.01 }
o0l '
—0.01
—0.02 } @™ (P=0,Tr)
0 2 4 6 8 0 12
P|GPal)

spontaneous strain

g{{a'u,n,(P = 07 T(‘):

FIG. 5. Spontaneous Lagrangian strain components computed
from the raw data of Janolin et al. [30] (shown in Fig. 1) after
implementation of our new baseline at ' = Ty. The corresponding
spontaneous strains €,(Tx) and the critical jumps €,(Tc) of the
ambient-pressure ferroelectric transition are also indicated.

PHYSICAL REVIEW B 95, 064111 (2017)
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FIG. 6. Main plot: Fit of FSLT to experimental lattice parameters.
The vertical line indicates the critical pressure P, = 12 GPa. The
gray line indicates the elastic thermal background reference system
resulting from the use of PBEsol and the simple DA. Inset: Resulting
P dependence of squared equilibrium OP.

the ambient-pressure ferroelectric transition. This supports our
initial hypothesis that the high-pressure transition at room
temperature exhibits a second-order character. In contrast,
Eq. (16b) derived from traditional LT predicts discontinuous
jumps of the spontaneous strains with sizes independent of
both 7" and P, that are clearly not observed.

With the above preparations completed, setting up the
least-squares fit is rather straightforward. In detail, we placed
our background reference system X, at P, = 20 GPa. As
explained above, fixing P, = 12 GPa allows us to eliminate
E5[X,] from the list of free parameters, which thus reads
Es[X,],Fi[X,], F3[X,],G1[X,],G3[X,]. In a simultaneous fit
of the two data sets for the total strains 7;(P) and n3(P) all of
these parameters are initially put to zero.

The resulting fits to the experimental unit cell parameters
a,c and the accompanying pressure dependence of the squared
equilibrium OP Q?(P) are shown in Fig. 6. In the inset to this
figure, one immediately notices the strong deviation of Q?(P)
from the generally assumed linear P dependence predicted
by infinitesimal-strain LT. Via Eq. (29), this pronounced
nonlinearity is passed on to the unit cell parameters ¢ and
¢, precisely producing the unusual curvatures of a(P) and
c(P) away from their common baseline, as the main plot of
Fig. 6 shows. It is the combined effects of the P dependence of
elastic constants and the nonlinear strain-OP coupling terms
that have made it possible to understand the unusual effects of
nonlinear elasticity reflected in these experimental data.

The resulting P dependence of Ay is roughly linear as
expected from standard LT (left upper corner of Fig. 7).
However, while it necessarily reduces to the corresponding
ambient-temperature value of the potential of Haun et al. for
P =0, its slope as a function of pressure is markedly reduced
due to the fact that our FSLT is able to take the P dependence
of elastic constants properly into account. This immediately
resolves the discrepancy between the experimentally observed
critical pressure P, = 12 GPa and the value P, = 2.9 GPa
predicted by the infinitesimal-strain approach, in which any
pressure dependence of elastic constants had been implicitly
neglected.
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FIG. 7. P dependence of Landau coefficient Ag,Bg,D;,D;5 at
room temperature Ty (red lines). Vertical blue lines mark the critical
pressure P, = 12 GPa. For comparison, gray lines indicate the P
dependence of the coefficients (7), (8), and (10) as computed from
the Landau potential (2) of Haun ef al.

Parameters D,, show some P dependence, with D remain-
ing small in modulus and D3 evolving in the range between
—22 GPa and —19 GPa.

