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Subgap structures and pseudogap in cuprate superconductors: Role of density waves
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In scanning tunneling microscopy conductance curves, the superconducting gap of cuprates is sometimes
accompanied by small subgap structures at very low energy. This was documented early on near vortex cores and
later at zero magnetic field. Using mean-field toy models of coexisting d-wave superconductivity, d-form-factor
density wave, and extended s-wave pair density wave (s ′PDW), we find agreement with this phenomenon, with
s ′PDW playing a critical role. We explore the high variability of the gap structure with changes in band structure
and density wave (DW) wave vector, thus explaining why subgap structures may not be a universal feature in
cuprates. In the absence of nesting, nonsuperconducting results never show signs of pseudogap, even for large
density wave magnitudes, therefore reinforcing the idea of a distinct origin for the pseudogap, beyond mean-field
theory. Therefore, we also briefly consider the effect of DWs on a preexisting pseudogap.

DOI: 10.1103/PhysRevB.95.054518

I. INTRODUCTION

The presence of density waves (DWs) in high-temperature
superconducting cuprates is now well established [1,2], and
growing evidence suggests that DWs and the pseudogap (PG)
are related [3] but distinct phenomena [4–6]. However, it is
not yet clear how this distinction between DWs and the PG
appears in the tunneling density of state (DOS) of cuprates
[7,8].

Scanning tunneling microscopy (STM) played a key role
in the discovery of DWs in cuprates. The early finding
of a checkerboard DW in vortex cores [9], where d-wave
superconductivity (dSC) is weakened by a magnetic field,
suggested a competition between dSC and DWs. However,
finding DWs was the culmination of much work previously
focusing on the presence of low-energy subgap structures
in the local DOS surrounding vortex cores [10]. Subgap
structures were typically found between ±5 and ±10 meV in
the conductance spectra of optimally doped YbBa2Cu3O7−δ

(YBCO) [11] and Bi2Sr2CaCu2O8 (BSCCO) [12,13].
The occurrence of subgap structures (SGS) exactly where

charge order was found indicates a likely relation between
these phenomena [14]. Moreover, subgap structures are also
found at zero field, so vortices and magnetic fields are not
the key to explain them. Bruèr et al. recently reported those
structures in the averaged zero-field spectra of YBCO, and
suggested “it is tempting to link the SGS with the static
charge density wave discovered recently in Y123” [15].
Equivalent zero-field structures had been extensively studied
in underdoped samples of BSCCO [8,16,17] and mainly occur
in locally resolved spectra where density waves are enhanced.
Figure 1 reproduces typical examples of subgap structures at
zero field in BSCCO and YBCO.

Along with proposed scenarios of spin density waves
[19] and staggered flux [20,21], early theoretical work firmly
stated the likeliness of pair density waves (PDWs) [22–25] to
explain the checkerboard patterns found in scanning tunneling
microscopy. Recent work by Agterberg and Garaud further
showed that for competing dSC and PDW, a vortex core
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will favor PDW through the suppression of dSC, and also
drive complementary charge modulation, as those seen in
experiments [26]. After the observation by Lee that some
photoemission results in cuprates agree better with a PDW
scenario than with one based on charge density waves [27],
and after much work stating how many theoretical models
are prone to several forms of PDWs [28–32], experimental
evidence of pair density wave was finally obtained, at zero
field, for an underdoped sample of BSCCO, through scanning
Josephson tunneling spectroscopy [33]. It would be hard, at
this point, to exclude PDWs from the cuprate puzzle.

In this work, we consider phenomenological mean-field
Hamiltonians for coexisting bond-centered density wave and
pair density waves (similar to those experimentally reported in
Refs. [33,34]) combined to d-wave superconductivity, and we
find qualitative agreement with observed spectra for subgap
structures in the DOS.

Our main conclusions are that (i) pair density waves are
a key ingredient to obtain low-energy subgap structures in
the dSC gap, and (ii) no pseudogap appears in the DOS
for systems with charge or pair density waves alone and
without nesting, clarifying the need for a distinct phenomenon
to explain the tunneling PG. These conclusions hold for a
range of established band structures for cuprates, and realistic
magnitudes for the dSC and DW mean fields, as well as for
unidirectional and bidirectional DWs.

A secondary conclusion of our work is that the band struc-
ture plays a role at least as critical as the periodicity of the DW
in the reconstruction caused by DW, and in the corresponding
DOS. The calculated DOS exhibit extraordinary complexity
and variability that reflect the great variability observed in
conductance spectra in STM [16,17,35], probably explaining
why subgap structures are not always seen. This effect does
not seem to be discussed in previous studies [25,36], and
needs to be considered carefully when attempting to find
universal properties among different compounds with band
reconstruction.

The model, including the description of the various DWs,
is described in Sec. II. After a brief discussion of the method
in Sec. III, we describe the results in Sec. IV with additional
discussion in Sec. V, including, in Sec. V B, a few additional
calculations and discussion of how DW subgap structures
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FIG. 1. Subgap structures seen at zero magnetic field (a) in
the inhomogeneous conductance spectra in BSCCO (adapted from
Ref. [18], preprint version of Ref. [16]) and (b) in the averaged
spectra for YBCO (adapted from [15]).

may modify the DOS in cases where a pseudogap [37,38]
is preexisting.

II. MODEL

Even assuming that sharp quasiparticles reappear in ordered
states [39], allowing for a single-particle approach, modeling
density waves in cuprates is a difficult theoretical problem
for two reasons: (i) they are incommensurate, and (ii) they are
short ranged, meaning that the system is disordered. Numerous
recent work address these issues (see Refs. [36,40,41] and
references therein).

