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Free energy calculation of mechanically unstable but dynamically stabilized bcc titanium
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The phase diagram of numerous materials of technological importance features high-symmetry high-
temperature phases that exhibit phonon instabilities. Leading examples include shape-memory alloys, as
well as ferroelectric, refractory, and structural materials. The thermodynamics of these phases have proven
challenging to handle by atomistic computational thermodynamic techniques due to the occurrence of constant
anharmonicity-driven hopping between local low-symmetry distortions, while maintaining a high-symmetry
time-averaged structure. To compute the free energy in such phases, we propose to explore the system’s
potential-energy surface by discrete sampling of local minima by means of a lattice gas Monte Carlo approach
and by continuous sampling by means of a lattice dynamics approach in the vicinity of each local minimum.
Given the proximity of the local minima, it is necessary to carefully partition phase space by using a Voronoi
tessellation to constrain the domain of integration of the partition function in order to avoid double counting
artifacts and enable an accurate harmonic treatment near each local minima. We consider the bcc phase of titanium
as a prototypical example to illustrate our approach.
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I. INTRODUCTION

Phase diagrams are widely used as a powerful tool to predict
the equilibrium state of physical systems. In recent years,
computational methods have extensively contributed to the
determination of thermodynamic data [1]. The underlying as-
sumption in many of the commonly used frameworks for phase
diagram computation, such as cluster expansion [2–5] and
computational thermodynamics [6–9], is that all structural
phases, even if they are observed at elevated temperatures, are
mechanically stable. This “lattice stability” assumption, how-
ever, reduces the applicability of the aforementioned frame-
works, because the crystal structure of many high-temperature
phases exhibit mechanical instabilities. These instabilities
manifest themselves by phase transitions to lower-symmetry
structures at low temperatures and can be readily identified
by lattice dynamics calculations based on a harmonic model
centered about the high-symmetry high-temperature structure
[10–20]. For example, many transition metals [10–14], their
alloys [15–17], accompanied by their hydrides [18,19] and
oxides [20], all reveal high-symmetry phases at elevated
temperatures with mechanical instabilities. These mechanical
instabilities are also common among shape-memory alloys
[21,22], refractory oxides [23,24], and ferroelectric materials
[25,26]. In some cases (such as fcc W), the mechanical instabil-
ity is such that the phase simply does not exist in nature [17,27–
29]. But in many cases (such as bcc Ti) the phase is “dynam-
ically stabilized” at high temperatures, thanks to entropy con-
tributions arising from constant hopping between local low-
symmetry distortions of a high-symmetry structure [10,30].

Standard lattice dynamic calculations, such as
(quasi)harmonic models, are inadequate for the free
energy calculation of such phases, because the energy surface
becomes nonconvex along unstable modes and introduces
nonphysical divergence in the calculation of the free energy.
To calculate the free energy of such phases accurately, a
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practical and efficient framework has to be devised to account
for anharmonic vibrational effects, which play a crucial
role in the stabilization of high-temperature phases with
low-temperature mechanical instabilities.

A number of solutions have been proposed so far [31–45],
although some of them are not free of certain drawbacks. Brute
force ab initio molecular dynamics (AIMD) calculations can
deliver free energy changes as a function of temperature, but
obtaining absolute free energy (as would be needed to predict
phase transitions) remains a challenge, due to the fact that a
simple reference state with a known free energy is unavailable.
Thermodynamic integration (TI) approaches use AIMD in
order to calculate the anharmonic free energy by employing
quasiharmonic calculations as a reference [45]. However,
when anharmonic effects are strong, computational require-
ments can become intractable for TI approaches (see Sec. IV).
Self-consistent phonon theories provide more computationally
inexpensive avenues and have been successful in predicting
effective phonon frequencies and free energies in a range
of systems [35–37]. However, these methods fundamentally
rely on the assumption of the existence of an effective
harmonic model. If this assumption is inappropriate, there is
no systematic avenue to improve the accuracy of the model.
Effective Hamiltonians approaches [38–43], which explicitly
parametrize the system’s anharmonic energy surface, do offer
systematically improvable models without significant a priori
assumptions. Although these approaches have proven to be
powerful tools to investigate phase-transition phenomena,
the task of parametrizing the relevant anharmonic degree of
freedom can become daunting as the range of interactions
considered is increased. Systematic and rigorous approaches
have been proposed recently, which significantly improve the
efficiency of the task of incorporating anharmonic effects by
selecting the physically important degrees of freedom in the
lattice dynamics model, exploiting the compressive sensing
techniques [44].

