
PHYSICAL REVIEW B 95, 054511 (2017)

Strain-induced intervortex interaction and vortex lattices in tetragonal superconductors
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In superconductors with strong coupling between superconductivity and elasticity manifested in a strong
dependence of transition temperature on pressure, there is an additional contribution to intervortex interactions
due to the strain field generated by vortices. When vortex lines are along the c axis of a tetragonal crystal, a
square vortex lattice (VL) is favored at low vortex densities, because the vortex-induced strains contribution to
the intervortex interactions is long range. At intermediate magnetic fields, the triangular lattice is stabilized. The
triangular lattice evolves to the square lattice upon increasing magnetic field, and eventually the system locks to
the square structure. We argue, however, that as magnetic field approaches the upper critical field Hc2 the elastic
intervortex interactions disappear faster than the standard London interactions, so that VL should return to the
triangular structure. Our results are compared to VLs observed in the heavy fermion superconductor CeCoIn5.
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I. INTRODUCTION

Vortices are topological excitations in superconductors
under magnetic field and they organize in periodic lattices
due to the mutual interaction. In isotropic superconductors,
the vortices form hexagonal lattices stabilized by the repulsive
magnetic interaction. The energy difference between triangular
and square lattices is extremely small [1,2], therefore the VLs
are sensitive to higher order interaction terms. It was shown
that VL evolves from a triangular to a square lattice upon
increasing magnetic field in tetragonal nonmagnetic borocar-
bides due to nonlocality of the relation between supercurrent
and vector potential and the Fermi surface anisotropy [3,4], see
Ref. [5] for a review. The original theories of these structural
transitions are based on small nonlocal corrections to the
London theory. It was later extended to Ginzburg-Landau
approach to investigate the VLs near the upper critical field
Hc2 [6]. In another development, thermal fluctuations of
vortex positions were shown to change the phase diagram of
triangle-to-square transition [7]. In particular, these studies
have demonstrated extreme sensitivity of VL structures to
small perturbations in intervortex interactions. As a result,
interpretation of experimentally observed VL structures is
extremely difficult, because the intervortex interaction depends
on crystal anisotropy, pairing symmetry, multiband character-
istics [8], and the possible coexistence of superconductivity
with magnetic order [9]. Despite the decades of effort, the
question of VL structures is far from being resolved. To
demonstrate that, the example of Nb, the classical type-II
superconductor, is quite illuminating [10]. In this work we
discuss yet another source which may affect VL structures
and even cause the structural transitions: weak elastic crystal
perturbations induced by vortices. A square lattice is also
favored in models of high-Tc superconductors when both the
s- and d-wave components are present [11].

A vortex can perturb the strain field of the crystal that
induces additional interactions between vortices [12–17]. In
a simple picture, nucleation of the normal vortex core, which
has a different density than the surrounding superconductor,
induces a strain field. This strain decays as a power of the
distance from the vortex core and mediates long-range interac-

tion between vortices. The strain-induced interaction follows
the crystal symmetry. For instance, for vortices directed along
the c axis in a tetragonal crystal, the strain-induced interaction
has fourfold rotational symmetry in the ab plane. It is shown
below that because of the long-range nature, the strain-induced
interaction, its weakness notwithstanding, dominates over the
short-range magnetic interaction at very small vortex densities
(or low magnetic inductions B) and at sufficiently high vortex
densities where the elastic part of the free energy increases as
B2, whereas the standard London contribution of intervortex
interactions to the free energy scales as B.

The coupling between superconductivity and elasticity is
characterized by the rate of change of the critical temperature
Tc with respect to stress/pressure p, i.e., by derivatives dTc/dp.
It was argued in Ref. [12] that in NbSe2 with dTc/dp ≈
0.5 K/GPa, the magnetoelastic interactions might be responsi-
ble for observed VL structures. In a heavy-fermion supercon-
ductor CeCoIn5, dTc/dp ≈ 0.3 K/GPa. [18] For iron-based
materials, dTc/dp is on the order of K/GPa and varies
with doping. In some of those, e.g., in Ca(Fe1−xCox)2As2,
dTc/dp ≈ −60 K/GPa which is by two orders of magnitude
larger than common values [19]. Hence, all these materials are
good candidates for observing the vortex structure evolution
and transitions caused by strain induced interactions.