By contrast, the computations presented here are for
simple, long-ranged commensurate order. In the past, similar
simplifications were used to successfully obtain DW-induced
quantum oscillation frequencies in YBCO [36], and also to
address the closely related question of how spin density waves
can reconcile the photoemission and tunneling observations in
cuprates [42]. The interest of such simplifications comes from
the wide range of parameters that can be tested. Our results,
along with those of Refs. [36,42], suggest that the realistic
disordered incommensurate systems may be approximated
locally by ordered commensurate ones. The complex variation
of the local DOS with position in experiments [17] would
be reflected, in our model, by the complex variation of
the DOS with band structure, DW wave vector, and the
strengths of DW mean fields. It is therefore an approach in
the spirit of the virtual crystal approximation [43,44], which is
computationally much cheaper than solving a large disordered
system. Notably, in Ref. [42], it was shown, along with results
comparable to ours, but for spin DW, that adding disorder
to long-ranged commensurate DW systems simply spreads
otherwise sharp features found in the spectra, without changing
the qualitative conclusions. This approach finds additional
justification from work showing how strong correlations
generically protect d-wave superconductivity against disorder
[45,46].

The model we study is a two-dimensional (2D) tight-
binding mean-field one-band Hamiltonian at zero temperature
on a square lattice with four terms:

H = H0 + HdSC + HdFF-DW + Hs ′PDW. (1)

Allais Liechtenstein Schabel

BSCCO-like YBCO-like

(a) (b) (c)

FIG. 2. Three sets of band parameters and their Fermi surfaces at
half-filling (red curves), doping p = 0.125 (black curves), and doping
p = 0.25 (blue curves). Parameters in (a), from Allais et al. [36],
were used to describe quantum oscillation frequencies observed in
YBCO when reconstructed by dFF-DW. However, the Fermi surface
resembles that obtained for BSCCO from photoemission experiments
[51]. Parameters in (b), first used by Liechtenstein [48], but also in
Yang-Rice-Zhang theory, and usually preferred [37,53], are based on
ab initio calculations to represent a fairly generic one-band cuprate
[47,49,54]. Parameters in (c), from Schabel et al. [55], more rarely
used, come from photoemission data on YBCO. It is important to
recall that both BSCCO and YBCO are bilayer compounds, so that
any one-band model is a rough approximation [50,56]. Thin gray
lines in plots correspond to reduced Brillouin zones, while bold lines
on the sides correspond to the length of the DW wave vectors; from
left to right, q

L
= 1

4 , 3
10 , 1

3 .

The first term is the underlying band structure:

H0 =
∑
r,a,σ

tac
†
r+a,σ cr,σ − μ

∑
r,σ

c†r,σ cr,σ . (2)

Operators c
†
r,σ and cr,σ , respectively, create and annihilate

electrons at position r with spin σ . The sum on a spans all
lattice vectors (pointing to all neighbors of r), and the pa-
rameters ta are the real-space components of the tight-binding
dispersion ξ (k) = ε(k) − μ. Those are typically denoted t for
first-neighbor hopping, t ′ for second neighbors, etc. Ab initio
calculations [47–50] and photoemission experiments [50–52]
prescribe an acceptable range of band structures for cuprates,
from which we chose three representative sets, depicted
in detail in Fig. 2. For easy comparison with experiments,
we express ω in electron volts (eV), using the energy scale
t = 250 meV. The chemical potential μ is always set so that
the density yields p = 0.125 of hole doping relative to a
half-filled band.

The second term in the Hamiltonian represents d-wave
superconductivity (dSC):

HdSC =
∑
r,a

1

2
�a(cr+a,↑cr,↓ − cr+a,↓cr,↑) + H.c. (3)

The d-wave gap �
2 (cos kx − cos ky) is obtained by setting

�x̂ = −�ŷ ≡ �/2, resulting in coherence peaks located at
±�. We adjust the mean field � phenomenologically; the
gap magnitude that fits experimental tunneling spectra [10]
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FIG. 3. Illustration of the form factors for each bidirectional
bond-centered density wave used, with wave vectors q
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Each of the six panels illustrates the quantity eiQ(r+ a

2 ) which modulates
nearest-neighbor hopping in Eq. (4), for the case of dFF-DW, and
nearest-neighbor pairing in in Eq. (5), for the case of s ′PDW. On the
left side, the dFF-DW form factor, tQ,a, defined with tQ,±x̂ = −tQ,±ŷ,
modulates the hopping with opposite signs on the x and y bonds.
By contrast, on the right side, the s ′PDW form factor, �Q,a, defined
with �±Q,±x̂ = �±Q,±ŷ modulates the pairing with same sign in both
directions. These modulated hopping (pairing) terms can be seen as
the corresponding effective static electric (pairing) potential applied
on top of the original crystal potential. Although both the lattice
potential and the DW potentials considered are C4 symmetric, two
overlapping periodic C4 potentials only preserve C4 symmetry when
their symmetry centers coincide. As one can see here, symmetry
centers (green circles) of the form factors do not always coincide
with those of the lattice (which could be either the lattice sites or the
corners of the Wigner-Seitz cells), and thus C4 symmetry is broken
for q

L
= 3

10 (middle left) and 1
3 (bottom left). For q

L
= 1

4 (top left),
symmetry is preserved since the symmetry center falls back on a
lattice site. In the case of s ′PDW, C4 symmetry is always preserved.
Let us also specify that shifting the DW potential by a carefully
chosen phase would preserve C4 symmetry in all cases.

is around � = 0.12t = 30 meV, close to that of YBCO at
optimal doping.

The third term represents bond-centered density waves:

HdFF-DW =
∑
r,a,σ

∑
Q

1

2
tQ,ae

iQ(r+ a
2 )c

†
r+a,σ cr,σ + H.c. (4)

We consider a bidirectional d-form-factor density wave (dFF-
DW) following Refs. [34,36] by defining tQ,±x̂ = −tQ,±ŷ ≡
tQ/2 (see Fig. 3). The Hermitian conjugate naturally includes
density waves of opposite wave vectors.

The fourth and last term represents pair density waves:

Hs ′PDW =
∑
r,a,Q

1

2
�Q,ae

iQ(r+ a
2 )(cr+a,↑cr,↓ − cr+a,↓cr,↑) + H.c.

