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Topological surface superconductivity in doped Weyl loop materials
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We study surface superconductivity involving the “drumhead” surface states of (doped) Weyl loop materials.
The leading weak-coupling instability in the bulk is toward a chiral superconducting order, which fully gaps the
Fermi surface. In this state the surface also becomes superconducting, with p + ip symmetry. We show that the
surface SC state is “topological” as long as it is fully gapped, and the system traps Majorana modes wherever a
vortex line enters or exits the bulk. In contrast to true two-dimensional p + ip superconductors, these Majorana
zero modes arise even in the “strong pairing” regime where the chemical potential is entirely above/below the
drumhead. We also consider conventional s-wave pairing, and show that in this case the surface hosts a flat
band of charge neutral Majorana fermions, whose momentum range is given by the projection of the bulk Fermi
surface. Weyl loop materials thus provide access to new forms of topological superconductivity.
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Nodal-line semimetals are a new class of topological
materials that has recently been proposed [1–9] and observed
in Ca3P2 [10], TlTaSe2 [11], CaAgP, and CaAgAs [12]. A
Weyl loop material is the simplest example of these systems
which at a particular filling display a twofold degenerate
one-dimensional (1D) Fermi ring in the bulk (which becomes
toroidal upon doping), with massless Dirac-like quasiparticles.
These materials constitute a new class of electronic system that
is intermediate between Weyl semimetals (where the Fermi
surface is pointlike), and ordinary three-dimensional metals
(with a two-dimensional Fermi surface). As such, they can
support a qualitatively new phenomenology which is arousing
considerable interest [5,13,14].

While most research on Weyl loop materials has focused
on the noninteracting materials, these systems also provide
a new playground for investigating the correlated states that
may arise through weak-coupling instabilities. For example,
Ref. [15] used general symmetry arguments to establish that
Weyl loop materials are natural candidates to host exotic
forms of superconductivity (SC) in the bulk, with the leading
weak-coupling instability being to a fully gapped chiral
superconducting state in three dimensions, which has never
before been observed. This conclusion was also borne out
by detailed microscopic calculations within a renormalization
group formalism in Ref. [16]. Separately, it has been pointed
out that Weyl loop materials host “drumhead” surface states
[17] (see also Refs. [18–20]) with a a large density of states,
which could naturally support high temperature surface SC
[21]. However, a detailed analysis of the symmetry and
topology of surface superconductivity in these materials has
yet to be performed [22].

In this Rapid Communication we provide a systematic
analysis of the symmetry and topology structure of surface
superconductivity in Weyl loop materials, as well as its
interplay with bulk superconductivity and the superconducting
proximity effect. We begin by reviewing the structure of bulk
SC before turning to surface SC. We discuss “conventional”
s-wave states, and show that the surface state is immune to a
proximity effect from the s-wave order. However, bulk s-wave
pairing induces gapless surface SC, with a new drumhead of
surface states made out of charge-neutral Majorana fermions.

We then discuss surface SC in the presence of bulk chiral
p-wave superconductivity, which is [15,16] the only fully
gapped bulk state. In this case we show that the surface
develops p + ip chiral superconducting order, and is fully
gapped, except for some special cases where the drumhead
band is at zero energy at a time-reversal invariant (TRI)
momentum. In analogy with the two-dimensional (2D) p + ip

superconductor [23,24], it is tempting to classify the surface
SC with a Fermi surface (FS) of the drumhead band as
topological and the opposite case as topologically trivial.
However, we show that this is not the case—as long as the
surface SC is gapped, it is topological and traps Majorana zero
modes (MZMs) where a vortex line enters or exits the bulk.
Here, the distinction with 2D p + ip SC arises because the
drumhead band does not cover the full 2D Brillouin zone (BZ).
We establish this by means of analytic arguments based on
adiabatic continuation, and also verify this numerically. Weyl
loop materials thus provide access to new forms of topological
(surface) superconductivity, distinct from previous proposals
(e.g., Ref. [25]).

