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Anisotropic superconducting gaps in YNi2B2C: A first-principles investigation
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We calculate superconducting gaps and quasiparticle density of states of YNi2B2C in the framework of the
density functional theory for superconductors to investigate the origin of highly anisotropic superconducting gaps
in this material. Calculated phonon frequencies, the quasiparticle density of states, and the transition temperature
show good agreement with experimental results. From our calculation of superconducting gaps and orbital
character analysis, we establish that the orbital character variation of the Fermi surface is the key factor of the
anisotropic gap. Since the electronic states that consist of mainly Ni 3d orbitals couple weakly with phonons, the
superconducting gap function is suppressed for the corresponding states, which results in the anisotropy observed
in the experiments. These results are hints to increase the transition temperature of materials in the borocarbide
family.
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I. INTRODUCTION

Superconductors exhibiting an anisotropic gap have at-
tracted continuous attention for their possible exotic super-
conducting mechanisms. Unconventional mechanisms, which
are completely different from the phonon mechanism es-
tablished by the Bardeen-Cooper-Schrieffer(BCS) [1] and
Eliashberg [2] theories, have been extensively discussed for the
nodal d- and p-wave gaps in cuprate, iron-based, and heavy-
fermion superconductors [3–5], etc. In view of this history,
YNi2B2C [6,7] is recently getting a surge of interest since its
superconducting gap is significantly anisotropic. Polynomial
temperature dependence of its specific-heat coefficient has
been observed (Cp ∝ T 3), suggesting nodal structure of the
gap. The strong anisotropy of the gap has also been indicated
in the magnetic-field dependence of Cp [8–10], broad peak in
the tunneling conductance spectrum [11], in-plane anisotropy
in the ultrasonic attenuation [12] and Doppler shift measure-
ments [13], and large anisotropic gap ratio (�max/�min = 2.1),
namely, the ratio of the maximum to the minimum of the
gap in the reciprocal space, observed with angle-resolved
photoemission spectroscopy measurement [14]. Strong anti-
ferromagnetic spin fluctuation has been revealed from pulsed
NMR studies [15], which suggests that electronic correlation
has a role.

Although significant magnetic characteristics are generally
observed in the rare-earth nickel borocarbide family, the
yttirium systems seems exceptional. Among LnNi2B2C (Ln =
lanthanide), the Pr [16], Nd [17], Sm [18], Gd [19], and
Tb [20] systems exhibit magnetic order, whereas in the
Dy [21], Ho [22], Er [23], and Tm [24] systems both magnetic
orders and superconducting transition have been observed.
Previous first-principles investigations [25,26] revealed that
the magnetic orders in those materials are caused by the
Ruderman-Kittel-Kasuya-Yosida interaction [27–29] between
localized spin from 4f electrons. In the Y system, on the
other hand, the yttrium sites, whose valence states are less
localized 4d and 5s orbitals, do not show magnetic order. This
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implies that the effective description of electronic states in
the Y systems should be different from the other rare-earth
systems.

As a matter of fact, a relevance of the conventional
phonon-mediated superconducting mechanism has also been
experimentally indicated. First, the isotope effect of boron
atom has been observed [30,31] in this material. Moreover,
softening of the transverse acoustic (TA) phonon mode occurs,
which is likely due to strong electron-phonon coupling [32].
The apparent coexistence of the strong electron-phonon
coupling and the gap anisotropy invites us to a fundamental
question: Can the conventional superconducting mechanism
realize such an anisotropic gap? Although the conventional
mechanism is generally regarded to induce an almost isotropic
gap [33], there is no theory to prohibit the opposite. In a few
multiband systems such as MgB2 [34,35], the gap has different
values for different bands, which can be explained with orbital
dependence of the electron-phonon coupling. Even the nodal
gap can theoretically emerge if we assume extreme k-point
dependence of the electron-phonon coupling [36].