(5)

Following experimental evidence, we consider extended-s
singlet-pair density wave (s ′PDW) [33], defined by �±Q,±x̂ =
�±Q,±ŷ ≡ �Q/2 (see Fig. 3). In this case, opposite wave
vectors correspond to pairs carrying opposite momentum and
must be included separately.

Both dFF-DW and s ′PDW are modulated according to
wave vectors Qx = q

L
2π x̂ and/or Qy = q

L
2π ŷ. All results

shown in this paper are for the purely bidirectional case, i.e.,
with tQx ,a = tQy ,a (illustrated in Fig. 3), but we verified that
all our conclusions also hold in the unidirectional case, i.e.,
with tQx ,a �= 0,tQy ,a = 0. In real samples, the bidirectional
or unidirectional character of the DWs is not all black or
white. Although both directions of oscillations are found,
analysis of resonant x-ray scattering in YBCO proved to
be more consistent with domains of unidirectional character
[57]. Comparable conclusions were obtained from the analysis
of STM results in BSCCO [8], with the additional nuance
that those predominantly unidirectional domains tend to
overlap at the nanoscale level, explaining earlier reports of
checkerboard patterns. As we will repeat throughout the paper,
the set of results obtained here for bidirectional DWs is
undistinguishable from that of purely unidirectional DWs; the
main clear difference is that recognizable structures in the
density of states are always stronger in the bidirectional case,
resembling a lot what one would expect from simply adding
up the effect of waves in both directions.

For the period of the DW, we consider rational fractions q

L

that correspond to q periods of the density wave over L unit
cells. More specifically, we choose 1

4 , 1
3 , and 3

10 for q

L
that are

the same for charge and pair density waves. For doping p =
0.125, the values q

L
= 1

4 and 1
3 are close to values measured

in BSCCO and YBCO, respectively [2], and q

L
= 3

10 is a
manageable fraction in-between, to test low commensurability.
Those wave vectors are shown as bold lines, left and right
of the Fermi-surface plots in Fig. 2, with the corresponding
reduced Brillouin zone boundaries shown as pale gray lines.
Experimentally, wave vectors do not perfectly nest flat parts
of the Fermi surface, so we do not consider this case [3,58].1

The magnitudes of mean fields tQ (dFF-DW) and �Q

(s ′PDW) are harder to determine than � (dSC). In their study
of quantum oscillations stemming from the Fermi-surface
reconstruction by charge density waves, Allais et al. [36] fixed
a dFF-DW with tQ equivalent to 0.3t in our notation. That
was to represent the enhanced DW under high magnetic field.
Here, we consider values ranging from tQ = 0.04t to 0.28t . For
s ′PDW, the Josephson tunneling critical current was reported
to oscillate in space at 5% of its homogeneous value [33].
Here, we consider values between �Q = 0.04t and 0.28t that
would mimic strong inhomogeneity.

III. METHOD

For commensurate wave vectors of denominator L, the k-
space representation of Hamiltonian (1) can be expressed as

1Non-nesting DW scenario can be justified given a sufficiently
complicated interaction function U (q) because then the largest
susceptibility χ0/[1 − U (q)χ0(q)] is not necessarily at a nesting wave
vector of the Fermi surface.
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a finite matrix Ĥ(k) of dimension 2L2 × 2L2 for bidirectional
DW and 2L × 2L for unidirectional DW, with the factor 2
accounting for spin and pairing through Nambu formalism.
The chosen basis is defined by the following Nambu spinor:

(c†k,↑ . . . c
†
k+nQx+mQy ,↑ . . . c−k,↓ . . . c−k−nQx−mQy ,↓ . . .), (6)

m and n being integers between 0 and L, so that each diagonal
term of Ĥ(k) corresponds to a displaced reduced Brillouin zone
(rBZ). The position-averaged local DOS is then obtained from

DOS(ω) =
∫

rBZ
dk tr↑[Â(k,ω)], (7)

with

Â(k,ω) ≡ −2 Im

{
1

ω + iη − Ĥ(k)

}
, (8)

where the integral extends over all k vectors for one rBZ
and the trace sums contributions from all bands (equivalent
to summing the local DOS from each Cu atom of a L × L

unit cell). The trace sums only the spin-up part of the Nambu
representation, a subtlety indicated by the ↑ subscript. The
term inside the trace is the momentum-dependent spectral

weight Â(k,ω), which we use to show the reconstructed
Fermi surface (ω = 0). To do so, we rebuild the content of
the original Brillouin zone using the diagonal elements of
the matrix Â(k,ω), again counting only spin-up terms. The
only approximation is the choice of a manageable numerical η

(between 0.05 and 0.005, specified for each figure), broadening
the electronic dispersion so that the Dirac function δ[ω −
E(k)] becomes a Lorentzian η/(π{[ω − E(k)]2 − η2}).

IV. RESULTS

Figure 4 shows typical densities of states (DOS) in the
presence of a bidirectional dFF-DW alone, without the pres-
ence of dSC or s ′PDW, for various magnitudes tQ. The wave
vectors shown are Q = 2π 1

3 and 2π 3
10 , with band structure

from Liechtenstein [Fig. 2(b)]. No pseudogap (PG) is obtained
in the low-energy DOS of such system. Instead, the actual
gaps caused by the DWs appear high above and below the
Fermi energy (around ±250 meV). Although not shown on the
figure, this result holds for the three band structures considered,
the three wave vectors considered, and for all magnitudes
of dFF-DW. Values higher than tQ = 0.28t display a broad
structure at the Fermi energy. The finer details of this structure
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FIG. 4. Typical examples for the complete density of states (DOS) in the presence of bidirectional d-form-factor density wave (dFF-DW)
with various magnitude for wave vector of (a) Q = 2π 1

3 (top panel) and (b) Q = 2π 3
10 (bottom panel) with the band of Liechtenstein [Fig. 2(b)].