In this paper, we propose a systematically improv-
able method that simplifies the anharmonic energy surface
parametrization process by breaking the problem into a
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collection of simpler tasks. Our approach is based on coarse
graining of the partition function, subjected to an innovative
Voronoi partitioning of the configuration space, which enables
the use of a piecewise quadratic approximation to the system’s
potential-energy surface in conjunction with a cluster expan-
sion approach. We suggest the name “piecewise polynomial
potential partitioning” or “P4” for the proposed method. As
shown in Fig. 1, a local exploration of multiple minima around
the high-symmetry structure on the potential-energy surface
is accomplished by partitioning the configuration space into
multiple corresponding regions. The partitioning scheme en-
sures that the harmonic approximation is not employed beyond
its range of validity and eliminates unphysical divergences
in the calculated harmonic free energy. Each local harmonic
model can be constructed by means of well-established lattice
dynamics techniques and we devise a Monte Carlo scheme to
calculate the associated free energy contribution that accounts
for the region boundaries. The free energy contributions arising
from hopping between the different regions is accounted for
by means of the cluster expansion formalism in conjunction
with lattice gas Monte Carlo simulations. The advantage of
proceeding in this way is that the very complex anharmonic
system is reduced to two, nested, simple classes of models: A
lattice gas and an array of constrained harmonic models, for
which automated construction methods are available [46–48].

The application of the P4 method is to describe the
equilibrium state of a phase with its thermodynamic properties,
when opposed to kinetic models, as needed to build the phase
diagram of the system. This application is most advantageous
when the lattice vibrations become anharmonic or even
“harmonically unstable.” In Sec. II a general description
of the P4 method is presented employing bcc Ti as an
illustrative example. In Sec. III we validate the presented
scheme by comparing thermodynamic properties obtained for
the archetypical case of bcc Ti with available experimental
data. The method is, however, generally applicable, since an
arbitrary energy surface can always be approximated by a
piecewise quadratic function. The computational tools and
techniques used in the application of the method are described
in Secs. II and III.

II. PIECEWISE POLYNOMIAL POTENTIAL
PARTITIONING

A. Partitioning the phase space

To account for hopping of the system between different
local distortions of the bcc lattice (see Fig. 1), we construct an
augmented lattice, denoted by Laug , that includes not only the
ideal high-symmetry sites, but also the sites corresponding
to configurations that are local energy minima near the
ideal structure. These additional sites can be found by the
identification of unstable modes through a standard lattice
dynamics analysis, followed by a full relaxation calculation
using, as an initial configuration, bcc structures slightly
distorted along the various unstable modes. Once one such
local minimum has been identified, all other symmetrically
equivalent minima can be identified by applying the symmetry
operations of the high-symmetry phase (here, Oh for bcc).

In the case of bcc Ti, the unstable modes consist of longi-
tudinal [ξξξ ] phonons with ξ = 2/3 [10]. Geometrically, this
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FIG. 1. Partitioning the configuration space into different regions.
(a) Schematic of potential energy including multiple local minima
around the high-symmetry point. (b) Potential-energy contour repre-
sented on the configuration space which is partitioned into Voronoi
tessellation. Each Voronoi cell is associated with a configuration.

mode moves two of the three neighboring (111) planes towards
each other, whereas every third plane stays at rest. The collapse
of the two planes results in the ω phase (for a displacement
of a

√
3/2); therefore, this mode is associated with bcc to

ω phase transition. As shown in Fig. 2(a), the potential
energy for different distortion amplitudes along L 2

3 (1,1,1)
phonon is calculated by using first-principles electronic
structure calculations. All electronic structure calculations are
performed by using the Vienna ab initio simulation package
(VASP) [49–52], implementing the projector-augmented wave
(PAW) method [53]. The Perdew–Burke–Ernzerhof (PBE)
functional [54] is used, with a plane-wave kinetic-energy
cutoff of 222.3 eV for bcc Ti. A (4 × 4 × 4) Monkhorst–Pack
mesh [55] is used for generating the k-space grid. For each
distortion, the only degree of freedom equilibrated is the

δ/a
0 0.1 0.2 0.3 0.4 0.5

E
 (

eV
 / 

at
om

)

-7.9

-7.8

-7.7

-7.6

(a)

(b) (c)

X3

X1 X2

X3

X1 X2

FIG. 2. Locating the neighboring local minimum and creating
augmented lattice. (a) Energy per atom versus distortion amplitude δ

along L 2
3 (1,1,1) phonon of bcc Ti with lattice constant a. The volume

of the supercell is the only degree of freedom which is equilibrated
for each distortion. The minimum is located close to δ

a
= 0.1443. (b)

The (111) planes in a 3 × 3 × 3 bcc supercell of bcc conventional
unit cell, including 54 atoms. The three neighboring (111) planes are
distinguished by different colors. (c) Representation of the augmented
lattice unit cell and Voronoi cells containing lattice sites as generators.
The + signs indicate lattice site in three-dimensional space in periodic
boundary conditions. The red cells are associated with bcc sites and
the green cells are associated with corner sites.
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volume of the cell and the cell shape is fixed, because those
structures that are combined to build the augmented lattice
must be compatible. Volume relaxation for each supercell
is performed in two steps (relaxing the initial structure
and re-relaxing), using Methfessel–Paxton method [56], with
ISMEAR = 1 and SIGMA = 0.15. To obtain the energy (i.e.,
the energy of the relaxed volume structure), the tetrahedron
method [57] with ISMEAR = −5 is used.