In this study, we investigate the possibility of the anisotropic
superconductivity due to the conventional phonon mechanism
in YNi2B2C in a fully ab initio manner. Recent progress
in ab initio theories for superconductors, such as density
functional theory for superconductors (SCDFT) [37,38] and
anisotropic Migdal-Eliashberg theory [39], has enabled us to
work on this issue. The standard method to calculate gaps of
the superconducting phase induced by the phonon-mediated
mechanism is to solve the Eliashberg equation. However, it is
difficult to solve it in a fully nonempirical manner; because
the interaction and the gap function depend both on the
Kohn-Sham state and the frequency, formidable computational
cost is required for solving this equation. On the other hand,
in the density functional theory for superconductors, static
anomalous density serves as a fundamental quantity, with
which efficient numerical schemes can be implemented with
reduced computational cost. In the recent SCDFT study, Tc

as well as the tunneling gap have been reproduced from first
principles [40]. We apply this method to the YNi2B2C system.

In Sec. II, we introduce the density functional theory for
superconductors, which bases our first-principles calculations
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in this study. In Sec. III, we present the numerical method
to calculate superconducting properties such as the supercon-
ducting gap. We here append a specific scheme to treat the
k-dependent anisotropy precisely. In Sec. IV, we show the
resulting electronic and phononic structure of YNi2B2C: the
band structure, Fermi surfaces, superconducting gap function,
phonon dispersion, superconducting transition temperature,
and the quasiparticle density of states. We compare them
with the corresponding experimental results. In Sec. V, we
discuss the possible origin of the anisotropic superconducting
gaps in YNi2B2C within the conventional phonon-mechanism
scenario. The summary and future prospects are given in
Sec. VI.

II. THEORY

In this section, we present the formalism of density
functional theory for superconductors (SCDFT) [37]; we can
calculate superconducting properties such as the transition

temperature from first principles by using this method. In the
current formalism of SCDFT with the decoupling approxi-
mation [38,41], we obtain the superconducting singlet order
parameter as follows:

χ (r,r ′) = 1

2

�nk

εnk

tanh

(
βεnk

2

) ∑
nk

ϕnk(r)ϕ∗
nk(r ′), (1)

where εnk =
√

ξ 2
nk + �2

nk , ϕnk(r) is the normal-state Kohn-
Sham orbital having (nk) as the band index and the wave
number, ξnk is the normal-state Kohn-Sham eigenenergy,
and β is the inversed temperature. This order parame-
ter is determined after we compute the electronic and
lattice-dynamical properties by using the density func-
tional calculations in the normal state. The Kohn-Sham
gap function �nk is calculated from the following gap
equation:

�nk = −1

2

∑
n′k′

K[Vn′k′nk]({gn′k′nk},{ωk′−k},ξnk,ξn′k′) tanh

(
βεn′k′

2

)
�n′k′

εn′k′
, (2)

K[Vn′k′nk]({gn′k′nk},{ωk′−k},ξnk,ξn′k′) ≡ Kep({gn′k′nk},{ωk′−k},ξnk,ξn′k′) + Kee[Vn′k′nk](ξnk,ξn′k′)

1 + Z({gn′k′nk},{ωk′−k},ξnk)
, (3)

where {ωq} ≡ ωq1, . . . ,ωqNbranch are frequencies of phonons having q as the wave number, {gn′k′nk} ≡ g1
n′k′nk, . . . ,g

Nbranch
n′k′nk are

the vertices between a phonon and Kohn-Sham orbitals (ϕn′k′ ,ϕnk), and Nbranch is the number of branches of phonons. Forms
of the electron-phonon kernel Kep and the renormalization Z are identical to that of previous studies [40,42,43]. Kee is the
electron-electron kernel as follows:

Kee[Vn′k′nk](ξnk,ξn′k′) = 2

π

∫ ∞

0
dω

|ξnk| + |ξn′k′ |
(|ξnk| + |ξn′k′ |)2 + ω2

Vn′k′nk(ω), (4)

Vn′k′nk(ω) ≡
∫∫

d3rd3r ′ϕ∗
nk(r)ϕ∗

n′k′(r ′)Vscr(r,r
′,ω)ϕnk(r ′)ϕn′k′(r), (5)

where Vscr(r,r ′,ω) is the screened Coulomb interaction; we calculate it including the dynamical screening effect [43]. Neglecting
the temperature dependence of Kee considered in the previous study (Eq. (2) in Ref. [43]), we obtain Eq. (4). The numerical
treatment of the integration in Eq. (4) is appended in Appendix A.