The elastic contribution to intervortex interaction in tetrago-
nal materials has been discussed in Ref. [14]. However, the VL
structures in the presence of the new interaction have not been
studied. The present work aims to fill this gap. We will also
discuss the possible relevance of strain-induced interaction to
the VL transitions observed by small angle neutron scattering
in CeCoIn5 [20–22].

II. MODEL

Within our model, the total energy density F associated
with the VL consists of the superconducting contribution Fm

and the elastic energy density

Fe = λiklmuikulm/2, (1)

where λiklm are elastic moduli and uik are strains. Summation
over repeated indices is implied throughout the paper. We
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will focus on tetragonal crystals. For brevity we denote
the six independent moduli in the crystal frame (a,b,c)
as: λaaaa = λbbbb = λ1, λaabb = λ2, λabab = λ3, λcccc = λ4,
λaacc = λbbcc = λ5, and λacac = λbcbc = λ6 [23]. We do not
use the common two-indices notation of elastic moduli because
of the transformations of the fourth rank tensor λiklm are more
transparent in the form adopted in Ref. [23].

Within the London approximation, we have for the mag-
netic and kinetic parts of the free energy density [24,25]:

8πFm = h2 + λ2
Lmik(∇ × h)i(∇ × h)k, (2)

where h is the local magnetic field, the mass tensor mik

accounts for the uniaxial anisotropy, and λL is the geometric
average of the penetration depths.

We take the Bardeen-Stephen approximation for the vortex
core as a normal region of the size ξ [26]. The crystal expands
or shrinks in the normal region: (Vn − Vs)/Vs = Hc∂pHc/4π ,
where Vn,s are the specific volumes of the normal and
superconducting phases, p is the pressure, and Hc is the
thermodynamic critical field [27]. One can consider the vortex
as a point (line) source in two (three) dimensions, which
induces the strain field [12]. This London-type model is, of
course, oversimplified and works far from the upper critical
field Hc2(T ) and for λL � ξ .

Let vortex lines be directed along the unit vector l =
(cos ϕ sin θ, sin ϕ sin θ, cos θ ) in the tetragonal crystal frame
(θ is the angle between c and l , ϕ is the angle between the a

axis and the projection of l onto the ab plane). We introduce
also the “vortex frame” (X, Y, Z) such that the Z direction is
along the vortex line. A vector V in the rotated frame is related
to the vector v in the crystal frame by a rotation v = ÔV ,
with

Ô =
⎛
⎝− sin ϕ − cos θ cos ϕ cos ϕ sin θ

cos ϕ − cos θ sin ϕ sin θ sin ϕ

0 sin θ cos θ

⎞
⎠. (3)

The strain tensor uik in the crystal frame is related to that Uαβ ,
with α, β = X, Y, Z, in the rotated frame according to

uik = 1

2
(OiαOkβ + OkαOiβ)Uαβ, (4)

and the elastic moduli 
αβγη in the rotated frame are


αβγη ≡ λiklm

4
(OiαOkβ +OkαOiβ)(Olγ Omη+Omγ Olη).