The minimum along the energy-distortion curve [as shown
in Fig. 2(a)], which corresponds to the ω structure, is the
location of the first off-bcc site. This particular position of
atoms is denoted by xω, and the ideal bcc position is denoted
by xbcc. The augmented lattice supercell is constructed by
operating the symmetry point group of bcc (Oh point group)
to a lattice including both sites at xω and xbcc. As shown in
Fig. 2(c), this results in an augmented lattice with bcc lattice
vectors and a basis consisting of nine sites; the ideal bcc site,
as well as eight other sites, each of which is located on a corner
of a cube centered on a bcc site. For the movement of atoms to
represent the L 2

3 (1,1,1) phonon, which involves the movement
of three sets of (111) planes, the supercell should, at least,
consist of three sets of (111) planes or a third multiple of (111)
planes. This is necessary because of the periodic boundary
condition. In our calculations, a 3 × 3 × 3 supercell of the
bcc conventional unit cell is used, as presented in Fig. 2(b).
The lattice constant used for the conventional unit cell is a =
3.2413 Å. This results in 54 bcc sites, therefore our simulation
cell consists of 54 × 9 = 324 sites, including both bcc and
corner sites.

By creating an augmented lattice, phase space is partitioned
into different configurations. A configuration σ is defined as
a possible assignment of Ti atoms and vacancies (Vac) to
the augmented lattice sites. The configurational part of free
energy associated with Laug is given by a 3N -dimensional
integral over the classical configurational partition function in
a “coarse-grained” form [3]:

FL = −kBT ln
∑

σ∈Laug

e−βF ∗
σ , (1)

where

F ∗
σ = −kBT ln

∫
x∈ζσ

e−βV (x)dx, (2)

where β = 1/(kBT ), T is temperature, kB is Boltzmann’s
constant, x is a 3N vector of all atomic positions, N is
the number of atoms in the system, ζσ is the proximity of
configuration σ , which will be defined more precisely below,
and V (x) is the potential energy of the system at a state
represented by the position vector x.

The above integration can be divided into two levels.
One level is the “outer” level that sums over different
configurations associated with Laug [represented in Eq. (1)],
and the other is the “inner” level that is a continuous
integration of the Boltzmann distribution in the vicinity of
each configuration [represented in Eq. (2)]. The inner-level
states are characterized by constrained vibrational free energy,
denoted by F ∗

σ . The outer-level states can be sampled through a
cluster-expansion approach [2], while a continuous sampling
in the vicinity of each configuration is carried out by using

FIG. 3. Demonstration of partitioning the 3N -dimensional vs
two-dimensional configuration space. (a) Schematic representation
of partitioning 3N -dimensional configuration space into its Voronoi
tessellations. The generating points (circles) are 3N -dimensional
position vectors. The shaded area includes all the coordinates that
are associated with configuration σ . (b) Schematic two-dimensional
representation of partitioning the configuration space into its Voronoi
tessellations. The + signs indicate the lattice sites that are the
generating points in the Voronoi tessellation. The configurational
state of simultaneous lying of two or more atoms in the shaded area
does not belong to any ζσ . Only those states with one atom in each
Voronoi cell have a corresponding ζσ .

the harmonic approximation of the energy hypersurface about
each configuration.

One has to define the proximity of each configuration for
continuous sampling of the phase space. For each configuration
σ , the unrelaxed position of the atoms is denoted by xu

σ (for
each σ , xu

σ is a 3N vector). All the atomic positions closer to xu
σ

than the unrelaxed position of any other configuration σ ′ are
defined as the proximity of configuration σ and denoted by ζσ .
For computational efficiency, we determine ζσ by computing
the Voronoi tessellation [58] in tridimensional space generated
by the augmented lattice points (which coincides with the well-
known concept of Wigner–Seitz cells [59]). These Voronoi
cells are represented in Fig. 2(c) for different augmented
lattice points as generators. We then define ζσ in the 3N -
dimensional configuration space as the Cartesian product of
the tridimensional Voronoi cell associated with each site.

This construction is preferable to a Voronoi tessellation in
3N -dimensional space, not only for computational reasons,
but also because it naturally excludes nonphysical very-high-
energy states from the region ζσ , such as those where two
atoms would lie in the same Wigner–Seitz cell of a given
lattice site. The contribution of the excluded states to the
partition function is negligible, since these states are those
of very high energy. Figure 3(a) illustrates partitioning of
3N -dimensional configuration space schematically [to be
compared with Voronoi tessellation in tridimensional space
used to define ζσ as shown in Fig. 3(b)], and Fig. 3(b)
indicates a schematic state which is implicitly excluded in
our calculations due to the way ζσ is defined.

