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Detecting topological superconductivity using low-frequency doubled Shapiro steps
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The fractional Josephson effect has been observed in many instances as a signature of a topological
superconducting state containing zero-energy Majorana modes. We present a nontopological scenario which can
produce a fractional Josephson effect generically in semiconductor-based Josephson junctions, namely, a resonant
impurity bound state weakly coupled to a highly transparent channel. We show that the fractional ac Josephson
effect can be generated by the Landau-Zener processes which flip the electron occupancy of the impurity bound
state. The Josephson effect signature for Majorana modes become distinct from this nontopological scenario
only at low frequency. We prove that a variant of the fractional ac Josephson effect, namely, the low-frequency
doubled Shapiro steps, can provide a more reliable signature of the topological superconducting state.
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Superconductors supporting Majorana zero modes
(MZMs) [1–4] at defects provide one of the simplest examples
of topological superconductors (TSs) [5,6]. In fact, a number of
proposals [7–12] to realize such MZMs have met with consid-
erable success [13–18]. Such systems containing MZMs are
particularly interesting [19–25] because of the topologically
degenerate Hilbert space and non-Abelian statistics associated
with them that make such MZMs useful for realizing topolog-
ical quantum computation [26]. While preliminary evidence
for MZMs in the form of a zero-bias conductance peak have
already been observed [13–18,27–31], confirmatory signatures
of the topological nature of MZMs are still lacking.

The zero-bias conductance peak provides evidence for the
existence of zero-energy end modes which can arise not only
from TSs but also from a variety of nontopological features
associated with the details of the end of the system [32–35].
In contrast, the topological invariant of a TS, being a bulk
property, is not affected by the details of the potential at the
end. The topological invariant of a one-dimensional TS can
be determined from the change in the fermion parity of the
Josephson junction (JJ) [3]. Specifically, the fermion parity
of a topological JJ changes when the superconducting phase
of the left superconductor φ of the JJ winds adiabatically by
δφ = 2π [2,3]. Such a change in fermion parity of the JJ
may be detected from the resulting 4π -periodic component
in the current-phase relation of the topological JJ [3,36]. This
is referred to as the fractional Josephson effect and can be
detected using the fractional ac Josephson effect (FAJE).

The FAJE involves applying a finite dc voltage V across
the junction so that the superconducting phase across the
junction varies in time as φ(t) = �J t [37]. Here, �J = V is the
Josephson frequency, where we have set h̄ = 1 and the charge
of the Cooper pair 2e = 1. The 4π -periodic current-phase
relation characteristic of a topological JJ results in a current
that has a component at half the Josephson frequency, i.e.,
at ω = �J /2 instead of ω = �J characteristic of conven-
tional JJs [3,11,12,36,38,39]. In principle, the resulting ac
current may be detected by a measurement of the radiation
emitted from the junction [40,41]. Alternatively, the fractional
Josephson effect can also be detected by measuring the size
of the voltage steps, known as Shapiro steps [42,43]. For
topological JJs, these voltage steps have been numerically

found to be δV = 2�J , which is double the voltage steps
for the conventional JJs [44,45].

Interestingly, evidence for both the FAJE [41] and doubled
Shapiro steps [42,43,46] have been seen in TSs that are
expected to support MZMs. However, there is evidence that
such signatures might appear in nontopological systems as
well. For example, both the signatures seem to also appear
in the TS experiments when the devices are not in the
topological parameter regime [41,43,46,47]. One possible
spurious source of FAJE is the period-doubling transition
seen in certain JJ systems [48]. In addition, the FAJE and
doubled Shapiro steps are known (both experimentally [40]
and theoretically [49,50]) to arise from Landau-Zener (LZ)
processes in certain ranges of frequency. Avoiding such LZ
processes might require particularly low frequencies in low-
noise systems with multiple MZMs [51]. While the LZ process
is known to potentially lead to FAJE [40,49], there have not
been any generic nontopological scenarios presented in the
literature so far.