The P dependence of By is most interesting. In fact,
it is the key to understanding the change of the character
of the transition from first to second order with increasing
pressure. For a scalar OP subject to a given LP, a second-order
transition is expected for a positive sign of the quartic coupling
constant B > 0. In contrast, for B < 0 a sixth-order term
with a positive coupling constant C > 0 must be present
in the LP for reasons of stability, and (since fluctuations
are neglected [62]) standard LT always predicts a first-order
transition [6]. In particular, the presence of a linear-quadratic
coupling between OP and infinitesimal strain yields a negative
renormalization [63] of the “bare” quartic OP coefficient
B to a smaller value By < B after the strain terms have
been eliminated from the LP by using the elastic equilibrium
conditions. In infinitesimal LT, this mechanism constitutes the
standard theoretical quantitative device to explain the rule of
thumb that strong elastic coupling is often accompanied by a
first-order transition character. However, infinitesimal-strain
LT only allows for a P-independent renormalization from
B to Bpg, while the observed change in transition character
for PTO from first to second order with increasing P can
only be due to a P-dependent change of sign of Bg, a
behavior that is impossible to implement consistently in such
an approach. In contrast, the coupling coefficient By resulting
from FSLT naturally acquires a nontrivial P dependence,
as immediately anticipated from a glance at Eq. (27). As
displayed in the right upper corner of Fig. 7, By indeed
starts out negative at ambient pressure, but quickly changes
its sign with increasing P. Thus, the observed P dependence
of Br provides the sought-after explanation of the change in
order of the transition from first to second order. In principle,
this should not come as a surprise, since our theory was just
designed as an interpolation capable of describing both the
first-order ambient-pressure transition as well as second-order
transition at 12 GPa. However, we emphasize once more that
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FIG. 8. Main plot: Comparison of tentative second-order (red
line) and first-order (purple line) phase boundary P. = P.(T,) for
Tr < T < T¢c as computed from our theory to literature values
including the well-known ferroelectric transition at T = T, for which
Pc =0, the P. = 12 GPa transition at 7 = T measured by Janolin
et al. [30]. The blue data point indicates the estimate of the tricritical
point derived by Ramirez ef al. in Ref. [64]. The remaining data
points represent experimental results compiled from Refs. [65] and
[66]. Inset: Values of By along the phase boundary. The tricritical
temperature 7Ty & 717 K derived from FSLT is indicated in both
plots by the vertical dashed blue line.

a similar mechanism cannot consistently be introduced in a LT
based on infinitesimal strain.

Varying both pressure and temperature, the combined
dependence of Az and Bg on (P,T) allows us to estimate
the location of the tricritical point in the phase diagram, which
is defined as the state on the cubic-tetragonal phase boundary
that separates the line of first-order transitions from that of
second-order ones. Indeed, for variable temperature T the
location of Ar(P,T) =0 as a function of pressure defines
the cubic-tetragonal phase boundary P. = P.(T.), provided
that the corresponding value By is positive. Otherwise,
as follows from standard Landau reasoning, the transition
pressure must be located by numerically solving the equation

AR(P,T) = %. The resulting tentative phase diagram
for PTO in the pressure range 0 < P < 20 GPa is shown in
Fig. 8. As shown in the inset of Fig. 8, Bg indeed changes sign
along the phase boundary, and we estimate the corresponding

tricritical point to be
(Tyric, Pric) ~ (717 K,0.64 GPa). (34)

In closing this section we note that upon further increasing
the pressure Bg drops towards large negative values for P >
18 GPa after passing through a maximum at approximately
7.5 GPa. It is tempting to interpret this behavior as an
indication of the instability of the cubic phase for high pressure
experimentally observed in Ref. [30].
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VI. DISCUSSION AND CONCLUSION

We have presented an in-depth discussion of the application
of FSLT to the room-temperature high-pressure ferroelectric
phase transition of PTO, for which the conventional Landau
approach based on truncating the free energy expansion in
the strain tensor components beyond harmonic contributions
fails. In contrast, FSLT allows us to understand the peculiar
behavior of the tetragonal unit cell parameters as functions of
pressure, the change of the character of the transition from
first to second order with increasing pressure, to predict the
phase boundary separating the cubic and tetragonal phase in
the (P,T) plane, and to localize the corresponding tricritical
point. In this final section we would like to comment on several
points.