No superconductivity or pair density wave is applied here. The low-energy range considered for Fig. 5 (below 100 meV) is delimited by black
lines and the Fermi energy (at ω = 0, for doping p = 0.125) is marked by the black dashed line. Instead of a pseudogap, nothing happens
close to the Fermi energy for weak DWs, and a broad structure appears for strong DWs. The depletion of states in the middle of this structure
must not be confused for a pseudogap as its dependence on tQ is inconsistent with experiments (see first paragraph of Sec. IV). The black
line corresponds to the bare DOS (no dFF-DW), thinner red shaded lines from black to pink correspond to the DOS in presence of dFF-DW
with different tQ (see the legend). We used dashed lines for tQ = 0.6t and higher to improve clarity. The actual gaps from dFF-DW appear
progressively at ∼±250 meV (corresponding to ±t), irrespective of the value of tQ. Small gray marks separate the shaded pink DOS, for
tQ = 2.4t , in three regions each containing 1

3 of the states. This shows that the gaps of bidirectional dFF-DWs appear close to fillings 1
3 and 2

3
on the band. In the case of wave vector Q = 2π 1

3 , the gaps are exactly at fillings 1
3 and 2

3 (see Sec. V A). The similarity between panels (a)
and (b) indicates that wave vectors 1

3 and 3
10 yield similar physical consequences despite different commensurability. For all curves, Lorentzian

broadening is η = 0.05t , with t = 250 meV.
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may be confused with a PG since two smaller peaks appear
on each side of the Fermi energy. However, these two peaks
move towards one another with increasing tQ (see Fig. 4,
dotted lines), and this is inconsistent with the experimental
fact that the size of the PG does not change when increasing
the strength of dFF-DW (by decreasing temperature, for
example). Moreover, this structure appears only for tQ >

0.28t , whereas, according to experiments, charge density
wave and superconductivity are expected to have comparable
characteristic energies [59] (tQ ≈ �Q = 0.12t = 30 meV in
our model, yielding no PG in Fig. 4).

The results of Fig. 4 are completely analogous to those
for unidirectional dFF-DW (not shown). In the latter case, no
gap is found near the Fermi level up to tQ = 0.60t . Above
this value appears a peak structure that is similar but smaller
than that of the bidirectional case. One notable exception, in
the unidirectional case, is for the extreme value tQ = 2.4t =
600 meV, in which case a 1200-meV-wide partial gap caused
by the DW reaches the Fermi level (not shown). Although such
high values of tQ are unlikely for cuprates, we cover it in the
discussion.

When pairing is added, the superconducting gap is very
sensitive to both the wave vector Q = 2π

q

L
of the applied

DWs and the underlying band structure. Figure 5 shows
the low-energy DOS for all nine combinations of wave
vector, q

L
= 1

4 , 3
10 , and 1

3 , and band structure from Allais
[Fig. 2(a)], Liechtenstein [Fig. 2(b)], and Schabel [Fig. 2(c)]

with mean fields of magnitudes tQ = 0.12t (bidirectional
dFF-DW), �Q = 0.12t (bidirectional s ′PDW), and � = 0.12t

(dSC), applied alone and combined (see key of Fig. 5). The
differences between each case demonstrate that band structure
and DW wave vector influence equally the deformation of
the superconducting gap. The results are representative of
those for other values of �, tQ, and �Q ranging from 0.04t

to 0.28t (not shown); values higher than 0.28 were not
investigated thoroughly. Results are perfectly analogous of
those for unidirectional DWs (not shown).

A first observation for Fig. 5 is that, in the absence of
dSC, again, no gap or pseudogap appears near the Fermi
energy for dFF-DW alone (red dotted lines). Similarly, s ′PDW
alone do not appreciably modify the low-energy DOS of
the normal state, and in that sense this is also a gapless
state at the Fermi level, even if it is pairing. This occurs
because of the finite pairing wave vector. Hence, neither
charge density wave, nor pair density waves, applied alone, for
those wave vectors and band structures, resulted in a structure
at the Fermi energy (ω = 0) that could be interpreted as a
robust pseudogap. It is important to note that we did not
adjust the wave vectors to perfect nesting since it does not
seem to be the case experimentally [3,58]. An exception to
the rule is when small gaps are apparent for s ′PDW alone
[Figs. 5(b), 5(f), and 5(i), dotted blue curves], which comes
from scattering processes of higher order and correspond to
a Q = 0 s ′ homogeneous superconducting gap. Such a gap

Allais (figure 2(a)) Liechtenstein (figure 2(b)) Schabel (figure 2(c))
BSCCO-like YBCO-likeband structure

BSCCO-like

YBCO-like

(a)
(b) (c)

(d) (e) (f)

(i)(g) (h)

in all plots:
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FIG. 5. Great variability in density of states (DOS) gapped by d-wave superconductivity (dSC, with � = 0.12t), and reconstructed by
bond-centered d-form-factor density wave (dFF-DW with tQ = 0.12t) and/or s ′-form-factor density wave (s ′PDW with �Q = 0.12t). Rows
display the DOS for fixed DW wave vector and different band structures; columns display DOS with fixed band structure and different DW
wave vectors. In each plot, the dotted lines are without superconductivity, for the bare band (dotted black), dFF-DW alone (dotted red), s ′PDW
alone (dotted blue), and dFF-DW coexisting with s ′PDW (dotted green). Solid lines all include d-wave superconductivity; bare band alone with
dSC (thinnest solid black), dSC with dFF-DW only (thin solid red), dSC with s ′PDW only (thicker solid blue), and dSC with both dFF-DW
and s ′PDW (thickest solid green). For all curves, Lorentzian broadening is η = 0.005t with t = 250 meV.
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also appears when dFF-DW and s ′PDW are applied together
without dSC (Fig. 5, dotted green curves). In that case, not only
s ′PDW scattering processes open a small gap, but also hybrid
processes implying both s ′PDW and dFF-DW. However, for
these gaps to reach sizes comparable to the experimental PG,
the mean fields tQ and �Q must reach unlikely strengths,
similar to those discussed above for the dFF-DW only case.