In this Rapid Communication, we start by discussing a
generic model of a resonant impurity coupled to a JJ [shown
in Fig. 1(a)], which has a weakly avoided crossing in the energy
spectrum as a function of phase [see Fig. 1(b)]. The present
scenario requires only the coexistence of a highly transparent
channel in a JJ [as seen in recent measurements of Andreev
bound state (ABS) spectra [52]] and a weakly coupled impurity
bound state. Such a coexistence can be found in a multichannel
semiconductor-based JJ with a spatially varying density, as is
the case of all of the recent experiments [41–43,46]. We use a
scattering-matrix approach to show that this relatively generic
situation can lead to an FAJE over a frequency range of a
factor of a few even in the absence of any TS. In order to
distinguish between this nontopological scenario from TS, it
is important to be able to go to ultralow MHz frequencies
in the FAJE measurements. Shapiro steps provide the setup
where such a large range of frequencies spanning three orders
of magnitudes (MHz–GHz) are possible [53]. In the second
part of this Rapid Communication, we provide a rigorous
framework connecting Shapiro steps to TS where we show
that the low-frequency doubled Shapiro steps are guaran-
teed to appear in the overdamped driven measurements of
topological JJs.
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FIG. 1. (a) JJ configuration showing FAJE consists of a high
transparency channel connecting two superconductors. The channel is
tunnel coupled to an impurity bound state (shown as a disk adjoining
wire). (b) Computed Andreev bound state spectrum for the setup in (a)
shows a weakly avoided crossing at E = 0 and a gap to higher-energy
states generated by a larger avoided crossing with the flat impurity
bound state. The weakly avoided crossing can lead to an FAJE at
finite voltages.

Let us first understand how an FAJE can occur in a
nontopological setup such as the setup in Fig. 1(a). For
simplicity, we consider the superconductors to be s wave
with a highly transparent normal channel in between, together
with a subgap impurity bound state. The highly transparent
channel supports Andreev bound states (ABSs) in the junction
that approach zero energy [see Fig. 1(b)] when the phase φ

crosses φ = π [54]. Applying a finite voltage V across the
junction causes the superconducting phase φ to vary in time
as φ(t) = V t . This leads to the possibility of LZ processes
exciting Cooper pairs across the superconducting gap. In
general, these Cooper pairs are transported across the entire
superconducting gap via multiple Andreev reflections [55,56],
ultimately leading to a dissipative but otherwise conventional
ac Josephson effect [55]. This situation is modified when the
junction is tunnel coupled to impurity bound states. As shown
in Fig. 1(b), the ABS spectrum of the JJ varies with phase
φ where it crosses the relatively flat impurity bound state
with energy Eimp at pairs of points. At such crossings, the
junction exchanges a Cooper pair with the flat impurity state.
When φ = π , the ABS loses a Cooper pair to the condensate
through a LZ process across the zero-energy gap δ0. As the
ABS energy approaches the second avoided crossing with the
impurity bound state at energy Eimp, the ABS restores its
Cooper pair at the expense of leaving the impurity bound state
empty. Thus, the impurity bound state electron occupancy is
flipped via the LZ process as the phase varies over a period of
φ = 0 to φ = 2π which is restored during the next 2π cycle.
Therefore, while the spectrum of the junction is 2π periodic,
the occupation of the impurity bound state is 4π periodic.

Since the total energy E which includes the spectrum and
occupation of the ABS and impurity bound states determines
the supercurrent I (φ) by I (φ) ∼ ∂φE(φ), I (φ) would also
be 4π periodic with the phase φ. This manifests as a peak
in the radiation spectrum from the current at a frequency of
ω = �J /2 instead of the usual Josephson frequency ω = �J

peak.
While the qualitative argument above suggests the possi-

bility of an FAJE occurring in nontopological semiconductor
systems, it assumes the zero-energy LZ processes to be perfect
and all other LZ processes to be completely avoided. In the
following, we perform a completely unbiased quantitative
analysis of the FAJE for the JJ shown in Fig. 1. To begin
with, we note that at any finite voltage V , the occupation of
an ABS fluctuates due to excitations out of the bulk gap (via
multiple Andreev reflections). The quasiparticle fluctuations
ensure that the system equilibrates to the grand canonical
ensemble (with no conserved fermion parity) such that the
expectation value of the current is 2π periodic as in the
conventional system [57]. Thus, strictly speaking, the FAJE
at any finite voltage is subject to random fluctuations and
can only appear in the noise spectrum of the current [58,59].
To assess the range of voltages over which the JJ shown in
Fig. 1(a) exhibits an FAJE, we compute the noise spectrum of
the current