(1) While Fig. 8 indicates that the cubic-tetragonal phase
boundary derived from our theory is in reasonable agreement
with experimental data from the literature, we note that the
predicted location (34) of the tricritical point differs somewhat
from previous estimates in the literature. In particular, Samara
[67] estimates the tricritical pressure of PTO to be Pyic &
4.5 GPa by analyzing dielectric measurements, while Ramirez
et al. [64] gather evidence for (Tyic, Pyic) = (649 K,1.75 GPa).
To understand these discrepancies, one has to take into account
that dielectric measurements on pure PTO crystals are usually
hampered by their large room conductivity resulting from
lead deficiency. This problem is greatly reduced for slightly
U>" -doped single crystals [21], which had therefore been used
for the measurements of Ref. [67], on which also the estimate
of Ref. [64] was based. Unfortunately, as Ref. [8] reports, it
later turned out that reproducibility of dielectric measurement
results for different U-doped crystal specimens was not very
reliable, with peak values of the dielectric constant at 7,
varying by factors up to 3 and specific heat and slope d P./d T
by factors up to 2.

(ii) From a pure ab initio perspective, our present approach
cannot compete with the elaborate and parameter-free effective
Hamiltonian method sketched in Sec. IV. Still, since it is not
plagued by its lack of precision in determining T, it is able to
offer much greater numerical accuracy in describing a given
set of experimental data. This is only possible because the
knowledge of a T-dependent LP at ambient pressure is already
presupposed, and we merely construct a DFT-aided extension
of this existing thermal theory from ambient to high pressure.

In passing, we note that even if we were in possession of a
perfect microscopic effective Hamiltonian, it would still be far
from trivial to determine the resulting temperature-dependent
Landau parameters from Monte Carlo simulations (as shown
in Refs. [68,69], one pitfall is the unavoidable occurrence of
phase separation below 7).

(iii) As we have shown, the construction of the finite-
temperature extensions of the EOS and elastic constants
of the cubic reference phase turned out to be an essential
prerequisite for the successful description of the high-pressure
transition of PTO and also enforced a redefinition of Landau
parameters previously established in the literature. The main
obstacle in determining this thermal extension is the presence
of imaginary phonon modes indicating the low-temperature
instability of this reference phase. It is important to realize that
such problems are unavoidable in any attempt to combine LT
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with ab initio calculations. Electronic structure methods like
DFT generally work at T = 0, whereas a high-symmetry (and
thus, in general, high-temperature) reference state is pivotal
to LT. In the present work, this difficulty was circumvented
by employing a DA based on the EOS and elastic constants
obtained from DFT, but a more fundamental and controlled
solution of this problem, which might be based on, e.g., ideas
of Refs. [56,70] or [71] is definitely welcome. Work in this
direction is currently in progress.

(iv) We certainly do not want to leave the impression that our
work is the only one that accounts for the effects of nonlinear
elasticity and large strains at structural phase transformations.
For instance, the last decade has witnessed considerable
progress in the description of strong first-order martensitic
phase transformations in shape memory alloys and steels (see,
e.g., Refs. [72—77] and references therein). For the construction
of the corresponding phase field models a finite-strain treat-
ment turns out to be mandatory. However, strong martensitic
transformations are not of the standard group-subgroup type,
but rather fall under the class of reconstructive transitions [78],
for which it is impossible to define an OP in the strict sense of
orthodox LT (i.e., based on a single irreducible representation
of a high-symmetry reference group). Accordingly, the mech-
anism of these martensitic transitions is not related to a par-
ticular phonon instability; i.e., the soft-mode picture does not

apply.
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APPENDIX A: BROKEN SYMMETRY AT HIGH VS LOW
PRESSURE

The success of the strategy of FSLT as outlined in Sec. III
hinges on (i) knowledge of the LP as defined with respect to
the ambient pressure reference system X, (ii) the possibility
to split the total strain into a spontaneous contribution €;;
assumed small enough to warrant harmonic treatment for a
second-order transition close to P,, and a “large” background
strain e taking care of all pressure effects that are unrelated
to the primary OP. Equating coefficients of a power series
in €; allowed us then to calculate the pressure dependence
of Landau parameters. For STO, this strategy worked great.
For the “upside-down” case of PTO the decomposition of total
strain into background and spontaneous part may still be useful
around P., but it fails exactly where we need it the most:
at ambient pressure. Relative to the zero-pressure reference
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system X, the background strain must vanish, and the total
strain is all spontaneous. With every coefficient vanishing, it
makes also no sense to equate common powers of €;;.