A second observation for Fig. 5 is that, although low-energy
DOS curves in the absence of dSC are not much changed by
DWs, the DOS in the presence of dSC is modified appreciably
by the presence of dFF-DW and s ′PDW. In some cases, the
dSC gap exhibits major deformations even in the presence
of weak density waves. This is true for dSC coexisting with
dFF-DW (thin red curves), for dSC coexisting with s ′PDW
(thicker blue curves), or for dSC coexisting with both (thickest
green curves). Changes are diverse when compared to the
bare dSC case (black curves), notable ones being strongly
reduced coherence peaks [Figs. 5(b), 5(c), 5(f), and 5(i),
thickest green curves] and displacement of coherence peaks,
effectively changing the size of the gap [Figs. 5(b), 5(f), and
5(i), thin red curves]. In other cases, the DWs have only a small
effect [Figs. 5(a), 5(d), 5(g), and 5(h), thin red and thickest
green curves]. This is highly reminiscent of the diversity of
local conductance spectra observed in tunneling experiments
[16,17,35] (especially in Supplemental Material of Ref. [35]).
A very similar diversity of spectra is also obtained with

unidirectional DWs, the main difference being that the various
deformations and subgap structures are usually weaker.

Our last and most important observation for Fig. 5 is that
subgap structures, similar to those observed in the surrounding
of vortex cores, appear mainly when dSC is accompanied
by s ′ pair density wave s ′PDW [Figs. 5(a), 5(b), 5(c), 5(d),
5(f), and 5(i), thick blue curves] without dFF-DW. When
the three orders are present, sub-gap structures can also
be obtained [Fig. 5(c), thickest green curve] although they
are more apparent with s ′PDW stronger than dFF-DW (not
shown). Additionally, when dFF-DW and s ′PDW coexist
without uniform d-wave superconductivity (Fig. 5, dotted
green curves), the small gap we obtain is reminiscent of what
is measured directly inside the vortex core, where SC is mostly
suppressed in the experiments [15,35,60].

To help understand the results for the density of states,
Fig. 6 shows the Fermi surfaces [FS, A(k,ω = 0)] for all
nine combinations of wave vectors and band structures, for
bidirectional dFF-DW with tQ = 0.12t [Figs. 6(a)–6(i), in red]
and for bidirectional s ′PDW with �Q = 0.12t [Figs. 6(j)–6(r),
in blue], without superconductivity. As was seen in Fig. 4,
dFF-DW is gapless at the Fermi level, and therefore no portion
of the FS is completely gapped in Figs. 6(a)–6(i). Surprisingly,
this is also true for s ′PDW: no portion of the FS is completely
gapped in Figs. 6(j)–6(r), showing that s ′PDW is also gapless
at the Fermi level. In all cases, the FS presents many hole and

FIG. 6. Great variability of the reconstructed Fermi surfaces (FS): FS reconstructed by bidirectional bond-centered d-form-factor density
wave (dFF-DW with tQ = 0.12t) are illustrated in red (a)–(i), corresponding to red DOS of Fig. 5, and FS reconstructed by s ′-form-factor
pair density wave (s ′PDW with �Q = 0.12t) are in blue (j)–(r), corresponding to blue DOS of Fig. 5. The dotted lines indicate the first-order
Bragg planes introduced by the DW periodicity. The reconstruction takes place on those Bragg planes, but also on higher-order Bragg planes
(boundaries of the second, third, and successive reduced Brillouin zones), explaining why some gaps open away from dotted lines. Again, rows
display FS for fixed wave vector and different band structures; columns display those for fixed band structures with different wave vectors.
Lorentzian broadening is η = 0.02t with t = 250 meV.
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electron pockets, separated by the new Bragg planes imposed
by the DWs. There is still spectral weight at most of the wave
vectors of the original FS. For unidirectional DWs (not shown),
the only difference is that only one direction of Bragg planes
causes such pockets. The shape and size of those pockets are
extremely sensitive to the band structure and wave vector used.
Note that the FS shown are for DWs without dSC, and that
the corresponding DOS (red and blue dotted curves of Fig. 5)
were left almost unchanged around the Fermi energy.

V. DISCUSSION

We first discuss all of the preceding results. In a closing
subsection, we briefly address the case where DWs appear on
a preexisting pseudogap.

A. Density waves and subgap structures

No gap appears in our low-energy DOS without dSC
because, in general, a DW alone does not open up a gap at
the Fermi surface. Contrary to the superconducting gap, a DW
gap is not locked to the Fermi energy. In one dimension, for
example, a DW of period L simply splits the Brillouin zone in
L, therefore separating the original band in L new bands each
containing 1/L of all the states. The L − 1 gaps would thus
appear at fixed fillings in the band, regardless of the energy.
In two dimensions, for small DW magnitudes, the new bands
do not have to split completely; they can overlap in ω space
without touching in k space, and this yields a more complicated
picture. Still, in the limit of very large DW magnitudes tQ, the
original band has to split completely into new bands containing
a fixed fraction of the total number of states. This fraction
is determined by the wave vectors of the DW at play. For
example, the bidirectional dFF-DW of Fig. 4(a), composed
of two perpendicular density waves with Q ≡ 2π

q

L
= 2π 1

3 ,
should split the band in 9 (because the exact treatment requires
a L2 × L2 matrix with L = 3, providing 9 eigenvalues). Each
of those bands occupies a k-space volume equal to that of the
reduced Brillouin zone, and therefore contains 1

9 of the states.
Consequently, full gaps should only appear at fillings that are
multiples of 1

9 . The details of the splitting depend strongly on
the symmetries of the system, on the original band structure,
and on the DW’s form factor. As one can see in Fig. 4(a), for
wave vector Q = 2π 1

3 , the main gaps are exactly at fillings
1
3 and 2

3 . The picture is similar for Fig. 4(b), showing wave
vector Q = 2π 3

10 , which indicates that incommensurability
plays a minor role. The hole doping used in this work is
p = 1

8 = 0.125 relative to half-filling ( 1
2 ), and corresponds

to an absolute filling of 7
16 and, therefore, in our results, for

wave vectors close to experimental ones, the Fermi level never
lies in a DW gap, as seen in Fig. 4.