P (ω) =
∫

dτeiωτ [〈I (t)I (t + τ )〉 − 〈I (t)〉〈I (t + τ )〉], (1)

where 〈· · ·〉 denotes the averaging over time t . The current [55]
and its noise spectrum [58,59] can be computed by considering
the scattering of quasiparticles between the superconducting
leads, which are at different voltages. This approach has
the advantage of including the contribution of not only the
low-energy ABSs but also all bound and scattering states in
the junction. We have expanded this formalism to general
superconductor-normal-superconductor junctions [60]. Our
general framework can be easily implemented with Kwant [61]
which supplies the normal-superconductor scattering matrices.
The resulting power spectrum P (ω) is plotted against the
frequency scaled by the Josephson frequency, i.e., ω/�J in
Fig. 2 for various voltages for the system depicted in Fig. 1(a)
with the spectrum shown in Fig. 1(b). The power spectrum at
high voltages is quite broad, which becomes narrower at lower
frequency and develops peaks in the vicinity of ω/�J = 1/2
before splitting off to different values. The high-frequency
spectrum is also several orders smaller in magnitude, which is
expected in the adiabatic limit when fluctuations in the ABS
occupation are small. While some of the peaks appear to move
away from the ideal fractional value and come back, this might
be difficult to resolve at a high level of broadening arising from
nearby energy states and circuit-noise induced broadening.

The spurious FAJE peaks in Fig. 2 resulting from the LZ
mechanism appear over a frequency range narrower compared
to the parametrically large frequency range (i.e., 	,δ � ω �

) of the FAJE in a high-quality TS [58,59,62,63]. Here,

 is the induced superconducting gap, which is a relatively
large frequency (∼GHz), and 	 and δ are respectively the
quasiparticle poisoning rate and the MZM overlap that become
vanishingly small (�MHz) in high-quality TSs.
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FIG. 2. Power radiated P (ω) as a function of frequency ω/�J

for different ratios of the applied voltage V relative to the zero-energy
gap δ0. The power spectrum P (ω) shows a fractional ac Josephson
peak at ω = �J /2 for a range of values of V/δ0. The peak broadens
out at higher voltages and shifts towards a more conventional peak
at ω = �J at lower frequency (while becoming smaller). P (ω) has
been rescaled so that all peaks are clearly visible.

It is clear from Fig. 2 that distinguishing a bona fide TS
from an LZ-type mechanism induced by resonant bound states
requires low-frequency (� 50 MHz) measurements of high-
quality TS devices with 
 � δ,	. The FAJE which involves
measuring small oscillating currents is difficult to perform
for low frequencies because such small oscillating currents
are typically measured using on-chip detectors [40,64] that
are suited to measure relatively high frequencies (∼GHz). On
the other hand, the Shapiro stexp [37], which is a variant
of the FAJE, has been demonstrated over a large range of
frequencies from several MHz to GHz [53]. While this makes
the Shapiro step promising for the detection of TSs, a rigorous
proof establishing the doubled Shapiro step as a signature of
TS is still missing from the literature. Below, we demonstrate
analytically that the low-frequency doubled Shapiro steps can
be used as a reliable signature of TS.

We begin by considering the Shapiro step experiment where
a JJ shunted with a resistance R is biased with a time-varying
current Ibias(t) = Idc + Iac cos (�J t), with Idc and Iac being dc
and ac bias currents, respectively. For the following analysis,
we make a key assumption that we are working in the limit
of low-frequency �J so that the Josephson current IJ (φ(t))
can be taken to be in equilibrium, apart from the conserved
local fermion parity. The assumption of being at sufficiently
low frequency can only be justified by studying the Shapiro
steps over a few orders of magnitude in frequency (from

 ∼ GHz to δ,	 ∼ MHz). Using this assumption and the
result of Bloch [57], we can establish that IJ (φ) for any
nontopological system must be 2π periodic and thus rule
out any nontopological FAJE such as those from the LZ
mechanism.