An obvious solution to the described “upside-down” situa-
tion would be to choose another reference system X,. If one
tries to mirror the case of STO, the state at a reference pressure
P, = 20 GPa appears to be a logical choice. The drawback is,
of course, that the parameters of the initial LT are still given

J

V(P)
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with respect to the laboratory system Xy. We therefore have
to transfer these values first to the new reference system X,
before we can employ them in a thereby slightly generalized
version of FSLT. To construct this theory, one notices that the
basic strategy of imposing invariance of the description under a
change of elastic reference frame and the strategy of comparing
common powers of the spontaneous strain components remain
intact under such a generalization. In terms of

1
. _ _ 173 N ) _
Py =55 aP) =l P), e (P) = 3[ai(P) ~ 1], (A)
we now find
@ (PYDIX ) = DX, + €/ (PYELLX, 1+ X PYE X1+ PIGLIX 1+ . w=1.23, (A2)
2 3 4
P)ARX ) = A1+ 2P+ B+ S+ S0 @

It remains to transfer our knowledge of the ambient-pressure LP parameters to the new reference system X,. Specializing to

P =0, one gets

Du[Xr] = ar(O)Du[XO] - er(O)Eu[Xr] + EE(O)F/L[Xr] + EE(O)G//.[Xr] +--,

=123 (A4)

This also carries over to the other couplings. For instance, in terms of the sums (33) we similarly obtain

e;(0)
2!

A[X ] = o} (0)Ag[Xo] — 2<er(0)D[Xr] +

In this way, we are retaining the information about
the Xo couplings constituting the ambient-pressure
LT, while trading the—usually unknown—quantities
E, [Xol, Fu[Xol, Gu[Xo],... for the equally unknowns
E,[X,], F.[X,:],Gu[X,],..., which thus serve as yet
another set of fit parameters in a practical application.

APPENDIX B: DFT CALCULATION OF EOS AND
ELASTIC CONSTANTS

The EOS and elastic constants of the cubic phase were
performed using the WIEN2K DFT package [81], an all-electron
code including relativistic effects. WIEN2K is based on the
full-potential (linearized) augmented plane-wave ((L)APW)
+ local orbitals (lo) method [82], one among the most accurate
schemes for band structure calculations. For the present
calculation, an APW + lo type basis set was employed. Its
size, which is the main parameter governing the quality of
convergence of a given simulation, depends on the product
RN % Kpax, where RTD is the smallest muffin tin radius
in the unit cell and Kp,x is the largest reciprocal lattice
vector considered. Using muffin-tin radii of Ry;y = 2.1 bohrs,
1.77 bohrs, and 1.6 bohrs for lead, titanium, and oxygen,
respectively, the safe choice [82] RII\“,[%“ X Kmax = 8 produces
Kmax = 5 bohr™!. For total energy calculationsa 10 x 10 x 10
k mesh in the Brillouin zone turned out to be sufficient to
establish convergence.

As to the choice of XC functional, it is worth mentioning
that the well-documented inadequacy [83] of both LDA and
PBE functionals in application to ferroelectric perovskites is
particularly severe for the tetragonal phase of PTO. In fact, this

E[X, ]+ TF[Xr] +

e}(0) e}(0)

41

G[X,.]+---)+~-- (A5)

(

very issue has played an important role in the improvement
of GGA functionals for applications to solids [84-86]. While
we have also explored standard LDA as well as PBE [87,88]
functionals, we can confirm previous observations [10,89]
according to which for perovskites the Wu-Cohen [84] and
PBEsol functionals [85] give overall satisfying agreement
with experiment. In passing we mention that we have also
included spin-orbit coupling to account for the relativistic
effects due to the presence of lead. However, not unexpectedly
the corresponding effects turned out to be rather small.

