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Resonating valence bond states with trimer motifs
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A trimer resonating valence bond (tRVB) state consisting of an equal-weight superposition of trimer coverings
on a square lattice is proposed. A model Hamiltonian of the Rokhsar-Kivelson type for which the tRVB becomes
the exact ground state is written. The state is shown to have 9g topological degeneracy on a genus g surface
and support Z3 vortex excitations. Correlation functions show exponential behavior with a very short correlation
length consistent with the gapped spectrum. The classical problem of the degeneracy of trimer configurations is
investigated by the transfer matrix method.
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Resonating valence bond (RVB) wave functions have been
a paradigmatic expression of strongly correlated states of
matter, with potential bearings on high-Tc cuprates and two-
dimensional spin-liquid materials [1,2]. The basic building
block of RVB is the spin singlet pair, also known as the dimer,
made out of two constituent S = 1

2 spins. In the insulating
state without holes, every site is covered by one and only
one dimer in a particular fashion, which we denote as |D〉,
the dimer covering. Quantum fluctuation introduces mixing
among various dimer coverings, leading to the RVB wave
function as the linear superposition of all possible dimer
coverings of the lattice, |RVB〉 = ∑

D AD|D〉, with amplitude
AD. Short-range RVB wave functions of the Rokhsar-Kivelson
(RK) type allow dimers over the nearest neighbors only and
have been extensively investigated on square [3], triangular
[4,5], hexagonal [6], and kagome lattices [7]. More recently it
became apparent that the tensor network approach is another
potent way to probe short-range RVB physics [8–12].

Works on RVB have been overwhelmingly focused on
S = 1

2 spins, motivated at first by its potential relevance to
the cuprate physics and later by the discovery of several
two-dimensional spin-liquid materials all formed out of S = 1

2
constituent spins [13]. The discovery of the spin-liquid phase
in the pnictide family of superconductors in recent years [14]
has nudged the tide, and now there are active discussions of
possible spin-liquid phases realized in various frustrated S = 1
spin models [12,15,16]. A pair of spin-1 constituents can form
a dimer just as a pair of spin- 1

2 ’s does, but there is also a
more novel possibility of the trimer, made of three constituent
spin-1’s forming a spin singlet. The examination of the RVB
wave function consisting of trimer motifs, rather than dimers,
is the thrust of this Rapid Communication.

The physics of RVB is related to the problem of dimer cov-
erings on planar lattices dating back to the 1930’s [17,18] and
invigorated by their exact solutions found in 1961 by Kasteleyn
[19], and Fisher and Temperley [20]. The combinatorial
problem of counting the number of coverings can be rephrased
as the evaluation of certain partition functions of classical
statistical mechanics models. In turn, this partition function can
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be written as the tensor trace of judiciously chosen site tensors
[21]. The trimer covering problem is the simplest example
of generalization of the heavily studied dimer problem. Our
strategy is to revisit some known results on the classical trimer
covering problem [22–25], generalize them, and use those
results to shed light on the quantum superposition of the trimer
coverings which we call the trimer RVB state. We argue, in
various ways, that low-energy excitations of the trimer RVB
are likely to be described by some sort of Z3 gauge theory
with 9g topological degeneracy on the genus g surface.

Different facets of the trimer covering on the two-
dimensional square lattice have been investigated for some
time [22–25]. Trimers come in two types: the linear trimer (L
type) which extends either horizontally or vertically over three
consecutive lattice sites, or the bent trimer (B type) extending
over a site and its two nearest neighbors, as illustrated in
Fig. 1(k). In this Rapid Communication we consider the square
lattice only. Counting the L-trimer covering on a square lattice
was done in Ref. [24], and that of the B-type trimer in Ref. [25].
Oddly, the counting problem for the mixed case with both
types of trimers allowed has yet to be solved. The mixed
trimer problem, to which the L- and B-type cases belong as
special limits, can be formulated using the tensor network
language [21].