(5)

The stress tensor σαβ is

σαβ = ∂Fe/∂Uαβ = 
αβγηUγη. (6)

It is argued in Ref. [14] that for the vortex orientation l
along the principal crystal directions, the problem of elastic
perturbation caused by straight vortices can be considered as
planar, i.e., the deformations U ⊥ l everywhere and the strains
UαZ = 0. The elasticity problem then simplifies considerably,
and below we consider two vortex orientations: l ‖ c and
l ⊥ c. In the first case the vortex frame coincides with the
crystal frame; the corresponding elastic moduli are listed
above. The elastic moduli in the second case are compiled
in Appendix. In both cases, we have 
XXXY = 
XXYX =


YYXY = 
YYYYX = 
ZZXY = 
ZZYX = 0.
As always in planar problems, the components of the stress

tensor are not independent [23]. After a simple algebra, one
can exclude Uγη from Eqs. (6) to obtain:

σZZ =
(

D2

d
− 1

)
σXX +

(
D1

d
− 1

)
σYY , (7)

D1 = d + 
ZZYY 
XXXX − 
ZZXX
XXYY , (8)

D2 = d + 
ZZXX
YYYY − 
ZZYY 
XXYY , (9)

d = 
XXXX
YYYY − 
2
XXYY . (10)

Equilibrium conditions ∂σαβ/∂Xβ = 0 read:

∂σXX

∂X
+ ∂σXY

∂Y
= 0,

∂σYX

∂X
+ ∂σYY

∂Y
= 0 . (11)

The solution can be written as

σXX = ∂2χ

∂Y 2
, σYY = ∂2χ

∂X2
, σXY = − ∂2χ

∂X∂Y
, (12)

with an arbitrary function χ (X,Y ) [23].
Using the condition σαα = −3p, we obtain for χ (X,Y ):

D1

d

∂2χ

∂X2
+ D2

d

∂2χ

∂Y 2
= −3p. (13)

To calculate the stress field induced by a vortex in an
otherwise unrestrained sample, we note that the pressure
p = 0 while the vortex can be considered as a singular
source of the stress field [14]. Because the stress field is
long ranged, we can approximate the source term using a
delta function, 2πS0δ(R − Rv) with Rv = (Xv, Yv) being the
vortex position [14]. Equation (13) with a delta source can
be solved by the two-dimensional Fourier transform, and both
σαβ(Rv,k) and Uαβ(Rv,k) can be calculated

σXX(k) = 2πdS0k
2
Y

D1k
2
X + D2k

2
Y

,

σYY (k) = 2πdS0k
2
X

D1k
2
X + D2k

2
Y

,

σXY (k) = − 2πdS0kXkY

D1k
2
X + D2k

2
Y

,

(14)

UYX(k) = −πdS0kXkY(
D1k

2
X + D2k

2
Y

)

XYXY

,

UXX(k) = 2πS0
(

YYYY k2

Y − 
XXYY k2
X

)
D1k

2
X + D2k

2
Y

,

UYY (k) = 2πS0
(

XXXXk2

X − 
XXYY k2
Y

)
D1k

2
X + D2k

2
Y

.

The elastic contribution to the interaction energy (per unit
length) of a vortex at the origin and another one at Rv is

Ee(Rv) =
∫

d2k
4π2

σαβ(0,k)Uαβ(Rv, − k). (15)
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For VL along the c axis, θ = 0, D1 = D2 = D, the strain
induced interaction becomes

Ee(Rv)=
(

S0

D

)2

d

(
λ1+λ2− d

2λ3

) ∫
d2k

k4
X + k4

Y

k4
e−ik·Rv

=
(

S0

D

)2
πd

R2
vλ3

(λ1+λ2)(2λ3−λ1 + λ2) cos(4φ),

(16)

where the azimuth of the second vortex position is φ =
tan−1(Yv/Xv). The interaction decays as 1/R2

v and has fourfold
rotational symmetry. When 2λ3 − λ1 + λ2 > 0, the elastic
interaction changes from repulsion at φ = 0 to attraction at
φ = π/4. There is no angular independent contribution in
Eq. (16), indicating the absence of elastic contribution to
vortex-vortex interactions in isotropic superconductors. Also,
it was shown that vortices along the c axis of hexagonal crystals
do not interact elastically [12].