Our procedure to determine the behavior of the background
system X p starts by computing the total energy per unit cell for
a number of different volumes roughly covering the expected
pressure range between 0 and 20 GPa. A standard third-order
Birch-Murnaghan EOS [90] is found to allow for an excellent
fit to these data. For the choice of PBEsol, on which we shall
focus from now on, it produces the zero-temperature EOS
parameters Vy = 60.388 bohr3, Ky = 190.7 GPa, and K{) =
4.5. Armed with this zero-temperature EOS V = V(P), we
determined the cubic zero temperature elastic constants C;;(P)
by performing a systematic series of hydrostatic, uniaxial, and
rhombohedral deformations, fitting the resulting energy curves
to polynomials, and extracting the corresponding curvatures
at the minimum. Within the WIEN2K environment, this task is
in principle conveniently performed using the corresponding
package by Charpin [81]. Results are shown in Fig. 9.

Table II provides a comparison of our all-electron results for
the ambient pressure cubic phase of PTO to previous ones from
the literature. In particular, it should serve to warn nonspecial-
ists of DFT not to expect different DFT codes to yield identical
results even if the corresponding calculations are based on
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FIG. 9. Main plot: Pressure dependence of zero-temperature
elastic constants of PTO as obtained from DFT using the PBEsol
functional. Inset: P dependence of Poisson ratio as computed from
Eq. (C4). The default value o = 1/4 used in the GIBBS2 package,
which corresponds to a Cauchy solid, is also indicated as a guide to
the eye.

the same choice of XC functional. In practice the quality
of the obtained results may depend significantly on various
other ingredients such as the type of pseudopotential used, the
basis set employed, the number of k-mesh points, and so on.
For instance, the tendency of LDA to produce overbinding is
well known [91]. Therefore, the fact that the lattice constant
ap = 4.09 A obtained in Ref. [80] from an LDA calculation
appears to be larger than all other corresponding values in
Table II should raise severe doubts on the validity of the
elastic constants reported in this reference as well. But Table II
also reveals that even if two calculations show nice agreement
of the equilibrium lattice parameters and bulk moduli, that
does not necessarily guarantee that the corresponding elastic
constants derived from these calculations do so. In summary,
keeping in mind that elastic constants already represent a
second-order quantity with respect to the total energy, Table II
illustrates the importance of aiming for the highest possible
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numerical precision when conducting calculations of elastic
constants. When it comes to reliability and precision, however,
a recent meta-study [92] confirms that all-electron codes like
WIEN2K represent the past as well as current state-of-the-
art.

As afurther caveat, we note that unfortunately the procedure
implemented to calculate elastic constants in the Charpin
package is not based on the use of the Lagrangian strain
tensor required in the proper definition of elastic constants
[36], but only on the linearized strain tensor. While this subtle
difference is irrelevant at zero pressure, at nonzero external
pressure such an approach actually yields the so-called Voigt
elastic constants ;[ X p] which differ from the sought-after
elastic constants C;;;[X p] by [93]

P
CijulXpl = VijulXpl + 5(51'143]'1 +38udj).  (BD)

Without this important correction (i.e. accidently identifying
the tensors Cjj[X p] and Vi [X p]), the “elastic constants”
obtained differ from the correct values by systematic errors of
order no less than P. We have found this to be a pitfall to which
even some prominent DFT-based codes seem to be vulnerable.
Whenever in doubt, a calculated set of elastic constants can be
numerically checked for consistency with an underlying EOS
by (i) computing the corresponding set of Birch coefficients
B,,,[X p] from Egs. (C5) and (C6), (ii) inverting the resulting
tensor to obtain the compliances S,,[X p], and (iii) making

use of the general relation K(P) = I/Z;U=1 SuwlXp] to
obtain the bulk modulus K(P), which can be compared
to the corresponding value directly obtained from the EOS
[94].