To this end, a site tensor Alrud having a value 1 for the
ten configurations shown in Figs. 1(a)–1(j) and zero otherwise
is introduced. The indices l,r,u,d refer to left, right, up, and
down bonds around each site and take only three possible
values 0, 1, and 2. The index l = 0 implies the absence of
a trimer in that direction. Two independent values 1 and 2
are introduced for the index designating the presence of a
trimer bond. As a result, configuration (a) in Fig. 1 cannot
be contracted with (c), nor (b) with (d), to form a dimer.
Inspection of the index assignments in Fig. 1 should convince
the readers that only trimer configurations are allowed under
the tensor contraction. L-trimers are formed by contracting
(a)-(i)-(c) tensors horizontally, or (b)-(j)-(d) tensors vertically.
There are four orientations for B-trimers, each realized by
(d)-(e)-(c), (a)-(f)-(d), (a)-(g)-(b), and (c)-(h)-(b) contractions,
respectively. A trimer model consisting of L-trimers is only
achieved as the limit where (e)-(h) configurations are given
the value 0. The B-trimer-only model is the limit with (i) and
(j) configurations set to zero. Carrying out a tensor contraction
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FIG. 1. (a)–(j) Ten possible configurations of a local tensor to
realize the trimer covering. Known trimer coverings consisting of
linear and bent types only arise as special limits. The numbers 0, 1,
and 2 denote the indices of the site tensor. (k) Red and blue bars
represent all possible L- and B-type trimers, respectively.

Z = ∑
{li ,ri ,ui ,di } Al1r1u1d1δr1l2Al2r2u2d2 · · · gives the number of

trimer coverings.
The efficient calculation of Z proceeds on a cylinder ge-

ometry with the periodic boundary condition (PBC) imposed
along the x direction of length Nx and open ends along the
y direction of length Ny . The largest eigenvalue λ of the
row-to-row transfer matrix (TM) is used to evaluate Z ∼ λNy .
The entropy per site is s = ln Z/N , where N = NxNy counts
the number of lattice sites. We quote below the thermodynamic
extrapolation of the entropy for the mixed (both L- and B-type)
trimer case along with known results for L-only and B-only
types [24,25]:

s∞ =

⎧⎪⎨
⎪⎩

0.15852(1.17178) for L-type,

0.27693(1.31907) for B-type,

0.41194(1.50974) for L- and B-type.

(1)

The number in the parentheses is x = es∞ , with which one
obtains Z ∼ xN .

Interestingly, we have found from analysis of the adjacency
graph of the transfer matrix that trimer configurations on the
cylinder can be classified into three distinct topological sectors
[26]. The winding number characterizing each sector can be
defined with a string threading the dual lattice. As depicted in
Fig. 2(a), we assign a direction to the string and give a weight
ω = e2πi/3 when the center position of the trimer is seen on
the right side of the path, and ω∗ if seen on the left side. With
this definition, the total weight for the elementary string loop
surrounding a site anticlockwise [Fig. 2(b)] is always ω, and it
can be considered as a locally conserved quantity in the trimer
problem. The winding number � around a single trimer is the
product of three factors of ω as the loop should consist of
three consecutive elementary loops, thus giving � = ω3 = 1.
For noncontractible loops defined on a compact manifold such
as the torus, the allowed winding numbers are � = 1,ω,ω∗,
as readers can easily verify, and cannot be modified by local
rearrangements of the string or of the trimers.

FIG. 2. (a) Assignment of the weight ω = e2πi/3 and its conjugate
ω∗ for the passage through the dual lattice with the center of the trimer
(blue dot) on the right and left side of the path, respectively. (b) For
any elementary loop surrounding a site, the total weight is always
� = ω. For any loop surrounding a single trimer, the total weight is
� = ω3 = 1.