For VL along the ab plane, the straightforward algebra
results in

Ee(Rv) =
(

dS0

D2

)2 ∫
d2ke−ik·Rv

fX

(
D1D

−1
2 k2

X

)2 + fY k4
Y(

D1D
−1
2 k2

X + k2
Y

)2

=
(

dS0

D2

)2 π

√
D2D

−1
1

X2
vD2D

−1
1 + Y 2

v

× [f+ cos(4φ′) + 2f− cos(2φ′)], (17)

where

fX = 
XXXX

d
−

(
1


XYXY

− 2
XXYY

d

)
D2

2D1
, (18)

fY = 
YYYY

d
−

(
1


XYXY

− 2
XXYY

d

)
D2

2D1
, (19)

f± = fY ± fX , φ′ = tan−1
(√

D1D
−1
2 Yv/Xv

)
. (20)

This interaction has the twofold rotational symmetry. The
strain induced interaction depends on the vortex orientation
through 
αβγη(ϕ).

III. VORTEX LATTICES

By minimizing the total interaction energy we obtain the
equilibrium VL configuration. For vortices along the c axis,
the lattice unit cell is a rhombus. We consider two vortex
configurations with the rhombus diagonal either along [100]
or [110] directions. The unit cell vectors of the reciprocal
lattice with the rhombus diagonal in [100] are

G1,2 = 2π

a sin β

[
sin

(
β

2

)
x̂ ± cos

(
β

2

)
ŷ

]
. (21)

For the rhombus diagonal in [110], we have

G1,2 = 2π

a sin β

[
sin

(
β

2
∓ π

4

)
x̂ ± cos

(
β

2
∓ π

4

)
ŷ

]
, (22)

where β is the apex angle and x̂, ŷ are unit vectors along the
crystal directions a,b. The length a = √

�0/B sin β relates to
the VL size in real space, where �0 is the flux quantum and B

is the magnetic induction.

The free energy density can be expressed as a sum over the
reciprocal lattice, see, e.g., [25]:

F = B2

8π

∑
G �=0

(
e−G2/G2

m

1 + G2λ2
ab

+ η
G4

x + G4
y

G4
e−G2/G2

e

)
, (23)

where we introduced two cutoffs, Gm and Ge, for the magnetic
and elastic contributions in divergent sums. Meanwhile we
have excluded the contribution from the G = 0 component.
The magnetic contribution at G = 0 is the magnetic static
energy for a uniform magnetic field, which does not determine
the profile of vortex lattice. The elastic contribution diverges
at G = 0, which is unphysical. This divergence is avoided by
the strain produced by external pressure, in analogy to the
requirement of charge neutrality in the electrostatic problem.
Here, the factor

η = 16π3S2
0d

�2
0D

2

(
λ1 + λ2 − d

2λ3

)
(24)

characterizes the strain contribution to the intervortex inter-
action. Here λab and λc, ξab, ξc discussed below are the
anisotropic London penetration depth and superconducting
coherence length, respectively.

We roughly estimate η ∼ S2
0/�2

0λ̃, where λ̃ is the order of

magnitude of elastic constants. Here S0 ∼ λ̃ξ 2
ab

H 2
c

Tc

dTc

dp
(ln λab

ξab
)
2
.

For dTc/dp ≈ 1 K/GPa, Hc = 1 T, and λ̃ ∼ 1012 erg/cm3,
we obtain η ∼ 5 × 10−4 [14].

We perform numerical summation in Eq. (23) to obtain β

corresponding to minimum energy for a given magnetic field.
We find that the rhombus with a diagonal along [100] has lower
energy when η > 0. The results for η = 0.005 are shown in
Fig. 1. At low fields where the separation between vortices
is larger than λab, the long-range strain induced interaction is

0.01 0.1 1

60

65

70

75

80

85

90
square lattice square lattice

β
[d

eg
re

e]

B [Φ0/λ
2
ab]