This observation, the fact that a DW gap is constrained
to appear at a wave vector determined filling instead of
a given energy, rules out most scenarios explaining the
pseudogap with DW. The only density waves which would
open a gap at the Fermi surface are those with wave vectors
connecting flat segments of the Fermi surface, and they are
inconsistent with combined photoemission, x-ray results [3],
and detailed analysis of scanning tunneling spectroscopy [58].
Our conclusion therefore reinforces the idea that the PG is a

different phenomenon. The present analysis, however, does not
hold for more complex coupling in k space, for example, Lee’s
Amperean pairing and so-called 2kF scenarios [27,41,61,62].

There is one additional notable exception to this rule:
given sufficiently large tQ for a DW with wave vectors
connecting flat segments of the dispersion slightly above or
slightly below the Fermi level, a gap centered away from
the Fermi surface could be large enough to deplete states at
the Fermi level. One example of such a gap is well known:
it is the case of a cupratelike dispersion gapped by a fairly
large antiferromagnetic (AF) mean field (shown in Fig. 7 and
discussed in next section). At small hole doping, this system
develops small electron pockets around (±π,0) and (0, ± π ),
and small hole pockets around around (±π

2 , ± π
2 ). Increasing

the AF mean-field amplitude pushes the electron pockets away
from the Fermi level, effectively gapping the antinodes. This
effect can be considered as an antiferromagnetic pseudogap.
The only gap of this kind we found for dFF-DW was in the
unidirectional case with an exaggerated tQ of 1.2t . For smaller,
reasonable values of tQ, such a gap should be considered
accidental; strictly speaking, the gap forms away from the
Fermi surface (at an energy where the wave vector connects
flat parts of the dispersion) and whether or not it reaches the
Fermi level depends on the details of the underlying band
structure and on the amplitude tQ.

Let us now turn to the densities of states in the presence of
dSC. A d-wave gap is anisotropic; the gapping energy changes
with the direction of k. Thus, the DOS value at a given energy
in the gap, i.e., the number of states at a given energy between
the coherence peaks,- is tied to the number of states contained
along a specific direction in k space (the spectral weight).
With a smooth FS, the spectral weight changes monotonically
as a function of direction in k space, and therefore the gap is
smooth as a function of energy: it is the well-known V-shaped
gap of standard d-wave superconductors. On the other hand,
for a d-wave gap built on a complex reconstructed FS (shown
in Fig. 6), the spectral weight is very irregular as a function
of direction, and this is why we obtain an irregular gap as
a function of energy. In the end, only the anisotropy of the
gap and the complexity of the bands onto which it opens are
necessary to account for the complicated DOS we find. This
last statement encompasses much beyond the systems explored
here, as the next section suggests.

In our computations, the final form of substructures is most
sensitive to the factors determining the underlying complicated
FS; here, those were (i) the nature of the reconstruction
(whether it was s ′PDW or dFF-DW), (ii) the wave vector of
the DWs, and (iii) the initial band structure. Varying the value
of the superconducting mean field � did not have as much
influence (not shown here).

Among all DOS deformations obtained, subgap structures
like those of tunneling experiments agree better with our DOS
reconstructed by PDW. This suggests that the PDW measured
in BSCCO [33] may be responsible for the substructures
observed in cuprates. Moreover, as worked out by Agterberg
and Garaud [26], a vortex core can favor PDW through
the suppression of dSC, so our result is consistent with
the experimental fact that substructures are enhanced around
vortex cores. Note, however, that the form of PDW used by
Agterberg and Garaud’s work is not the same as ours.
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FIG. 7. Pseudogap simulated with antiferromagnetism (AF) and
various possibilities of subgap structures caused by coexisting dSC,
dFF-DW, and s ′PDW. (a) Density of states (DOS) for Liechtenstein
band structure (t ′ = −0.3, t ′′ = 0.2) in thin blue, and with added
AF mean field of amplitude 0.5t in solid black. The three insets
show the Fermi surface for chemical potential μ = −1.25t , −t , and
−0.75t , falling in the lower AF energy band (E−, dotted line), at the
onset of the higher AF energy band (E+, dashed line). (b)–(d) For
the same chemical potential values, enlargement around the Fermi
level show the DOS for the AF mean field alone (solid black) and
coexisting with dSC (thicker gray). (e) For μ = −1.25t only, DOS
near the Fermi level for the AF mean field (solid black), and coexisting
with the following: dSC (thicker gray line), dFF-DW (dotted red),
s ′PDW (dotted blue), dFF-DW and s ′PDW (dotted green), dSC and
dFF-DW (solid red), dSC and s ′PDW (solid blue), dSC and dFF-DW
and s ′PDW (solid green). Spectral weight at the Fermi surface (f)
for dFF-DW on an AF pseudogap and (g) for s ′PDW on an AF
pseudogap. Color scales for (f) and (g) are the same as in Fig. 6.

An alternative and intuitive explanation for the enhance-
ment of PDW near vortices might be that the nonzero
momentum Q carried by PDWs accommodates better the high
currents expected near vortex cores. However, in our model,
there is no vortex, and every s ′PDW included are combinations
of +Q and −Q causing no actual currents.

Let us now turn to the spectral functions displayed in Fig. 6.
Photoemission spectroscopy can access this information, in
principle, but the rich structures obtained here was never
reported in experiments, one possible explanation being that
they are washed away by the short-range nature of those
order parameters [41]. Nevertheless, Ref. [36] showed that
nodal hole pockets like the ones obtained here can account
quantitatively for quantum oscillations measured in cuprates.
Here, the great sensitivity of these pockets to the underlying
band structure shows that such agreement necessitates very
fine tuning. On one hand, if the wave vector, form factor,
and amplitude of the DW can be obtained from independent
measurements, quantum oscillations will allow one to extract
the original band structure with great accuracy. On the other
hand, the sensitivity to band structure challenges the analysis of
Ref. [36] since very different results would have been obtained
had different band parameters been used.