A quantum Hamiltonian with 9g (g = genus of the mani-
fold) topological degeneracy may be constructed in analogy
with the RK Hamiltonian [3,4]:

(2)

The summation over all lattice translations of the blue-dot
site, as well as the 90◦ rotation (Rπ

2
) of the displayed terms,

are assumed. The v and t terms are the potential and resonating
pieces, respectively, in analogy with the structure of the RK
Hamiltonian for dimers [3,4]. In the potential terms, · · ·
denotes all other possible diagonal terms [26]. Resonating
terms involve only two trimers at one time and are not able
to alter the topological sector of the initial configuration. As
with all dimer models, there are certain “staggered states”
that cannot be reached by applying any number of resonance
moves. An example is given in Fig. 3(a). Acting with the
Hamiltonian on the staggered state gives 0 irrespective of t

and v values. Higher-order moves such as the simultaneous
rearrangement of six trimers caged inside the blue contour in

FIG. 3. (a) Staggered trimer configuration. A nonflippable six-
trimer block inside the blue boundary can be connected to (b) a
flippable configuration through six-trimer resonance moves.
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Figs. 3(a) and 3(b) can connect such staggered configurations
to flippable ones. Even this six-trimer flip is not able to alter
the topological sector.

At t = v, the trimer Hamiltonian in Eq. (2) can be recast
as a sum of projectors that locally project out the linear
superposition of flippable configurations [3,4,26]. Its ground
state is the linear superposition of all but the staggered
trimer configurations (to be defined shortly), with equal
amplitudes, i.e., the trimer resonating valence bond (tRVB)
state, |tRVB〉 = ∑

T |T 〉. Here, |T 〉 refers to a trimer covering
within a particular topological sector. For a torus with genus
number g = 1, we have 9g = 9 degenerate ground states
not connected with each other by resonance moves of the
Hamiltonian. Each one is a unique ground state of the trimer
RK Hamiltonian at t = v, within the subspace that excludes
staggered configurations, due to the Perron-Frobenius theorem
[27]. The staggered states also have zero energy, in apparent
degeneracy with the tRVB state |tRVB〉. One can rule out
staggered states from the ground state by perturbing away
from the RK point to v = t − ε infinitesimally, ε/t � 1 [28].
Also, since this perturbation does not mix different topological
sectors, we still have 9g independent ground states.

Connected trimer (〈tRVB|TiTj |tRVB〉c) and trimer-trimer
(〈tRVB|TiTi+x̂TjTj+x̂ |tRVB〉c) correlation functions, where Ti

is either an L- or a B-type trimer projector, are evaluated and
presented in Fig. 4. By performing a finite size scaling, we
obtained very nicely converged values and therefore the results
in Fig. 4 are not certainly affected by the finite size effect.
All functions decay exponentially with very short correlation
lengths of order one lattice spacing, as observed in the dimer
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FIG. 4. Correlations between (a) L-type, (b) B-type, (c) L- and
B-type, and (d) (LL)-trimers are measured on a 120 × 120 lattice
with the open boundary condition. Here, Rij is the distance between
two trimers at the site i and j , and the estimated correlation length ξ

is shown for each plot.

RK wave function on the triangular lattice [29,30]. It strongly
suggests that the quantum trimer Hamiltonian in Eq. (2) is
gapped at the RK point.

The 9g-fold topological degeneracy along with the likely
gapped nature of the ground state suggests a Z3 gauge theory
description of the low-energy dynamics for the trimer Hamil-
tonian. The relevant magnetic excitations (so-called vortex
and antivortex) will also be of Z3 character, differentiating
a vortex from the antivortex [31]. (In the Z2 gauge theory,
vortex and antivortex are the same [32].) A vortex-antivortex
pair excitation can be constructed explicitly. Let us consider the
same string operator, used previously for defining the winding
number, connecting two sites (p1,p2) on the dual lattice and
define a quantum state

|v1v̄2〉 =
∑
T

ωnr−nl |T 〉, (3)

where nr(l) denotes the number of the trimers crossed by the
string from the right (left) side of its center. This state is
orthogonal to the ground state in the thermodynamic limit,

〈v1v̄2|tRVB〉 =
∑
T

ωnl−nr ∝ 1 + ω + ω∗ = 0. (4)

The first equality follows from the assumed orthogonality
of different trimer configurations 〈T ′|T 〉 = δT T ′ . For a suf-
ficiently large sample and a well-separated vortex-antivortex
pair there should be equal numbers of configurations having
nl − nr = 0,1,2 (mod 3), hence the overlap must be zero. The
phase V12 = ωnl−nr is topologically identical to the operator
creating the Z3 vortex-antivortex pair in the Z3 gauge theory
[31]. Therefore, |tRVB〉 and |v1v̄2〉 can be considered as a
vacuum and a single vortex-antivortex pair state, respectively.
In this sense, we may interpret the nontrivial phase ω obtained
by the elementary loop in Fig. 2(b) as a result of braiding
between the vortex (or antivortex) and a Z3 charge placed at
each site [31].