Gm=Ge=1/ξab

Gm=4Ge=1/ξab

triangular lattice

FIG. 1. The equilibrium apex angle β of the rhombic unit cell
for vortex lines along c. Vortices form a square lattice both at low
and high fields, and the VL is triangular at intermediate fields. For
comparison, the results for two different Ge’s are displayed. The
field at the transition from the triangular to square VL at higher field
increases when Ge is reduced.
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dominant, therefore the square VL is stabilized. In intermediate
fields, the magnetic interaction favors a triangular VL. The
triangular VL then evolves continuously to a square lattice for a
high vortex density, because the long-range elastic interaction
is ∝B2, whereas the large field London interaction energy
goes as �0B/λ2

L. Hence, at large B the elastic contribution
is dominant and the VL follows the crystal symmetry. For
a larger η, the intermediate region for triangular structures
VL shrinks and eventually disappears for a sufficiently strong
elastic interaction.

We have introduced a cutoff Gm = 1/ξab for G to exclude
distances shorter than the core size ξab (or G > 1/ξab) by
adding a damping factor exp(−G2ξ 2

ab) in Eq. (23), the standard
procedure in the London approximation. Since the source of
the strain generated by vortex can be related not only to the
vortex core, but to the supercurrents around it [17], the cutoff
Ge in the elastic part of the energy (23) can differ from the
London cutoff Gm. Numerical results and the threshold field to
stabilize the square lattice depend on the cutoff Ge as shown in
Fig. 1. Nevertheless, the qualitative feature that the square VL
is favored by the strain induced interaction is robust against
the cutoff.

As is seen from Eq. (16), the VL configuration for a negative
η is related to the corresponding positive η by rotation of the
whole lattice by π/4. Therefore in this case the diagonal of the
rhombic unit cell is along the [110].

Next, we consider vortex lines in the ab plane. Because of
the anisotropic penetration depth, the VL is no longer hexago-
nal in the absence of strain. Taking the crystal anisotropy into
account, the London contribution to the energy density is

Fm = B2

8π

∑
G �=0

exp
(−G2

Xξ 2
ab − G2

Y ξ 2
c

)
1 + G2

Y λ2
ab + G2

Xλ2
c

, (25)

and the contribution due to strain is

Fe = 2

(
πBdS0

�0D2

)2 ∑
G �=0

fX

(
D1D

−1
2 GX

)4 + fY G4
Y[(

D1D
−1
2 GX

)2 + G2
Y

]2

× e−G2
Xξ 2

ab−G2
Y ξ 2

c . (26)

We rescale the length GY λab → GY and GXλc → GX, such
that Fm becomes isotropic. The total energy density then reads
as

F = B2

8π

∑
G �=0

e−G2/κ̄2

[
1

1 + G2
+ ηX

(
G2

Xγ̄ −2
)2 + ηY G4

Y(
G2

Y + G2
Xγ̄ −2

)2

]

(27)

with κ̄ = λab/ξc = λc/ξab and γ̄ −2 = D1D
−1
2 λ2

ab/λ
2
c [28].

To check possible VL structure transitions, we take

ηX,Y ≡ 16π3

(
dS0

�0D2

)2

fX,Y (28)

as free parameters to obtain the equilibrium vortex config-
urations. We consider the VL rhombic unit cell with the
diagonal along the X axis in the rescaled frame. The apex
angle is β. The apex angle β0, before rescaling is given by
tan(β0/2) = tan(β/2)/γ with γ = λc/λab. Below we present
the results for two typical parameters.

4 8 12 16 20

20

30

40

50

60

70

80

90

β 0
 [d
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re

e]

B [Φ0/λabλc]

FIG. 2. The apex angle β of the rhombic unit cell for B ⊥ c.
Insets are the sketches of the corresponding Bragg peaks of maximum
intensity in the momentum space at low and high fields. Here ηX = 0,
ηY = 0.002, γ̄ = 2, γ = 2, and κ̄ = 30.