Model. We consider a two-band model,

H(k) = σx(6 − t1 − 2 cos kx − 2 cos ky − 2 cos kz)

+ 2t2σ
y sin(kz) − μ, (1)

where we have factored out an overall energy scale, and the
matrices σx and σy (hereafter “spin”) can either be in SU(2)
spin space, or simply in a two-band subspace of a multiband
system. For small t1,2 the first two terms describe a line node
in the dispersion, given by 2 − t1/2 − cos kx − cos ky = 0 and
kz = 0. The last term is a chemical potential that gives rise to
a nondegenerate Fermi surface surrounding the nodal line,
which forms a torus. The dispersion in the continuum limit
can be written asH = σx(k2

‖ − t1) + 2t2σ
ykz − μ, where k2

‖ =
k2
x + k2

y . At a given polar angle θ (defined by ky/kx = tan θ ),
for a small μ, the cross section of the FS is given by two ellipses
at t1(k‖ ± √

t1)2 + t2k
2
z = μ2. Without loss of generality we

set t1 = t2 and parametrize this circle by another angle ϕ, as
shown in Fig. 1, such that the linearized Hamiltonian takes the
form H = K(cos ϕσx + sin ϕσy), where K cos ϕ = k‖ − √

t1
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FIG. 1. The torus-shaped Fermi surface of a Weyl loop metal.

and K sin ϕ = t1kz. Note that inversion takes θ → θ + π and
ϕ → −ϕ with this parametrization.

Superconductivity in the bulk. We first consider the super-
conducting order parameter in the odd-parity channels that
couples to fermions via

Ho
� = �ψ†(k)[d(k) · σ ]iσ y(ψ†)T (−k). (2)

Fermionic statistics require d(k) to be odd in k. From the
torus configuration of the FS, we expect that energetically
the leading SC instability is toward an order parameter with
d(k) ∝ eiθ d̃(k), where d̃(k) is an even function. We focus on
the cases where d̃(k) is a constant on the FS, and is pointed
toward the x, y, or z directions. Because of the nontrivial spin
texture, the SC order parameter projects onto the low energy
fermions with nontrivial “projective form factors” [26]. To
this end, we note that the spinor structure of a low energy
fermion (conduction band) on the FS is given by c†(k) =
∑

α=↑,↓ ξαψ†
α(k), where ξ = [exp(iϕ/2), exp(−iϕ/2)]T /

√
2.

When projected onto the low energy fermions, the pair-
ing vertex becomes H̄� = �χ (k)c†(k)c†(−k), where χ (k) ≡
ξ †(k)(d · σ )iσ yξ ∗(−k). The projective form factors (on the
conduction band) for d̃ = dx̂,ŷ,ẑ are given by χx(θ,ϕ) =
−ξ †

α(ϕ)σ z
αβξ ∗

β (−ϕ)eiθ = 0, χy(θ,ϕ) = iξ †
α(ϕ)δαβξ ∗

β (−ϕ)eiθ =
ieiθ , χz(θ,ϕ) = −ξ †

α(ϕ)σx
αβξ ∗

β (−ϕ)eiθ = − cos ϕ eiθ . From
this we see that in the odd-parity channel, the only order that
fully gaps the FS is the one with d̃ = dŷ, while for d̃ = dx̂,dẑ

the SC order parameter either has no FS component, or leaves a
nodal line. This is consistent with Ref. [15], which pointed out
that d̃ = dŷ is the only odd-parity channel to be fully gapped
and to involve only intraband pairing. Since interband pairing
does not contribute to the pairing instability at weak coupling,
and since condensation energy is maximized by a full gap, the
dŷ state is expected to be the leading odd-parity instability—as
confirmed by detailed renormalization group calculations in
Ref. [16]. Or course, odd-parity superconductivity needs to be
“seeded” by a bare attraction in an odd angular momentum
channel (which could come, e.g., from the Kohn-Luttinger
mechanism [27,28]).

We also consider the SC order in the conventional
s-wave channel, which couples to fermions via Hs

� =
�̄ψ†(k)iσ y(ψ†)T (−k). Its projective form factor can be
obtained by

χs(ϕ) = iξ †
α(ϕ)σy

αβξ ∗
β (−ϕ) = −i sin ϕ. (3)

Thus in the s-wave superconducting states there are two nodal
lines at ϕ = 0 and ϕ = π [see Fig. 2(a)]. The existence of
the two nodal lines tends to strongly suppress Tc for even-
parity order. However, attractive interactions in the even-parity

FIG. 2. (a) The line node of the s-wave state shown on the
torus FS (in blue), which corresponds to ϕ = π/2 and ϕ = 3π/2.
(b) Simulation of the ARPES data of the surface states, showing
the coexistence of the Majorana flat band and the drumhead FS.
The color code denotes the surface fermionic spectral weight at zero
energy, given by Im G(ω = 0,kxy,z = 0).

channel can be generated by more conventional mechanisms
(e.g., phonons), and thus we will discuss s-wave order, too.
Note that s- and p-wave orders do not couple because they
transform differently under π rotations in the xy plane, and
also have opposite mirror eigenvalues (where mirror symmetry
is generated in the projected model by ϕ → −ϕ and in the full
model by kz → −kz and conjugation by σ1). A full compara-
tive analysis of the respective Tc’s in the different channels
requires a detailed knowledge of microscopic interactions,
which is beyond the scope of the current work.