Having determined the set of Birch coefficients B,,[X p],
it is also straightforward to determine the pressure-dependent
Poissonratio o (P) as described in Appendix C. For PTO, using
the PBEsol functional, we find that the ambient-pressure value
of 0 = 0.28 (cf. inset of Fig. 9) is only slightly in excess of the
GIBBS?2 default value o = 1/4 corresponding to a Cauchy solid
[53]. Within the calculated pressure range 0 < P < 20 GPa
we also note a weak, roughly linear rise of o to o =~ 0.31 at
P =20 GPa. The observed overall dependence of the DA on
o is, however, observed to be quite weak. Therefore we settled
for a value of o = 0.28, which was used subsequently in the
DA.

TABLE II. Comparison of 7' =0 ab initio results for ambient-pressure elastic constants of cubic PTO (NCPP=norm-conserving
pseudopotential, USPP = ultrasoft pseudopotential, LCAO = linear combination of atomic orbitals, HF = Hartree-Fock, included here

for comparison).

Ref. Method XC functional Remarks ap (A) CY, (GPa) CY, (GPa) C?, (GPa) K, (GPa)
[79] HF LCAO (CRYSTAL) 3.94 398.3 169.0 172.0 2454
[42] DFT LDA USPP 3.889 341.4 148.8 102.7 208.9
[46] DFT LDA NCPP (CASTEP 2.1) 3.883 320.2 141.2 187.4 203.0
[79] DFT LDA LCAO (CRYSTAL) 3.93 450.3 261.4 112.8 324.3
[80] DFT LDA NCPP (ABINIT) 4.090 321.7 113.3 83.9 179.7
this work DFT LDA APW+lo (WIEN2K) 3.888 352.8 133.7 104.4 206.7
[79] DFT PBE LCAO (CRYSTAL) 3.96 342.3 155.2 109.6 217.5
this work DFT PBE APW-+lo (WIEN2K) 3.970 282.0 117.3 97.1 172.2
this work DFT PBEsol APW+lo (WIEN2K) 3.923 321.1 125.5 100.9 190.7

064111-13



A. TROSTER et al.

APPENDIX C: NOTES ON OUR USE OF THE DEBYE
APPROXIMATION

Recall [61,95] that the DA replaces the original system by
an effective isotropic model containing only acoustic phonons.
From their longitudinal and transverse sound velocities vp,vg,
respectively, one defines a directionally averaged sound
velocity v with

3 1 2
3 = _%+_3‘ (Cl)
v Up Vg

Given the mass density p, the bulk modulus K, and the Poisson
ratio [96] o, Slater [97] has shown that

v = f(o)vVK/p, (C2)

where

3 3
3 l+o \? 2(1+0) \2] 3
Jer= ﬁ[(m =)+ 20)) ] P
p and K may be directly extracted from a given EOS while o
usually [53] takes values around 0.25 and exhibits only a very
weak volume dependence.

Bearing in mind that the Debye approximation rests on
approximating the underlying system as isotropic, it may not
be obvious which value to plug into (C2) for the Poisson ratio
o, since in a crystal this represents, of course, a direction-
dependent combination of elastic constants. Indeed it has been
shown [98] that the Debye temperature may be calculated
with excellent accuracy using the Voigt-Reuss-Hill (VRH)
averaging scheme [99] of elastic constants which had been
primarily invented to assess the elastic properties of granular
material consisting of randomly oriented microcrystallites.
In detail, given a crystal with elastic constants C,, and
corresponding compliances S,,,, one defines Voigt (V), Reuss
(R), and VRH averages of the bulk modulus K, the shear
modulus G, and Poisson’s ratio o. Our present purposes only
require the cubic formulas, for which the Voigt and Reuss
averages both agree with the unaveraged result Ky = Kg =
K, whereas one obtains 5Gy = (Cy; — C2) +3Cy4 and
5/Ggr = 4(S11 — S12) + 3S44. From their arithmetic average
Gyry = (Gy + Gg)/2 one finally obtains a VRH-averaged
Poisson ratio

1 3G
o =0yry = _(1 i) (C4)