Furthermore, assuming that the shunt resistance R is small
enough to allow the JJ to be overdamped, the equation of
motion for φ(t) for the resistively shunted JJ takes the standard

form [37]

dφ

dt
= R[Ibias(t) − IJ (φ(t))]. (2)

For illustration purposes, we will choose a simple case of
IJ (φ) = I0 cos (2πφ) + Itop cos (πφ), where I0 and Itop are the
2π - and 4π -periodic components of the critical current of the
adiabatic current-phase relation, respectively. However, our
results generally hold and do not depend on this parameter
choice, as is proven by the analytic arguments in Ref. [65].
The dc voltage V across the JJ is calculated by considering the
average change of the phase

V = lim
t→∞

φ(t) − φ(0)

t
, (3)

FIG. 3. (a) Schematic of a phase particle (orange disk) on a
tilted washboard potential that describes the phase dynamics in an
overdamped JJ. As the bias current increases from t = 0 to t = τ , the
phase particle is released from the local minimum and traverses
the trajectory along the green dashed-dotted arrow, and stops when
the current bias is back to its value at t = 0 and the phase particle
has traveled by 4π (for the TS case shown here). This corresponds
to a voltage step of 2�J . (b) Shapiro step calculated numerically
for a putative fractional Josephson system shows doubled Shapiro
steps (see also Ref. [44]) as opposed to a conventional system with
all integer Shapiro steps for an overdamped JJ. Here, Iac = 0.1I0,
R = 25, Itop = 0.15I0 (for fractional), and Itop = 0 (for conventional).
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where the limit is computed by choosing a sufficiently long
simulation time for Eq. (2).

We will now show that overdamped JJs constructed out
of TSs are generically characterized by a doubled Shapiro
step in the strongly overdamped and low-frequency limit (i.e.,
�J /IJ R � 1). The dynamics of φ(t) described by Eq. (2)
can be understood simply by an analogy of a “phase particle”
rolling down a washboard potential according to the equation
φ̇(t) = −∂φUwb(φ,t), where the washboard potential is written
as Uwb = −R[Ibias(t)φ − ∫

dφIJ (φ)]. As seen in Fig. 3(a),
because of the ac drive, the potential Uwb(φ,t) varies in time
with local minima at each cycle when φ(t) = φ0 such that

Ibias(t) − IJ (φ0) = 0. (4)

In the adiabatic limit (i.e., �J /IJ R � 1), one can show that
the phase particle approaches the minimum of the washboard
potential exponentially in time once every period of the drive.
This leads to a well-defined voltage that appears as a sharp
plateau in the Shapiro steps [65].

Let us for now assume that [65] the phase particle
approaches a minimum of Uwb during the time interval when
such exists. In the conventional case of a 2π -periodic function
IJ , this can occur once in a 2π period provided the critical
current IJ,max > (Idc − Iac). This will certainly occur if Idc is
small enough. In addition, if Idc > (IJ,max − Iac), then there
will be a range of time when Uwb has no minimum and
the adiabatic solution breaks down. In this case, φ(t) will
wind by a multiple of 2π and collapse to φ0 after a winding
of 2πn. The result is that an integer voltage appears across
the JJ. In the case of a topological JJ, the current-phase
relation IJ (φ) has a 4π -periodic component and one can define
two critical currents IJ,max and I ′

J,max, one associated with
the range φ ∈ [4nπ,(4n + 2)π ] and the other in the range
φ ∈ [(4n − 2)π,4nπ ]. In our simple model IJ,max,I

′
J,max =

I0 ± Itop. As in the conventional case, the dc bias current must

satisfy Idc > (IJ,max − Iac) (assuming IJ,max > I ′
J,max) to exit

the zero-voltage state even in the TS case. On the other hand,
if 2Iac < (IJ,max − I ′

J,max), then Idc > I ′
J,max + Iac so that the

phase particle cannot stop at one half of the minima. This leads
to a doubled voltage step for the topological case, as seen from
the numerical solution of Eq. (2) [see Fig. 3(b)].

In summary, we have shown that while the FAJE can
be viewed as a smoking gun for the TS with MZMs, a
detailed study of the frequency dependence of the FAJE is
necessary before concluding a system to have realized the
TS. We have shown this by considering a generic model
of a high transparency channel in a JJ coupled weakly to a
resonant impurity. We find this model to show an FAJE quite
generically in semiconductor-based JJs, similar to the TS case
with MZMs. Nevertheless, TSs are expected to show FAJE
over a parameterically larger range of frequency. We argue
that the current-phase relation over such a range of frequency,
particularly at the low-frequency end, is better studied by
considering the Shapiro step experiment. We present a way
of understanding the Shapiro step experiment in terms of the
tilted washboard potential that guarantees that the necessary
and sufficient condition for the existence of doubled Shapiro
steps in the low-frequency limit is that the JJ is formed from
a TS. Thus, low-frequency Shapiro steps which have been
demonstrated in conventional systems can serve as a smoking
gun for MZMs.
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