While Vscr(r,r ′,ω) is calculated by using the random phase approximation (RPA) in the previous study [43], we calculate it
by using the adiabatic local density approximation [44] (ALDA) in this work as follows:

Vscr(r,r
′,ω) = 1

|r − r ′| +
∫∫

d3r1d
3r2

(
1

|r − r1| + δ2EXC

δρ(r)δρ(r1)

)
�(r1,r2,ω)

1

|r2 − r ′| , (6)

where ρ(r) is the charge density, EXC is the exchange-correlation energy, �(r,r ′,ω) is the polarization function given by the
solution of the following equation

�(r,r ′,ω) = �0(r,r ′,ω) +
∫∫

d3r1d
3r2�0(r,r1,ω)

(
1

|r1 − r2| + δ2EXC

δρ(r1)δρ(r2)

)
�(r2,r

′,ω), (7)

and �0(r,r ′,iω) is the independent particle polarizability

�0(r,r ′,ω)

=
∑
nkn′k′

θ (−ξnk) − θ (ξn′k′)

ξn′k′ − ξnk + iω
ϕ∗

nk(r)ϕ∗
n′k′(r ′)ϕnk(r ′)ϕn′k′(r),

(8)

where θ (ξ ) is the step function.
When we compare the calculated �nk with the experiments,

it must be noticed that �nk is not theoretically guaranteed

to correspond to the experimental gap; while the former
gives the gap in the Kohn-Sham Bogoliubov-de Gennes
energy dispersion, the latter is defined with the poles of
the electronic Green’s function. Nevertheless, we discuss
the gap anisotropy with the calculated �nk on the basis
of an assumption that it describes the experimental gap on
the semiquantitative level. This is justified for the following
reasons: (i) There is a suggestive relation between the SCDFT
gap and those from the many body perturbation theory [45,46].
From dressed anomalous Green’s function FR

nk(ω) in the
Nambu-Gor’kov formalism [47,48], let us redefine �nk as
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FIG. 1. Schematic illustration of the energy dependence of Z.
This function has a strong energy dependence when |ξnk| are equal to
or lower than the phonon frequency.

follows:

�nk ≡ 2|ξnk|
∫ ∞

0

dω

2π
ImFR

nk(ω). (9)

Here, ξnk is the Kohn-Sham energy of the normal state.
Remarkably, this redefined �nk gap satisfies the equation
similar to the SCDFT gap equation [46]. (ii) The “gap”
2�nk indeed agrees with the gap derived from the tunnel
conductance for some materials [40,49]. If one wants to
improve the precision of the analysis, dressed anomalous
Green’s functions must be calculated from first principles
based on the Eliashberg theory [2,50] or the G0W0 theory
for superconductors [46,51], but it requires us to treat all the
variables (k points, band indices, and Matsubara frequencies)
explicitly. Since the numerical cost for such a calculation is
unrealistically large, we do not address this improvement in
this study.

III. NUMERICAL METHOD FOR THE GAP EQUATION

In this section, we explain the numerical method to
compute the gap function [Eq. (2)], the independent particle
polarizability [Eq. (8)], and the quasiparticle density of states

in a superconducting state. All these calculations concern the
k-point integrations where the integrands have large values
only in the vicinity of the Fermi level. We developed a method
based on the tetrahedron interpolation for this difficulty.

A. Difficulty in the calculation of the gap equation

The renormalization factor Z and the electron-phonon XC
kernel Kep vary rapidly in the vicinity of Fermi surfaces.
The origin of this rapid variation is strong energy (ξnk , ξn′k′)
dependence of Z and Kep in the vicinity of Fermi surfaces
(|ξnk| and |ξn′k′ | are equal to or lower than the phonon
frequency; see Fig. 1). In order to treat this sensitive energy
dependence precisely, we need an unrealistically large number
of k points for solving the Kohn-Sham gap equation if we use
the uniform grid.