Wi

2\ 3K+ Gyry

in accordance with the formulas of standard elasticity theory
(cf. Ref. [100]). In our present context, the elastic constants
C,., entering the Voigt-Reuss-Hill formulas should, however,
be replaced by the corresponding Birch coefficients B, [ X p].
This follows from the observation that at nonzero pressure
the B;; are the tensor components that actually enter into the
Christoffel equations determining the acoustic sound velocities
(see Ref. [36]). In passing we note that for hydrostatic pressure
0;j = —P3§;; (and only then) the Birch coefficients (24) can
indeed be written in Voigt notation as [36]

Bog[ X p] = Cop[X p] + Agp(P), (C5)

PHYSICAL REVIEW B 95, 064111 (2017)

TABLEIII. Comparison of various results for cubic bulk modulus
of PTOat T =T..

Ref. Method K, (GPa)
[65] synchrotron x-ray diffraction 237(4)
[106] synchrotron x-ray diffraction 195(3)
[33] synchrotron x-ray diffraction 141(5)
[107] Brillouin scattering 143.6
this work DFT PBEsol+DA, o = 0.28 161.3
where
—P P P
P —-P P
P P -P
A(P) = —P . (C6)

A complication worth mentioning is that the assumption that
o is completely independent of volume should, as already
noted by Slater [97], result in an improper QHA. Attempts
to fix this yield the class of so-called Debye-Grueneisen ap-
proximations [52,53], notably the Dugdale-McDonald [101],
Vaschenko-Zubarev [102], and mean-free-volume [103,104]
approximations (see Ref. [105] for details). All of these
have been implemented in the computer code GIBBS2 [52,53],
which—depending on the details of the available phonon
information—also supports various other levels of the QHA
as well as high-quality fitting routines for a large number
of popular types of EOSs. As mentioned in Sec. V, the
combination of PBEsol with a simple DA based on a Poisson
ratio of o = 0.28 yields the overall best agreement to the
available volume data. For comparison, Table III also lists
some experimental results on the bulk modulus of the cubic
phase.

Even after having successfully promoted the EOS of the
background system X p from zero to finite temperature, we
are still left with determining the much more difficult problem
of also determining the 7" dependence of the corresponding
background elastic constants C;ju[X p] = C;ju[X p(T)]. Our
strategy to overcome this final obstacle is reminiscent of the
one put together in Ref. [38] for the purpose of parametrizing
an unknown P dependence of elastic constants. We start
by observing that since the 7 dependence of the bulk
modulus K(P,T) is fully determined from the EOS based
on our choice PBEsol4+DA, the identity 1/K[Xp|(T) =
wazl S,w[X p](T) can be regarded as a constraint for any
possible T variations of the elastic constants C,,[X p] for
m,v =1,2,3. Given a set of compliances S;;[Xp|(T =0)
calculated from DFT, the compliances from the left upper
quadrant p,v < 3 satisfy

K[Xp](0)

SwlXpI(T) = K[X—p](T)

S[I.V[XP](T) +--- (C7)

Of course, the T dependence of transverse elastic constants
like C,;., 4 = 4,5,6 cannot be expected to be assessed in the
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above way. Fortunately, in the transition under investigation
shear strains play no role, so this is of no concern for our
present problem.

Taking the example of a cubic system, this leaves a
single function §S(P,T) that accounts for any possible re-
maining trade-off between the compliance tensor components
S1[X pI(T) and S12[X p](T') not covered by the overall factor
K[Xpl(0)/K[Xp](T). Since this function must vanish for
T = 0, it follows that it might be possible to expand §S(P,T)
into a power series in 7 with P-dependent coefficients.
However, for our present purposes we refrain from introducing
such further complications and content ourselves with the
lowest order approximation as indicated in Eq. (C7). Results
are included in Table III.