B. Piecewise polynomial potential

A piecewise polynomial form is employed in order to model
the potential energy V (x) over different subregions ζσ . We
denote the location of the minimum of V (x) within ζσ by xr

σ

(for each σ , xr
σ is a 3N vector). A harmonic expansion about

xr
σ is used to calculate F ∗

σ in this case, although any order of
polynomial is generally applicable. To determine the minimum
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within ζσ (which is a constrained nonlinear optimization
procedure) a steepest-descent search is performed and an
interior or a boundary minimum is found. xu

σ is used as an initial
guess, and a sequence of position vectors (xu

σ ,x1,x2, . . . ,xn+1)
is constructed by moving along the negative gradient of the
potential-energy hypersurface by using the following equation:

xn+1 = xn − γn∇V (xn), (3)

where γn is an arbitrary small scalar.
In the steepest-descent method, potential energy V (xn) and

the gradient of potential energy ∇V (xn), are calculated by

using VASP. For each step, a value of 0.02 Å
2
/eV is used

for γn. If the movement along the negative gradient directs
the configuration outside ζσ , then the projection of the force
vector, fv(xn), along the boundary of ζσ replaces the negative
∇V (xn) in Eq. (3).

If there exists no interior local minimum within ζσ (a
positive-definite Hessian is the necessary but not the sufficient
condition for the minimum to be an interior minimum),
then the minimum must be on the boundary of ζσ . The
first derivative may not vanish at a boundary minimum. The
energy surface is expanded up to the quadratic term, with
first and second derivatives of energy calculated at xr

σ (see
supplementary note 1 [60]). All of the energies, forces, and
second derivatives of energy (force constant tensors) used in
the piecewise polynomial model are calculated at xr

σ for each
configuration employing PAW-PBE in VASP. The supercell size
(3 × 3 × 3 supercell of bcc unit cell) and k points (2 × 2 × 2
Monkhorst–Pack mesh) are chosen in a way that the energy
values are converged with an accuracy of 1 meV/atom. The
forces and second derivatives are converged with an accuracy

of 1 meV Å
−1

atom−1 and 1 meV Å
−2

atom−1, respectively.

C. Adiabatic switching technique

As indicated in Eq. (2), the 3N -dimensional integral is over
a complex hypervolume ζσ . Therefore, the analytic integration
of the configurational partition function is not feasible,
although the integral has known analytical solutions over
certain simpler domains. Moreover, divergence issues in the
calculation of free energy due to existence of unstable modes
present computational obstacles. Theses obstacles, however,
can be bypassed by first constraining the integration domain
to ζσ and then using the well-known adiabatic switching
technique to calculate the associated constrained free energy.

The idea is to select a reference potential V ref (x) with a
positive-definite Hessian that is sufficiently stiff so that the
integral in Eq. (2) has the same value whether or not the
integral is constrained over the domain ζσ . The free energy
of such a system, which is defined as F ∗

0 in the following
equation, can then be calculated analytically. To obtain the free
energy difference between the real and the reference systems,
we need to define a thermodynamic path between these
two states: V̂ (x,λ) = V̂ (x,0) + λ[V̂ (x,1) − V̂ (x,0)], which
smoothly interpolates between the real [V̂ (x,1) = V (x)] and
the reference [V̂ (x,0) = V ref (x)] energy surfaces. The free
energy difference is derived to be the integration of ensemble-
averaged potential-energy difference between the real and
reference energy surfaces over ζσ along this path (see

supplementary note 2 for derivation [60]),

F ∗
1 − F ∗

0 =
∫ 1

0
〈V̂ (x,1) − V̂ (x,0)〉λdλ, (4)

where 〈V̂ (x,1) − V̂ (x,0)〉λ denotes an average obtained
through Metropolis sampling of the region ζσ using the
potential V̂ (x,λ). F ∗

1 for each subregion ζσ corresponds to
the constrained vibrational free energy for the real system.

D. Lattice gas model

With the aid of commonly used cluster-expansion tech-
nique, constrained vibrational free energy corresponding to
each configuration is represented as a polynomial series in
terms of the occupation variables σi associated with each
atomic site i of the augmented lattice (σi = +1 if site i is
occupied by a Ti atom and σi = −1 if site i is empty):

F ∗(T ,σ )

Ns

=
∑

α

mαJα(T )

〈∏
i∈α

σi

〉
α′

. (5)

The sum in Eq. (5) is over symmetrically distinct clusters α

while the average is over clusters α′ that are symmetrically
equivalent to α. Ns is the number of sites in the parent lattice,
mα is the multiplicity of cluster α, and Jα(T ) is the effective
cluster interaction (ECI) of cluster α at temperature T (to be
determined by a fitting procedure) [46]. Here, the effective
cluster interactions are temperature dependent, as opposed to
the well-known cluster expansion of energy with temperature-
independent ECIs [3].