In the previous works [41], randomly sampled k points have
been used to perform the k integration in the gap equation; a
large number of k points is adopted in the vicinity of Fermi
surfaces. However, this method has two drawbacks. In the
first place, it obviously yields a numerical error because of
the random sampling. In the second place, it has a difficulty
in the calculation of the density of states because we can
not obtain exact weights of an integration including the delta
function; for calculating such weights, we have to use the
tetrahedron method [52] on sufficiently dense regular k grids
(not on randomly sampled k points).

B. Deterministic solving via auxiliary gap function

To avoid this difficulty, we develop an alternative determin-
istic method that is free from the randomness and compatible
with the tetrahedron method. We decouple the k dependence
and energy dependence with a help of the auxiliary energy grid.
Specifically, we define explicitly energy dependent auxiliary
gap functions

�nk(ξ ) ≡ −1

2

∑
n′k′

K[Vn′k′nk]({gn′k′nk},{ωk′−k},ξ,ξn′k′) tanh

(
βεn′k′

2

)
�n′k′

εn′k′
. (10)

This auxiliary gap function satisfies �nk(ξnk) = �nk . Inserting 1 = ∫
dξ ′δ(ξ ′ − ξn′k′) into Eq. (10), we obtain simultaneous

equations for the auxiliary gap function as follows:

�nk(ξ ) = −1

2

∫
dξ ′ ∑

n′k′
δ(ξ ′ − ξn′k′)K[Vn′k′nk]({gn′k′nk},{ωk′−k},ξ,ξ ′) tanh

(
βεn′k′(ξ ′)

2

)
�n′k′(ξ ′)
εn′k′(ξ ′)

, (11)

where εnk(ξ ) ≡
√

|�nk(ξ )|2 + ξ 2. We use a sparse uniform k grid and nonuniform energy grid to solve this gap equation; the
latter has much more points in the vicinity of ξ = 0 (Fig. 2).

Practically, the energy dependence of Z and Kep becomes moderate when ξn′k′ is far from the Fermi level; we therefore
introduce the integration with respect to ξn′k′ only for bands crossing the Fermi level as follows:

�nk(ξ ) = − 1

2

∫ ξmax

ξmin

dξ ′
Fermi∑

n′

∑
k′

δ(ξ ′ − ξn′k′)K[Vn′k′nk]({gn′k′nk},{ωk′−k},ξ,ξ ′) tanh

(
βεn′k′(ξ ′)

2

)
�n′k′(ξ ′)
εn′k′(ξ ′)

− 1

2

Other∑
n′

∑
k′

K[Vn′k′nk]({gn′k′nk},{ωk′−k},ξ,ξn′k′) tanh

(
βεn′k′(ξn′k′)

2

)
�n′k′(ξn′k′)

εn′k′(ξn′k′)
, (12)
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FIG. 2. Schematic illustration of the auxiliary energy grid. We
use a smooth uniform k grid and dense nonuniform energy grid to
solve this gap equation; the latter has much more points in the vicinity
of ξ = 0.

where ξmax and ξmin are the maximum of the normal-state
Kohn-Sham energy of bands crossing the Fermi level and
minimum of that.

For evaluating the ξ integration in Eq. (12), we replace
it with a discrete summation as

∫ ξmax

ξmin
dξ ′δ(ξ ′ − ξn′k′) · · · ≈∑

i(dξ )iNn′k′(ξi) · · · . The energy grid {xi} is taken to be
nonuniform as elaborated below. Nnk(ξi) is the integration
weight for each point (nki), which is calculated with the
following procedure before solving the gap equation: (1)
Calculate the Kohn-Sham energy eigenvalues on a k-point
mesh denser than that used for the gap equation, (2) apply
a tetrahedron-interpolation method to the k-point mesh and
evaluate Nnk(ξi), and (3) calculate optimum Nnk(ξi) for the
sparse k-point grid for the gap equation using a reverse
interpolation method (Sec. III C 1).