Owing to the fact that the cubic phase is only thermodynam-
ically stable above T, published experimental data on the cubic
elastic constants of PTO are rather scarce. In the DFT-related
literature (cf., e.g., Refs. [79,108,109]), Brillouin scattering
results C1; ~ 229 GPa, C» =~ 101 GPa, and C44 ~ 100 GPa
for the cubic phase are frequently attributed to Ref. [107].
Actually, however, the value of Cy, reported in Ref. [107]
refers only to the room-temperature tetragonal phase, while
we are unable to spot any explicit value for the cubic
elastic constant Cj, in Ref. [107]. We therefore suspect that
the above frequently cited value for C;, represents only a
conjecture vaguely related to the observation that the value
of the tetragonal elastic constant Ci3 ~ 98.8 GPa reported in
Ref. [107] almost agrees with said value of Cj,. Adopting
this hypothesis for the moment, one would derive a cubic
bulk modulus of Ky =~ 143.6 GPa. On the other hand, using
the simple strategy outlined in Eq. (C7) to extrapolate our
DFT results to 7., we obtain the numbers C?, & 271 GPa and
CY, ~ 106 GPa yielding a bulk modulus K, =~ 161.3 GPa in
reasonable agreement with and certainly in the same ballpark
as the experimental results gathered in Table III.

It is interesting to compare these results to the com-
pliance values S?l =8.0x 1072 m?/N and S?z =-25x
1072 m?/N listed in the very influential paper Ref. [26] and
reproduced in a number of subsequent publication by other
authors (see, e.g., Refs. [13,27]). Inverting the compliance
tensor, we obtain values C?l = 174.6 GPa, C?z = 79.3 GPa,
and K = 111.11 GPa that are much lower than those listed
above. Puzzled by this discrepancy, we traced the origin of
these values, which the authors of Ref. [26] had themselves
taken from other sources, back to Ref. [28], which also lists
the same value for S?z as Ref. [26] but for S?l gives a value of
SY = 6.785 x 10712 m?/N instead. This set of compliances
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now results in C(l)1 = 258.5 GPa and C?z = 150.8 GPa with
an accompanying bulk modulus of K = 186.7 GPa, in much
better agreement with the values listed before. Some readers
may find this discussion lengthy. However, while we are
only speculating about the actual source of the detected
discrepancy; in any case such sizable errors in the values of
elastic constants may have the potential to seriously affect
the results of, e.g., calculations dealing with uniaxial stresses
appearing in epitaxial layers of PTO on substrates. For
the Landau theory of the ferroelectric transition at ambient
pressure, these problems are fortunately of no concern, since
for P =0 the values of the elastic constants drop out of
the corresponding calculations. In summary, there is clear
evidence that not only the values of the couplings ¢g,, but also
the compliances Sji,S12, and Si4 need to be revised in the
published tables of Landau parameters for PTO.

APPENDIX D: REDEFINING THE ELASTIC BASELINE

Any time a LT contains secondary order parameters, a
definition of their spontaneous equilibrium values should
always require defining a corresponding baseline in advance. A
correct definition of the spontaneous strain components from
a given set of P-dependent unit cell parameters thus relies on
the determination of a meaningful elastic reference system
X p(T) together with a compatible set of elastic constants
C,w[X p(T)], and Appendix C summarizes our corresponding
efforts. In principle, only then fits of (4) to the resulting
spontaneous strain data allow us to obtain the strain-OP
coupling coefficients g,,. This raises the question of how Haun
et al. had overcome this difficulty in the first place without
having to go through all the arguments we have given above.
A careful reading of their paper reveals that the answer to
this question is disarmingly simple. In fact, their baseline has
been defined a posteriori based on the convenient requirement
that the proportionality factors between the squared OP
and the spontaneous strain components, which are just the
Landau coefficients g, according to Eq. (11), should be
constants independent of 7'. Our present baseline preserves this
proportionality, albeit with a new set of coupling coefficients
4, = qu(T) that are now inevitably T-dependent. For a DA
with o = 0.28, a rough polynomial fit up to second order
produces (Fig. 4)

g1 (T) ~ 4+0.098 16 — 9.764 x 107° T +6.11 x 107 T2,
G12(T) ~ —0.02055 + 1.486 x 107> T —2.561 x 1078 T2
(DI1)
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