Surface SC. We now turn to surface SC. For a Weyl loop
band structure, there exist “drumhead” bands localized on the
2D surface. Unlike true 2D energy bands, these do not extend
over the full surface BZ, but are confined in a momentum range
given by the projection of the bulk line node. The drumhead
bands can be obtained by treating the Hamiltonian (1) at any
given (kx,ky) point as a one-dimensional subsystem along the z

direction, and computing its end states. Recall that the Wilson
loop around a point on the line node has a Berry phase of
π (since the spin winds by 2π ). One can deform the Wilson
loop into two paths in the z direction across the BZ, which
correspond to the polarizations for two 1D subsystems inside
and outside the line node. The π Berry phase around the
original Wilson loop indicates that the polarization of the
two subsystems differs by eL/2 [29,30] (L is the system
size), indicating degenerate end states for subsystems either
inside or outside the line node. For our model, we compute the
surface states using open boundary conditions in the z direction
[29,31,32]. We can effectively treat the physical surface as
an interface with a trivial insulator with H = M0σ

x , where
M0 > 0. The surface states are given by σ z� = ±� for the
top and bottom surface, respectively. The two surface states
are degenerate, and their dispersion is given by E = −μ.

For our purposes it is interesting to allow for a dispersion in
the last term of Eq. (1), i.e., μ = μ(kx,ky) (which has the same
rotation symmetry in the xy plane as the bulk). In this case the
drumhead band can have a Fermi surface of its own. For a small
dispersion in μ, the density of states on the surface is large, and
the surface bands are also unstable towards SC in the presence
of interactions [21]. However, since the low energy fermions
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are fully spin polarized, s-wave order cannot develop. Thus the
drumhead band is immune to an external proximity effect from
an s-wave SC. In contrast, in the bulk projection onto one band
generates a spin texture, so bulk s-wave pairing is allowed. In
the event of bulk s-wave pairing, the drumhead band remains
gapless. However, the existence of two new nodal lines in the
bulk band structure coming from the SC order induces a new
flat band [33] on each surface, which cannot disperse, because
of particle-hole symmetry in Nambu space. This flat band can
again be viewed as a result of π Berry flux around each nodal
line [34], similar to the drumhead band. This band is formed
by charge-neutral Majorana fermions, and can be viewed as
the stacking of Majorana end states from 1D topological
superconductors. We show in Fig. 2(b) the simulation of
surface angle-resolved photoemission spectroscopy (ARPES)
data (momentum distribution curves at energy ε = 0), where
both the Majorana flat band and the gapless drumhead FS are
clearly visible.

We now discuss odd-parity bulk superconductivity in the
d̃ = dŷ channel that fully gaps out the bulk. The SC form factor
on the top surface is given by χs

y (θ,ϕ) = i(ξ s)†(ξ s)∗eiθ = ieiθ ,
where ξ s ≡ (1,0)T is the spinor structure for the top surface
state. From this, we find that the same superconducting order
that fully gaps out the bulk also fully gaps the surface states
with p + ip symmetry. Even for cases where the surface band
does not cross the chemical potential, the surface becomes
superconducting due to a proximity effect from the bulk.
However, the band structure of the surface states is not strongly
modified since they are below or above the Fermi level. In
Ref. [34] we also present results for the other (subleading)
chiral SC states.

Topology of chiral surface SC state. We now address
the topological properties of the chiral state d = deiθ ŷ, for
which both the bulk and the surface are fully gapped. The
topological properties of the bulk SC state has been analyzed
in Ref. [15], which used a homotopy argument to identify this
state as a “meron superconductor.” Here, we concentrate on the
surface, which is a p + ip pairing state. Such a state has been
proposed for the quantum Hall state at ν = 5

2 [23,24] and for
the unconventional superconductor Sr2RuO4 [35–37]. In the
Bogoliubov–de Gennes (BdG) Hamiltonian of a 2D p + ip

SC, one can define a homotopy group π2(S2) from the 2D
Brillouin zone to the Nambu spinor space, whose z component
is the normal part of the Hamiltonian. At TR invariant points
of the BZ, the superconducting order parameter vanishes by
fermionic statistics, and the Nambu spinor at these points is
forced to point toward the north or south pole. Thus the winding
(Chern) number is 1 if the BZ covers both poles, and is 0 if it
only covers one pole. The nontrivial case with Chern number
1 corresponds to the case where the normal state has a Fermi
surface, also known as the weak phase because the SC in this
case is a weak-coupling instability in 2D. As a consequence
of the topology, in the weak phase, it is well known that there
exist MZMs bound at the core of a vortex of the pairing order
parameter. The trivial strong phase, without a Fermi surface,
requires a strong interaction to become paired on its own, and
hence the name. To deform the strong phase Hamiltonian to the
weak phase, the normal state energy ε(k = 0) changes sign,
and the gap closes in this process [see Fig. 3(a)], signifying a
change in topology.