A cluster expansion has to be fit over a training data set.
In this case, data points are the constrained vibrational free
energy for a number of configurations, by computed using the
P 4 scheme. The expansion in Eq. (5) is improved by adding
more data points to the relatively small initial training data
set until convergence is obtained in free energy value with a
precision of a few meV (see supplementary note 3 for a detailed
description [60]). In our calculations, 34 different clusters are
included. There is one empty cluster (which is the constant
term in the polynomial series) and there are two point clusters
(one is a bcc point cluster and one is a corner point cluster),
along with 31 pair clusters. As shown in Fig. 4(a), four of
these pair clusters connect the sites within each group of nine
sites (1 bcc site and eight neighboring corner sites) and are
accordingly called “short pairs.” The other 27 pairs join one
site on a group to another site in the nearest-neighbor group.
The four short-pairs include a half diagonal pair, an edge pair,
a face diagonal pair, and a diagonal pair of the cube formed
by eight corner sites and one bcc site in the center. All of the
ECIs associated with these clusters are fit by using the training
ab initio data set, except for those ECIs associated with short
pairs. These four pairs are treated differently in our scheme
because their role is simply to ensure that two atoms never
lie within the same group of nine sites. Such configurations
have an energy so high that they essentially never occur in
reality. To avoid performing ab initio calculations for these
unphysical states, these ECIs are simply set to a positive value
sufficiently large to effectively suppress the appearance of
more than one atom within the same nine-site group of sites. A
two-dimensional plot of such an unphysical state is represented
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(a)
(b) (c)

(a)

FIG. 4. Demonstration of pairs included in the cluster expansion
of vibrational free energy. (a) The bold red lines indicate short pairs
and the dashed green lines represent the long pairs. Not all of the
long pairs considered in the cluster expansion are indicated, but only
a few of them are represented as an example. A group of sites is
the collection of nine spheres sitting on the center and corners of a
cube. Short pairs include the half-diagonal, edge, face-diagonal and
diagonal pairs formed in the cube. By imposing large ECIs for short
pairs, they are avoided during a Monte Carlo simulation, eliminating
the need to perform ab initio energy calculations of those sates where
more than one atom occupies a group of sites. (b) A two-dimensional
plot of configuration space associated with a state a during Monte
Carlo simulation. The shaded area is all the possible coordinates that
the state can possess so that it is associated with a configuration in
which Ti atoms occupy those sites in the center of shaded areas. (c)
A two-dimensional representation of an example of a state that is
precluded in Monte Carlo simulations due to large imposed ECIs for
short pairs. The shaded areas indicate the coordinates corresponding
to the state, where Ti atoms sit on sites on their centers.

in Fig. 4(c) and is compared with those states included in
our calculation; a typical example of them is presented in
Fig. 4(b). A set of temperature-dependent ECIs, {J (T )}, is fit
over a training data set at different temperatures employing the
alloy-theoretic automated toolkit (ATAT) [46–48] [by Eq. (5)].

The P4 scheme is employed only once, at a temperature
T1, for each configuration to calculate F ∗(σ,T1). Constrained
vibrational free energy at any other temperature T2 is simply
calculated by knowing F ∗ at T1 by using the well-known
thermodynamic integration, reformulated as follows:

F ∗(T2,σ )

T2
= F ∗(T1,σ )

T1
+

∫ T2

T1

〈Uσ (T )〉d(1/T ), (6)

where 〈Uσ (T )〉 is the average internal energy of the system
constrained to ζσ , which is calculated by using Metropolis
sampling [see supplementary note 5 for the derivation of
Eq. (6) [60]]. In other words, once a data set of F ∗ is built
at a temperature T1, the corresponding data set at any other
temperature T2 is calculated by using F ∗(T1,σ ) as an initial
point of integration in Eq. (6).

The thermodynamic integration technique makes the
calculation of total free energy in Eq. (1) feasible. To calculate
the Helmholtz free energy at any temperature T1, we employ
thermodynamic integration in accordance with the following
equation:

F (T1)

T1
− F (T0)

T0
=

∫ T1

T0

〈F ∗(T )〉d(1/T ), (7)

where 〈F ∗(T )〉 is the average vibrational free energy at
temperature T and F (T ) is the total free energy at T (see
supplementary note 5 [60]). A Monte Carlo simulation is
carried out to compute the ensemble average of constrained

vibrational free energy, 〈F ∗〉, with Eq. (5) once the set
of {J (T )} is known, utilizing the Multicomponent easy
Monte Carlo code (MEMC2) [48]. We need a convenient
initial point of integration in Eq. (7), whose free energy
can be computed analytically. Therefore, the mean-field
approximation limit at high temperature is used as the starting
point for integration [61]. The Helmholtz free energy at high
temperatures is calculated analytically [supplementary note 4
gives a detailed description of the mean-field approximation
(MFA) calculation [60]]. Any thermodynamic process that
connects the initial state to the final state can be integrated
to obtain the free energy. To avoid calculating 〈F ∗(T )〉 at
temperatures far from the temperature range of interest,
the ECIs are kept constant (at their value at the desired
temperature T1) along the thermodynamic integration path
while the temperature the system experiences varies from our
high-temperature reference down to the temperature of interest
[which is why the integrand in Eq. (7) is 〈F ∗(T )〉 rather than
〈U ∗(T )〉]. Only at the end of the integration path does the free
energy represent the one of a real physical system.