The t = v RK point defines the first-order phase boundary
[4]. For v/t > 1, the ground state is one of the staggered
configurations such as that shown in Fig. 3(a), defined as states
that are annihilated identically by the actions of t and v terms
in the trimer Hamiltonian. Any trimer configuration containing
a flippable block gains a positive energy (v − t)nfl, where nfl is
the number of such flippable blocks. At v/t = −∞, the ground
state will be chosen to maximize the number of flippable
configurations. It is one of the columnar configurations
depicted in Fig. 5, and those are sixfold degenerate at most,
depending on the boundary condition and the system size.
A likely phase diagram of the quantum trimer model is
schematically proposed in Fig. 5. An extensive numerical work

FIG. 5. Schematic phase diagram of the quantum trimer
Hamiltonian.
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required to identify the phases and phase boundaries between
the trimer RVB state at v/t = 1 and the columnar phase at
v/t = −∞ will be done elsewhere.

The number of staggered configurations in the trimer
model grows at least exponentially in the linear dimension.
For instance, taking the particular staggered configuration in
Fig. 3(a) and reversing all the B-trimer orientations along one
of the north-by-west diagonal lines produces another staggered
state. That is already 2Nd distinct staggered states where Nd

counts the number of diagonal rows in the lattice. This is a
much bigger number than the linear growth of staggered states
in the square-lattice dimer model [3] or the constant number
in the triangular lattice dimer problem [4]. Fortunately, the
staggered configurations of the trimer are not allowed in a finite
rectangular sample, and therefore the correlation functions
shown in Fig. 4 have been measured in an exact |tRVB〉.

The trimer RVB state is likely to find a physical context in
the frustrated spin-1 model on a square lattice. A sufficiently
strong diagonal antiferromagnetic exchange interaction J2 > 0
in addition to the Heisenberg exchange J1 across the nearest
neighbors of the square lattice could favor the formation of
a singlet among the three adjacent spins. There is gathering
evidence of a spin-liquid phase in the J1-J2 frustrated spin-1
model. A recent tensor network analysis of possible S = 1
symmetric spin-liquid phases by some of the present authors
has found a regime in which the spin-1 RVB states can be
realized [12]. A careful inspection of the tensor wave function
for the spin-1 RVB revealed that the underlying motifs are a
mixture of both spin dimers and spin trimers [12].

A final thought on the possible gauge theory description of
the trimer dynamics is in order. We know that the constraint
of having one and only one dimer per site translates into
the Gauss’ law constraint on physically allowed states in
the gauge description [33]. The corresponding constraint
for the trimer configuration can be derived with the winding
number for an elementary dual-lattice plaquette around each
site � being ω, as discussed earlier. Readers can verify that
only the configurations with each site covered by no more
than one trimer satisfy this constraint exactly. It seems we
have sufficient ingredients regarding the trimer RVB states
to declare its candidacy for an example of a Z3 spin liquid.
Much more numerical work will be required to prove the
claim quantitatively. In the meantime, it is rather interesting
to speculate that a physical example of a Z3 spin liquid can
be written down in terms of a simple generalization of the
well-known dimer model.

We learned a great deal on the relation of the dimer/trimer
covering problem to tensor networks from Tomotoshi
Nishino’s insightful lecture given at ISSP in 2016. H.K. was
supported in part by JSPS KAKENHI Grants No. JP15K17719
and No. JP16H00985. Y.-T.O. was supported by the Global
Ph.D. Fellowship Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of
Education (No. NRF-2014H1A2A1018320). This research
was partially supported by MEXT as “Exploratory Challenge
on Post-K computer” (Frontiers of Basic Science: Challenging
the Limits).
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