We use the following energy grid and the weight of each
point;

ξi = (xi − xi0 )εmin
nξ

2
exp

[
a

(
|xi − xi0 | − 2

nξ

)]
, (13)

(dξ )i = (dx)i(1 + a|xi − xi0 |)εmin
nξ

2

× exp

[
a

(
|xi − xi0 | − 2

nξ

)]
, (14)

where nξ is the number of energy grid (i = 1,2,3, . . . ,nξ ),
and xi and (dx)i are the representative point and the weight in
the Gauss-Legendre quadrature (−1 < xi < 1). We choose i0

from i = 1,2, . . . ,nξ , so that the following factor is minimized:∣∣∣∣ξmax − (
1 − xi0

)
εmin

nξ

2
exp

[
a

(
1 − xi0 − 2

nξ

)]∣∣∣∣
+

∣∣∣∣ξmin − ( − 1 − xi0

)
εmin

nξ

2
exp

[
a

(
1 + xi0 − 2

nξ

)]∣∣∣∣,
(15)

where

a = max

[
1

1 − xi0 − 2/nξ

ln

(
ξmax(

1 − xi0

)
εminnξ/2

)
,

1

1 + xi0 − 2/nξ

ln

(
−ξmin(

1 + xi0

)
εminnξ/2

)]
. (16)

FIG. 3. A schematic illustration of the energy grid. It is repre-
sented in Eqs. (13) and (14); we can easily control the accuracy by
tuning parameters in those equations.

This energy grid has the following properties (see Fig. 3):
(1) It ranges between ξmin and ξmax.
(2) The minimum energy scale is εmin.
Then, we can easily control the accuracy by tuning nξ

and εmin.
By using the auxiliary energy grid, we can calculate the

quasiparticle density of states (QPDOS) in a superconducting
state as follows:

NS(ε) =
∑
nk

δ(ε − εnk) =
∑
nk

∫
dξδ(ξ − ξnk)δ(ε − εnk(ξ ))

	
∑
nki

(dξ )iNnk(ξi)δ(ε − εnk(ξi)). (17)

The four-dimensional (k and i) integration in Eq. (17) is
performed by using the pentachoron scheme (see Sec. III C 2).

C. Details of k integrations

1. Reverse interpolation of weight

We consider the k integration as follows:

〈X〉 =
∑

k

Xkw(εk). (18)

If this integration has the following conditions, it is efficient to
interpolate Xk into a denser k grid and evaluate that integration
in a dense k grid.

(1) w(εk) is sensitive to εk (e.g., the step function, the delta
function, etc.) and requires εk on a dense k grid.

(2) The numerical cost to obtain Xk is much larger than
that to obtain εk (e.g., the polarization function).

This method is performed as follows:
(1) We calculate εk on a dense k grid.
(2) We calculate Xk on a coarse k grid and obtain that on a

dense k grid by using the linear interpolation, the polynomial
interpolation, the spline interpolation, etc.

Xdense
k =

coarse∑
k′

Fkk′Xcoarse
k′ (19)
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(3) We evaluate that integration in the dense k grid.

〈X〉 =
dense∑

k

Xdense
k wdense

k (20)

When Xk is a multicomponent array, e.g., Xk =
ϕ∗

k (r)ϕ∗
k+q(r ′)ϕk(r ′)ϕk+q(r) for Eq. (8), the computational cost

for evaluating Eq. (19) and the memory size for Xdense
k become

very large. To avoid this difficulty, we developed a method
to obtain the result identical to the above result without
interpolating Xk into a dense k grid. Namely, we calculate
the integration weight on a coarse k grid from that on a dense
k grid; we call it reverse interpolation. Therefore, if we require

dense∑
k

Xdense
k wdense

k =
coarse∑

k

Xcoarse
k wcoarse

k , (21)

we obtain

wcoarse
k =

dense∑
k

Fk′kw
dense
k′ . (22)

The numerical procedure for this method is as follows:
(1) We calculate the integration weight on a dense k grid

wdense
k from εk on that grid.
(2) We obtain the integration weight on a coarse k grid

(wcoarse
k ) by using the reverse interpolation method.
(3) We evaluate that integration in a coarse k grid where

Xk was calculated.
This reverse interpolation method is employed in evaluating

Eqs. (8), (12), and (17).