To include a thermal electronic contribution to the free
energy, the Fermi distribution (ISMEAR = −1) is employed
with the corresponding smearing parameter at each temper-
ature T (SIGMA = kBT ) in all of the ab initio calculations.
For each configuration σ , the electronic contribution Felec,σ to
the total free energy is added to the corresponding vibrational
free energy F ∗

σ at different temperatures. As a result, the free
energies used in the training data set of Eq. (5) to obtain the
corresponding ECIs are F ∗

σ + Felec,σ at each temperature T .
The fact that we model the system’s potential-energy

surface by a piecewise approximation rather than by a smooth
surface has no bearing on the accuracy of the calculated free
energies. It can be shown that the error in the free energy
is bounded by the largest error in the energy, regardless of
the smoothness of the approximation. A proof of the above
argument is presented in supplementary note 8 [60].

III. RESULTS

The free energy of bcc Ti is calculated by using the
P4 method described in the previous section. To validate
the obtained free energy, we compare our results with ab
initio molecular dynamics (MD) and National Institute of
Standards and Technology (NIST) condensed phase experi-
mental thermodynamic data for Ti [62,63]. To first perform
an internal consistency check of the method, a set of NVT
molecular dynamics calculations are performed at different
temperatures for a 3 × 3 × 3 supercell of bcc conventional
unit cell, including 54 atoms, by using VASP [49–52]. In
constant temperature ab initio MD simulations, the thermostat
is conducted under the Nosé–Hoover chain formalism [64–67],
and ensemble averages are captured every 50 steps (150 fs) in
a trajectory with a sufficient number of steps which ensures
an accuracy of 5 meV/atom. The internal energy calculated in
the NVT ab initio MD simulations includes both the kinetic
and potential energies. The electronic contribution to the total
energy is considered by using Fermi smearing (ISMEAR =
−1) along with the corresponding smearing parameter at each
temperature T (SIGMA = kBT ).
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FIG. 5. Two-dimensional projection of the trajectory of a typical
atom in the Ti54 supercell during a MD simulation for (a) 1200 K,
(b) 1500 K, and (c) 1800 K. Displacements are normalized by the
lattice constant abcc. Only the positive half of the x axis is projected
for the purpose of clarity. The black circle indicates the ideal bcc
position and the green diamonds are the off-bcc sites augmented to
the ordinary bcc lattice in the P4 scheme.

Before comparing the free energies, we use the MD results
to illustrate the hopping of the system around local distortions
of the bcc structure to verify the hypothesis used in the P4

scheme. The trajectory of a typical atom in the Ti54 bcc
supercell is illustrated in Figs. 5(a)–5(c) for 1200, 1500, and
1800 K, respectively. It is observed that the trajectory at
1500 K is more symmetric compared with 1200 and 1800 K.
The reason for this behavior is that, at low temperatures,
the system preferably samples configurations that are similar
to hcp. At very high temperatures, the atoms diffuse across
different bcc sites with a high probability instead of remaining
in the vicinity of one bcc site. The displacement relative to
the ideal bcc position for each degree of freedom (d.o.f) is
indicated in Figs. 6(a)–6(c) for 1200, 1500, and 1800 K,
respectively. As shown in Fig. 6, the average displacement
for each d.o.f. is almost zero at 1500 K, which explains the
symmetry observed in the atomic trajectory at this temperature.
Although the average displacement is around zero, the system
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FIG. 6. Displacement from ideal bcc position normalized by
lattice constant for each degree of freedom (d.o.f.) obtained from
molecular dynamics (MD) trajectories in a fixed bcc Ti54 supercell at
(a) 1200 K, (b) 1500 K, and (c) 1800 K. The average displacements
for each d.o.f. are connected by a red line.
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FIG. 7. Two-dimensional plot of MD time-averaged atomic posi-
tions (red plus signs) and the ideal bcc positions (black circles) for (a)
1200 K, (b) 1500 K, and (c) 1800 K. The deviation from bcc positions
are indicated by arrows. All atomic positions are in Å units.