FIG. 3. (a) A process to deform the weak pairing phase into
strong pairing phase in 2D p + ip SC, where the dashed lines are
the chemical potential. It necessarily involves a gap closing at k = 0,
where the SC order parameter is forced to vanish by fermionic
statistics. (b) The corresponding process for the drumhead surface
SC, shown at a given θ . No gap closing is involved with SC order
turned on. In the last figure the drumhead dispersion can be further
distorted.

For the surface SC states in our case, we cannot define the
homotopy π2(S2), because the surface bands do not traverse
the full Brillouin zone. Despite the lack of a well-defined
topological invariant, we can establish an analogy with the
2D p + ip state. At first glance, it is tempting to classify the
case with a surface FS as topological and the case without
a surface FS as trivial. However, a careful examination of
the band structure reveals that the “weak case” can in fact be
continuously deformed into the “strong case” (note that despite
the name, the SC order is from a weak-coupling instability in
the bulk) without closing the gap. We illustrate such a process
in Fig. 4(b). This implies these two cases are topologically
equivalent and for both there should exist MZMs when vortex
lines enter and exit the bulk [38]. However, the above analysis
does not include the vortex line, which traps bound states.
These vortex line states form a 1D band with a “minigap.” If the
minigap closes during this process, then this could eliminate
the MZMs (see, e.g., Ref. [39]). We show in Ref. [34] that for
our case the minigap remains open.

To see how to obtain the MZM, we first look at a 2D p + ip

SC. We approximate the lattice model with a Dirac fermion at
the � point, h = �(kxτ

x + kyτ
y) − μτz, where the τ matrices

are in Nambu space and � is the SC order parameter, which
has a vortex configuration. However, at this level, there is no
distinction between the weak and strong phases. Moreover, the
wave function for the bound state diverges as r → 0. A closer
look shows that in the vortex core r ∼ 0 the system is in the
normal state, and the wave function at such a short distance
depends on the large momentum behavior of ε(k), which is
different for the weak and strong phases. One can then show
that only for the dispersion of the weak phase can the wave
function at small and large r can be matched smoothly [34,40].

However, the situation is different for our case. The surface
drumhead band is not a standalone 2D system, and it only exists
in a small momentum range around a TR invariant point. In
the absence of large momentum states in the surface band, all
the surface state wave functions are “smoothed out” at short
distances, eliminating the singularity at r = 0 [34]. As a result,
the surface SC should be topological with vortex core MZMs
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FIG. 4. The density of state plots for a Weyl loop chiral super-
conductor [(a)] and a 2D p + ip SC with a flat band dispersion [(b)],
both in the “strong” pairing phase and with a vortex configuration. The
spikes at high energies are due to finite-size effects (the system size
is 20 × 20 × 10 for four bands). For both Hamiltonians, there exists
a bulk gap at μ = 0.2 (in units of hopping parameters), however, the
clear distinction is that there exist in-gap states for the Weyl loop
surface SC.

independent of the drumhead band dispersion [41]. To check
this logic, we numerically solved and compared the energy
spectrum for a Weyl loop SC and 2D p + ip SC, both in the
“strong” phase, and we found that only in the former case do

there exist an in-gap modes with the wave function peaked
at the vortex. In Fig. 4 we show the comparative density of
state plots indicating that surface SC in the doped Weyl loop
semimetal is topological (in the sense that vortices trap MZM
when they enter/exit the bulk) even when the drumhead lies
entirely above/below the chemical potential. We also verified
that the same results hold for the weak phase of the Weyl loop
SC.

In conclusion, we have shown that a doped Weyl loop
material hosts entirely new types of topological surface
superconductivity. For the fully gapped chiral SC state the
surface surface traps MZM when vortex lines enter/exit the
bulk, independent of the drumhead dispersion. Even for a
“conventional” s-wave state, there exists a flat band of neutral
Majorana bound states on each surface at the projected location
of the FS. Finally, note that while Ca3P2 [10], CaAgP, and
CaAgAs [12] materials have a fourfold degenerate nodal line
(i.e., a Dirac loop), our conclusion can be generalized to these
materials. The only difference is that a chiral Dirac loop SC
(two copies of Weyl loop SC) should host a single MZM as a
half vortex line enters and exits the bulk, where only one of
the Weyl loop SC copy has a phase winding [42].
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