The equilibrium apex angle β0 for ηX = 0, ηY = 0.002,
γ = 2, and γ̄ = 2 is shown in Fig. 2. At low fields β0 ≈
83◦ and it drops to about β0 ≈ 24◦ at high fields. The jump
indicates a reorientation of the VL upon increasing field. To
relate to the neutron scattering measurements, we depict in the
inset the reciprocal unit vector in the first shell for both VL
orientations. This reorientation resembles the one observed in
CeCoIn5 for a field along the [110] direction.

The results for ηX = 0.001, ηY = 0, γ = 2, and γ̄ = 2 are
displayed in Fig. 3. The apex angle depends weakly on the field
and there is no reorientation, similar to behavior observed in
CeCoIn5 for a field along the [100] direction. We note that
since ηX and ηY depend on the field angle through 
αβγη(ϕ),
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 [d
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B [Φ0/λabλc]

FIG. 3. The apex angle β of the rhombic unit cell when B ⊥ c.
Inset is a sketch of the corresponding Bragg peaks of maximum
intensity in the momentum space. Here ηX = 0.001, ηY = 0, γ̄ = 2,
γ = 2, and κ̄ = 30.
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it is possible that VL reorients when the field rotates in the ab

plane.

IV. DISCUSSION

We expect stabilization of the square VL and the reorien-
tation of VLs due to vortex-induced strain to occur in a broad
class of materials and in heavy fermion superconductors, in
particular.

In heavy fermion superconductors, such as CeCoIn5 and
CeRhIn5, Tc depends strongly on pressure, pointing to a
possible strain-induced intervortex interaction which affect
the VL structures. For CeCoIn5, ∂Tc/∂p ≈ 0.3 K/GPa at the
ambient pressure. In a large family of Fe-based materials, this
derivative is larger yet and depends on doping; in some of them
∂Tc/∂p can be one or two orders of magnitude larger [19].

The small angle neutron scattering data on VLs in CeCoIn5

are available [20–22]. At low fields along the c axis and low
temperatures, the VL is triangular (rhombic). Upon increasing
field, the VL becomes square. With further increase of the
magnetic field, the VL becomes triangular again.

One possible explanation to the triangular-square VL
transition in CeCoIn5 could be the strain-induced intervortex
interaction. It is worth noting that strain-induced interactions
are not the only possible mechanism to stabilize the square
lattice. It may also be due to nonlocal corrections to the London
interactions due to the basic nonlocality of current-field
relation in superconductors, as has been demonstrated theoret-
ically and experimentally for borocarbides [3]. However, the
high-field square-to-triangle transition cannot be explained by
the nonlocal effects. It can be caused by fluctuations of vortices
near the upper critical field Hc2 [7] or by the strong Pauli pair
breaking [29].

Our London-type model is inapplicable near Hc2. Physi-
cally, near Hc2 the system is nearly uniform and there are no
inhomogeneities to cause elastic perturbations. Therefore, one
can argue that within the magnetoelastic scenario considered
here, the vortex induced strains disappear faster than the stan-
dard intervortex interaction when the field increases toward
Hc2(T ). The strain-induced interaction has been estimated in
Ref. [12]:

Fe ∼ λ̃

(
�0B

16π2λ2
LTc

∂Tc

∂p

)2

. (29)

The intervortex interaction contribution to the London free
energy density in intermediate fields is

Fm ∼ �0B

32π2λ2
L

ln

(
Hc2

B

)
. (30)

As T increases toward Tc(B) at a fixed B, Fe ∝ 1/λ4
L decreases

faster than Fm ∝ 1/λ2
L. As a result VL favors the triangular

lattice because of the dominant magnetic interaction. Hence,

both the triangle-to-square evolution of VLs and the square-
to-triangle transition on approach to Hc2 can, in principle, be
attributed to the existence and variation of the vortex induced
strains.

Experimentally, for CeCoIn5 in the field parallel to [110],
the VL rotates near B ≈ 8 T, similar to that shown in Fig. 2.
For the field along [100], the observed VL deforms weakly,
which is akin to behavior in Fig. 3. Unfortunately, direct
comparison between the theory and experiment is not possible
at the moment because the elastic moduli of CeCoIn5 are not
known.