experiences displacement amplitudes in the order of 1/3 of
nearest-neighbor (NN) pair distance at 1500 K. However,
for 1200 and 1800 K, some degrees of freedom indicate
larger and asymmetric displacements, which results in an
off-zero average displacement for those d.o.f. Some of these
asymmetric displacement amplitudes equal the lattice constant
abcc for 1800 K, which implies some atomic permutations at
this temperature. This is further clarified in Fig. 7, where the
time-averaged position of each atom in the Ti54 supercell is
shown. For the MD simulation at 1500 K, the time-averaged
structure is exactly bcc, as shown in Fig. 7(b). However,
for the MD simulation at 1200 K, which is just above the
transition temperature to hcp, the time-averaged structure is
slightly shifted toward the path that transforms bcc to hcp [see
Fig. 7(a)]. This explains the asymmetry observed in the atomic
trajectory at this temperature. The averaged atomic positions
at 1800 K stay at bcc, although some permutation of atoms are
observed [as shown in Fig. 7(c)], which is the result of high
thermal energy accessible to the system at temperatures close
to the melting point (1941 K).

We now compare the free energies obtained through the
P4 method with those obtained by ab initio MD. The MD
simulations are carried out to trace the average internal energy
of bcc Ti at different temperatures. Helmholtz free energy is
obtained by integrating the thermodynamic relation[

∂(F/T )

∂(1/T )

]
V,N

= U,

where U is the average internal energy. The Helmholtz free
energy of bcc Ti relative to bcc Ti free energy at 1200 K,
obtained with both the P4 method and ab initio MD, is
illustrated in Fig. 8(a). The agreement between the P4 method
and ab initio MD confirms the validity of the presented scheme.

The enthalpy of hexagonal closed-pack (hcp) Ti at room
temperature (RT) is assigned as the reference point for energy
to make our results comparable to NIST data, since hcp is the
reference phase for titanium. Formation of the hcp phase in
titanium from around 1150 K down to 0 K at ambient pressure
implies the mechanical stability of hcp Ti, which is further
confirmed by standard phonon analysis. Therefore, the free
energy of hcp Ti is calculated by using a standard harmonic
approximation utilizing the FITFC code [46,48]. The harmonic
model can be regarded as a special case of the P4 scheme.
When the P4 scheme is applied to a mechanically stable phase,
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FIG. 8. (a) Helmholtz free energy of bcc Ti with respect to its
free energy at 1200 K compared with molecular dynamics (MD)
results for internal consistency check. A Ti54 supercell is used both
in MD and P4 at all temperatures. Electronic contribution to the free
energy is included. Error bars indicate the accuracy of MD values
for free energy. The accuracy of P4 results are ensured to be less
than 1 meV/atom. (b) Gibbs free energy of bcc Ti with respect
to enthalpy of hcp Ti at room temperature. The curve indicates a
function of the form G − H 0 = a + bT + cT ln(T ) + dT 2 which
is fit to the P4 values. The fit coefficients are a = 0.016 015 5,
b = 9.586 × 10−4, c = 1.984 × 10−4, and d = −5.331 × 10−8. �

is the difference between the calculated value and NIST data and is
less than 10 meV/atom at all temperatures.

with the phase at the local minimum of the energy surface,
it reduces to the harmonic model. In this case, the augmented
lattice is basically the same as the ordinary lattice of hcp phase.
Consequently, the summation in Eq. (1) reduces to one term
and Eq. (2) becomes the standard free energy equation of a
harmonic model.

For calculating the force constant tensor for hcp Ti, the
FITFC code includes up to the third nearest-neighbor forces
in a 90-atom supercell with 0.1 Å displacements. Once the
free energy and entropy of hcp Ti are calculated at room
temperature, the enthalpy of hcp Ti is computed by using the
thermodynamic relation H = F + T S + pV , which is used as
the reference point in our free energy results. Moreover, the pV

work term correction is added to the computed Helmholtz free
energy of bcc Ti in order to get Gibbs free energy at ambient
pressure (see supplementary note 6 for more details [60]).
Available NIST values are also Gibbs free energies at ambient
pressure with reference to hcp Ti enthalpy at room temperature.

As shown in Fig. 8(b), the P4 method predictions for free
energy of bcc Ti at different temperatures agree perfectly
well with NIST data. The discrepancy between this work
and experimental data is less than a few meV, which is the
accuracy needed to resolve energy differences that typically
drive solid-state phase transitions.

The data obtained for Gibbs free energy with respect to the
reference state G are used to fit a power series of the following
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FIG. 9. Isobaric heat capacity of bcc Ti at ambient pressure
(0.001 kbar). The presented P4 scheme is used to calculate the heat
capacity of the mechanically unstable phase of bcc. The vertical
lines indicate the experimental hcp-to-bcc transition temperature,
T

hcp→bcc
exp = 1156.15 K (Ref. [10]), and melting temperature, T melt

exp =
1933.15 K (Ref. [10]), respectively. CALPHAD data are taken from
both SGTE (Ref. [68]) and NIST (Refs. [62,63]). Experimental values
are presented from Refs. [69–75].

form:

G(T ) = a + bT + cT ln(T ) + dT 2, (8)

where a = 0.016 015 5, b = 9.586 × 10−4, c = 1.984 ×
10−4, and d = −5.331 × 10−8 are coefficients that are fit
through a least squares fitting procedure. The constant-
pressure heat-capacity curve is then obtained according to the
relation Cp(T ) = −T ( ∂2G(T ,p)

∂T 2 )p and is presented in Fig. 9.
NIST and SGTE (Scientific Group Thermodata Europe)
curves [68], along with the experimental values at different
temperature ranges [69–75], are compared with the P4 isobaric
heat-capacity curve. Our results for bcc Ti are seen to lie within
the spread in the available experimental results. The observed
discrepancy among different experimental measurements cor-
responds to the experimental accuracy. This is especially
important for higher-order properties such as heat capacity,
which is usually measured with lower accuracy. It is also
important to note that the determination of derivative quantities
such as heat capacity would result in significant noise in such
quantities, since they are highly sensitive to extremely small
free energy differences.

As indicated in Fig. 10, by comparing the calculated Gibbs
energies for hcp and bcc Ti, the transition temperature from
hcp to bcc is obtained. The calculated transition temperature of
1095 K compares well with the experimental values of 1156.15
K [10] and 1198.26 K [62] and computational results of 1114
K [33] and 1250 K [32]. As indicated in Fig. 10, our calculation
shows a Gibbs energy difference between hcp and bcc that has a
similar slope to CALPHAD data at lower temperature (below
and slightly above the transition temperature). However, at
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unary database (Ref. [68]).

higher temperature the slopes differ and our calculations
show a steeper negative slope. This originates from using the
harmonic approximation for the hcp Gibbs energy, which is
insufficient to incorporate anharmonic contributions into the
free energy. These contributions become crucial especially
at high temperature. Ignoring anharmonic free energy for
hcp Ti results in an overestimation of Gibbs energy of hcp
and consequently a steeper slope at temperatures above the
transition temperature. One should not, however, correlate
all of the disagreement with the harmonic model deficiency
considering that, at temperatures above transition to bcc, the
CALPHAD Gibbs energies of hcp are based on extrapolations
of experimental data from a region of temperature where hcp
is stable.

IV. DISCUSSION

It is important to observe that, even though the method only
requires ab initio calculations of harmonic force constants, the
resulting free energy model includes anharmonic contributions
to an accuracy that can be systematically improved by simply
including more sites in the augmented lattice. Phonon lifetime
effects, stabilization by quartic terms, etc. are all included
in the thermodynamic description, despite the use of a local
harmonic treatment. This follows from the fact that any smooth
function can be approximated with any given accuracy by a
piecewise quadratic function, provided the pieces are chosen
sufficiently small. It is practically more convenient to improve
an approximation to a function by including more polynomial
pieces of a low order (e.g., quadratic) than to increase the
order of a single polynomial, as effective Hamiltonian methods

traditionally do. The former avoids Runge’s phenomenon [76]
while the latter does not. Figure 2 in the supplementary
notes [60] represents the piecewise polynomial interpolation
of an illustrative potential-energy surface. In addition, in our
method, when the expansion points of the quadratic pieces
are chosen to lie at local minima, the approximation is most
accurate in the regions of phase space where the system spends
the most time; a property not guaranteed by a higher-order
polynomial expansion of the system’s energy surface.

Our method becomes especially advantageous relative to
existing methods, such as thermodynamic integration (TI)
methods, when the anharmonicity is so strong that it creates
multiple local minima around a local high-symmetry maxi-
mum. In such cases, thermodynamic integration can become
problematic because the hops between the local minima
can become rare, resulting in difficulties in equilibrating the
system at each step of the thermodynamic integration. The
residence time in a well grows exponentially with the well
depth, so even with an efficient energy model, thermodynamic
integration may be too computationally demanding. In such
cases, sampling through ab initio molecular dynamics (AIMD)
would become inefficient and impractical whereas Monte
Carlo sampling by means of a lattice gas model (as in the
P4 method) remains equally efficient. TI methods calculate
anharmonic free energy employing the quasiharmonic model
as a reference. Therefore, the efficiency of TI methods greatly
depends on how close the quasiharmonic approximation
is to the real system, while the efficiency of our method
depends much less on this fact, because the lambda integration
in the presented model switches between local harmonic
approximations inside subregions. For strongly anharmonic
systems, where the quasiharmonic sampling is far away from
the ab initio sampling, TI methods become less efficient.

V. CONCLUSION

In summary, a general and robust scheme to determine
the free energy of mechanically unstable but dynamically
stabilized phases is presented. The reasonable agreement
between the free energy obtained for the prototypal example of
bcc Ti and the existing experimental and computational values
confirms the validity of our method. The proposed method
also offers a natural avenue to handle alloys since the cluster
expansion method can easily allow for multiple species on
each site of the augmented lattice introduced herein.
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