The very careful observer might notice x-y anisotropy in
some of our dFF-DW Fermi surfaces in Fig. 6 [of which the
least subtle trace is found in the bottom left part of Fig. 6(i)].
This anisotropy is expected, as explained in the caption of
Fig. 3, because of the form factor used here. This anisotropy
might, moreover, cause even more complexity in the DOS
because the lost C4 symmetry means that adjacent quadrants
of k space could host reconstructed pockets that open and close
at slightly different energies ω.

Finally, note that a perfect fit to experiments was not the
aim here, neither for the DOS nor the spectral weight, since
we focused on general conditions enabling subgap structures.
As discussed, the results are extremely sensitive to the band
structure used, and knowing that BSCCO and YBCO are
in fact bilayer compounds, and that modeling the bilayer
splitting is known to improve the fit to conductance spectra
substantially [56], we would suggest that bilayer splitting be
included to achieve better fits. Similarly, taking into account
the spatial dependence of the Wannier functions seems to be
very important for a quantitative fit [63,64].

B. When DWs occur over a preexisting pseudogap

Since we showed that the PG is not caused by dFF-DW
or s ′PDW, a natural extension to our investigation is to
consider what happens when DWs appear on top of an already
pseudogapped dispersion rather than the noninteracting bands
we used up to now. A particularly clear illustration of this
idea is given in Ref. [5], where an antiferromagnetic order
is used to gap the antinode, leaving near the nodal position
small hole pockets which nesting DW wave vectors agree with
experiments.

Most phenomenological theories of the pseudogap (PG)
may be separated in two categories. On the one hand, there are
phenomenological PG inspired from the dSC gap; they open a
particle-hole-symmetric gap with a d-wave form factor at the
Fermi level. An example of this is the pairing scattering model
used to fit photoemission data in Refs. [65,66]. For that kind
of PG, the interplay with the FS reconstructed by DWs will
be equivalent to that of the dSC cases presented in the two
previous sections and, therefore, subgap structures similar to
those discussed up to here can be expected.
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On the other hand, there are phenomenological PGs having
more in common with an antiferromagnetic (AF) gap; they
split the dispersion in two, yielding a strongly particle-
hole-asymmetric gap. Examples of such theories include
Yang-Rice-Zhang (YRZ) theory [37] and effective forms of
fractionalized Fermi liquid (FL*) theory [38]. Reference [67]
provides a good overview of the common characteristics of the
gaps in these approximations, and Ref. [68] provides a detailed
account of the exact behavior of the gap in YRZ theory.

To understand how DWs may lead to subgap structures in
those AF-like theories, we consider Fig. 7, where a simple AF
mean field was added to the Hamiltonian in order to simulate
a pseudogap, using band structure from Liechtenstein (t ′ =
−0.3, t ′′ = 0.2). The AF mean field follows Eq. (4), with
t(π,π),0 = 0.5t for spin up and t(π,π),0 = −0.5t for spin down.
The resulting AF density of state (DOS) is compared with the
bare DOS in Fig. 7(a). Separate lines for the DOS of the lower
AF band (E−) and the higher AF band (E+) illustrate how
they overlap to yield a particle-hole-asymmetric partial gap,
identified here as the PG. As shown by the Fermi surfaces
in the insets, the higher-energy edge of the AF pseudogap
corresponds to the bottom of the higher AF band (consisting
of electron pockets). References [67,68] show similar behavior
for YRZ theory.

Strictly speaking, the PG identified in Fig. 7(a) would
become a full DW gap at half-filling if the mean field was
stronger (because AF is a DW). In Fig. 7(a), however, the
mean field is not strong enough to split the band completely,
but, as explained in the previous section, it is strong enough to
partially gap the Fermi level given the right chemical potential.

Let us first consider how the dSC gap behaves when added
to this system. In Fig. 7(b), at chemical potential μ = −1.25t ,
the Fermi level is below the bottom of the higher AF band,
and the dSC gap appears inside the AF pseudogap. This
dSC gap does not display substructures and, instead, could
be interpreted as a substructure of the pseudogap, as in
Refs. [7,69]. In Figs. 7(c) and 7(d), at chemical potentials
μ = −t and −0.75t , the electron pockets of the higher AF
band are brought to the Fermi level. The dSC gap then appears
on the edge [Fig. 7(c)] or outside [Fig. 7(d)] of the PG. In these
cases, the dSC gap displays new substructures, similar to those
reported in Ref. [42]. The additional coherence peaks appear at
higher energy than those of Fig. 7(b). Indeed, the new electron
pockets are centered at (π,0) and (0,π ) where the d-wave
gap energy �

2 (cos kx − cos ky) is at its maximum. Hence, the
spectral weight coming from these new pockets is gapped
to a higher-energy coherence peak than for the hole pocket,
as schematized in Fig. 8. The new peaks are therefore a direct
consequence of the electron pockets getting in range of the dSC
gap. This simple AF example provides a clear illustration of
what we explained in the previous section: multiple DWs pock-
ets on the Fermi surface lead to substructures in the dSC gap.

Substructures perfectly analogous to those of Figs. 7(c)
and 7(d) have been obtained previously in YRZ theory, when
dSC is present [see Fig. 6(d) of Ref. [68]]. In YRZ theory,
the gapping parameter �PG(p) decreases with doping, and the
antinodal electron pockets causing these substructures only
appear at very high doping, for small �PG(p). In experiments,
subgap structures are rather found in underdoped samples,
when the PG is strong. Hence, the subgap structures seen in

ω

FIG. 8. Illustration of how multiple pockets on the Fermi surface
cause additional coherence peaks in the d-wave gap. On the left, the
amplitude of the d-wave gap |�

2 (cos kx − cos ky)| is shown for all
kF vectors on the Fermi surface. On the right, the density of states
(DOS) is shown at the corresponding energy. This picture is for the
two-band antiferromagnetic system of Fig. 7(d), for μ = −0.75t , but
the explanation holds for other reconstructed band structures.