To summarize, we have studied vortex lattice configurations
in tetragonal superconductors taking into account the strain
field created by vortices. When vortex lines are directed along
the c axis and for a relatively weak vortex-strain coupling,
the square vortex lattice is stabilized both at high and low
vortex densities, while the triangular vortex lattice is favored at
intermediate densities. In the presence of a strong vortex-strain
coupling, the square vortex lattice may be favored in the whole
field region. When vortex lines lie in the ab plane, the vortex
lattice can reorient with increasing magnetic field. Our results
are in qualitative agreement with the vortex evolution and
transitions in CeCoIn5.
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APPENDIX: ELASTIC MODULI IN THE ROTATED FRAME

With the help of Eq. (5) we evaluate the elastic moduli in
the vortex frame when the vortex axis Z is in the ab plane of a
tetragonal crystal. The azimuthal angle ϕ is the angle between
the Z and a axes and the axis Y coincides with the c axis.


XXXX = [3λ1 + λ2 + 2λ3 + (λ1 − λ2 − 2λ3) cos(4ϕ)]/4,


XXXZ = (λ1 − λ2 − 2λ3) sin(4ϕ)/4,


XXZZ = [λ1 + 3λ2 − 2λ3 + (−λ1 + λ2 + 2λ3) cos(4ϕ)]/4,


XZXZ = [λ1 − λ2 + 2λ3 + (−λ1 + λ2 + 2λ3) cos(4ϕ)]/4,


XZZZ = (−λ1 + λ2 + 2λ3) sin(4ϕ)/4,

and 
XXYY = 
YYZZ = λ5, 
YYYY = λ4, 
XYXY =

YZYZ = λ6.
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Dobrosavljević-Grujić, P. L. Gammel, and D. J. Bishop, Vortex

054511-5

https://doi.org/10.1103/PhysRev.133.A1226
https://doi.org/10.1103/PhysRev.133.A1226
https://doi.org/10.1103/PhysRev.133.A1226
https://doi.org/10.1103/PhysRev.133.A1226


SHI-ZENG LIN AND VLADIMIR G. KOGAN PHYSICAL REVIEW B 95, 054511 (2017)

lattice transitions in borocarbides, Phys. Rev. B 55, R8693
(1997).

[4] M. Yethiraj, D. K. Christen, A. A. Gapud, D. McK. Paul,
S. J. Crowe, C. D. Dewhurst, R. Cubitt, L. Porcar, and
A. Gurevich, Temperature and field dependence of the flux-
line-lattice symmetry in V3Si, Phys. Rev. B 72, 060504
(2005).

[5] V. G. Kogan, P. Miranovic, and D. McK. Paul, The Super-
conducting State in Magnetic Fields: Special Topics and New
Trends, edited by C. A. R. Sa de Melo (World Scientific,
Singapore, 1998), Chap. 8, pp. 127–149.

[6] A. D. Klironomos and Alan T. Dorsey, Vortex Lattice Structural
Transitions: A Ginzburg-Landau Model Approach, Phys. Rev.
Lett. 91, 097002 (2003).

[7] A. Gurevich and V. G. Kogan, Effect of Fluctuations on Vortex
Lattice Structural Transitions in Superconductors, Phys. Rev.
Lett. 87, 177009 (2001).

[8] Shi-Zeng Lin and Lev N. Bulaevskii, Dissociation Transition
of a Composite Lattice of Magnetic Vortices in the Flux-flow
Regime of Two-Band Superconductors, Phys. Rev. Lett. 110,
087003 (2013).

[9] Shi-Zeng Lin, Lev N. Bulaevskii, and Cristian D. Batista, Vortex
dynamics in ferromagnetic superconductors: Vortex clusters,
domain walls, and enhanced viscosity, Phys. Rev. B 86, 180506
(2012).
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