YRZ theory and the AF model of Figs. 7(c) and 7(d) are not
likely to be those seen in experiments.

We then turn to the case of interest, illustrated in Figs. 7(e)–
7(g), when the DWs of previous sections nest on the AF
hole pocket. We have chosen the AF mean-field value (0.5t)
and doping [μ = −1.25t , as in Fig. 7(b)] so that the nesting
condition is fulfilled when the AF electron pockets are absent,2

and thus without preexisting substructures in the dSC gap.
Figure 7(e) demonstrates that nesting DWs on the hole

pocket alone cause another set of deformations in the dSC
gap, distinct from those just considered in Figs. 7(c) and 7(d).
These new substructures are analogous to those discussed in
the previous sections. Indeed, from the standpoint of dSC,
only low-energy states are affected, and therefore the AF hole
pocket is equivalent to another single-band system (electrons
pockets are far from the Fermi level here since μ = −1.25t).
DWs split the AF hole pocket in more pockets, and thus the
dSC gap is deformed, as in the previous section. However,
substructures now appear inside a dSC gap that is already
inside a PG, so this yields a three-gap picture more complicated
than the two gaps usually reported in experiments.

That DWs are nesting in the hole pocket also introduces
some new features. First, dFF-DW has a gap at the Fermi
level even without dSC. This is seen on the red dotted DOS
of Fig. 7(e) and the FS of Fig. 7(f). This DW gap inside the
AF gap could also be interpreted as a two-gap structure in
its own right. Second, contrary to dFF-DW, in the absence of
dSC a nesting s ′PDW does not open a gap at the Fermi level.
Instead, it simply splits the edge of the hole pocket, as seen on
Fig. 7(g).3 As a consequence of this splitting, the deformations
of the dSC gap caused by s ′PDW are a lot stronger than for
non-nesting s ′PDW (seen in Fig. 5). Nevertheless, they still

2The corresponding doping (approximately p = 0.2) is not really
relevant; we could tune the band structure, the AF mean field, and/or
the DWs wave vector (here q

L
= 1

3 ), to fit the experiments, as in
Ref. [5].

3This is due to the nature of the s ′PDW, which couples the band
energy ξ (k) with −ξ (k + Q).
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VERRET, CHARLEBOIS, SÉNÉCHAL, AND TREMBLAY PHYSICAL REVIEW B 95, 054518 (2017)

compare favorably to experimental spectra seen very close to
vortex cores [15].

To sum up, the two kinds of T = 0 phenomenological
PG considered here reflect well the dichotomy between
“preformed pairs” and “distinct phase” scenarios [70]. In the
first kind, the PG resembles a dSC gap, and substructures
similar to those seen in experiments would be the result
of coexisting s ′PDW. In this case, the comparison with
experiments is striking (especially with the Supplemental
Material of Ref. [35]). In the second kind, where DWs
nest on an already formed AF-like hole pocket, subgap
structures could be obtained with (i) a simple dSC gap inside
the already formed PG, (ii) a nesting dFF-DW gap inside
an already formed PG, or (iii) dSC coexisting with DWs
inside the already formed PG. But, in all cases where the
AF pseudogap is present, the comparison with experiments is
less convincing. In particular, coexisting dSC and DWs inside
an already formed pseudogap yielded more complicated gap
structure than what is usually seen in experiments. Therefore,
within mean-field type theories, the pseudogap as a distinct
phenomenon (here AF order) seems superfluous, and even
detrimental, to the agreement with experiment.

VI. CONCLUSION

We found that subgap structures like those seen near
vortex cores, and sometimes reported at zero field, appear
as deformations of the dSC gap when it coexists with DWs,
especially pair density waves. Arguably, the pair density wave
is enhanced and subgap structures appear more clearly in the
vicinity of a vortex core (where checkerboard DWs were first
discovered), in high field, near impurities, or simply in extreme
cases of inhomogeneity. Our results thus suggest that the PDW
measured in BSCCO [33] is responsible for the substructures
observed in STM.

We also demonstrated, in the mean-field approximation
and for reasonable one-band models, that neither dFF-DW
nor s ′PDW alone could be responsible for the opening of the
pseudogap in the DOS in the absence of nesting. Therefore,
this work reinforces the idea that the pseudogap is a distinct
phenomenon.

Instead of causing a pseudogap, DWs cause various kinds
of deformations of the dSC gap, comparable to the variability
of local tunneling spectra. Those deformations of the DOS
depend as strongly on the band structures involved than they
do on the wave vector of the DW.

For a simple PG model where DWs nest the nodal
hole pockets of an antiferromagnet acting as proxy for the
pseudogap, we demonstrated similar deformations for the dSC
gap. However, a two-band model like the antiferromagnet
seemed detrimental to the agreement with experiments.

To conclude, let us mention how further practical con-
straints on theories emerge from the idea that subgap structures
are the consequence of DWs. The behavior of experimental
subgap structures with position is very specific [35,60], for
example, their characteristic energy does not change much
when approaching a vortex core. On the other hand, our
calculated subgap structures depend strongly on the parameters
at play, namely, the DW wave vector, the magnitudes �, tQ, and
�Q, and band structure. Hence, in order to achieve quantitative
agreement with experiments, a theory of cuprates would have
to predict a delicate balance between those parameters, or their
equivalent. Such fine tuning would be very surprising coming
from a simple mix of competing orders. This work therefore
provides a good justification, beyond simple taste for unified
theories, to search for the common origin of intertwined orders
in cuprates [5,32,61,64,71–73].
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Taillefer for discussions. This work was partially supported
by the Natural Sciences and Engineering Research Council
(Canada) under Grant No. RGPIN-2014-04584, the Fonds
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