2. Four-dimensional numerical integration scheme for DOS

For evaluating accurately the four-dimensional integration
in Eq. (17), we construct a method by extending the tetrahe-
dron method to the four-dimensional case. We consider the
following integration:

〈X〉 =
∫

BZ
d3k

∫
dξXk(ξ )δ(ε − εk(ξ )), (23)

where Xk(ξ ) and εk(ξ ) are smooth functions of k and ξ ; in
the calculation of the QPDOS, Xk(ξ ) = Nnk(ξ ) and εk(ξ ) =√

�2
nk(ξ ) + ξ 2 .

We divide four-dimensional (k,ξ ) space into 24 × Nk ×
(Nξ − 1) pentachora. If we assume Xk(ξ ) and εk(ξ ) as linear
functions of k and ξ in each pentachoron, we can obtain the
following result of Eq. (23) in a pentachoron.

〈X〉P ≈ Sεk (ξ )=ε

|∇k,ξ εk(ξ )| 〈Xk(ξ )〉εnk(ξ )=ε ≡
5∑

i=1

wiXi, (24)

where Sεk (ξ )=ε is the volume of the region in which εk(ξ )
becomes ε, 〈Xk(ξ )〉εk(ξ )=ε indicates Xk(ξ ) averaged in that
region, Xi is Xk(ξ ) at the each corner of the pentachoron; wi

can be calculated analytically from εk(ξ ) (see Appendix B).

IV. RESULTS

In this section, we show our results of YNi2B2C:
the normal-state band structure, Fermi surfaces, phonon

TABLE I. Numerical conditions. For the definitions of nξ and
εmin, see Sec. III B.

k grid (structure and charge density optimization) 12 × 12 × 12
q grid (wave number of phonons) 6 × 6 × 6
k grid (density of states) 40 × 40 × 40
The number of bands (gap equation) 50 bands
The number of bands (polarization function �0) 50 bands
The number of points for energy grid nξ 100
εmin in energy grid 10−6 Ry

dispersion, superconducting transition temperature, gap func-
tions, and quasiparticle DOS in the superconducting phase.
We used the DFT code Quantum ESPRESSO [53], which
employs plane waves and the pseudopotential to describe the
Kohn-Sham orbitals and the crystalline potential, respectively.
We obtain phonon frequencies and electron-phonon vertices
by using density functional perturbation theory (DFPT) [54].
We employ the optimized tetrahedron method [55,56] for
the Brillouin zone integrations in calculations of the charge
density, phonons, and the polarization function. We used our
open-source program SUPERCONDUCTING TOOLKIT [57] for the
calculations concerning SCDFT.

A. Electronic structures of normal state

The calculations were done with the GGA-PBE [58]
exchange-correlation functional. We set the plane-wave cutoff
for the Kohn-Sham orbitals to 50 Ry. We used the ultrasoft
pseudopotentials [59] in Ref. [60]. We also performed the
calculations with the LDA-PZ functional [61] and refer to them
for comparison when necessary. The numerical conditions are
summarized in Table I. We performed calculations with 43, 63,
and 83 q-point grids and obtained the converged result with
the 63 grid.

First we performed the structure optimization (crystalline
structure is depicted in Fig. 4 (a)); the optimized and
experimental structural parameters are given in Table II. The
parameter c is underestimated by 2%. Similar underestimation
can be seen in a previous report [32], and this is probably
due to the drawback with the GGA-PBE functional [32]. The
later calculations were based on the theoretically optimized

FIG. 4. (a) Crystalline structure of YNi2B2C (using VESTA [62]).
(b) Brillouin zone and k path.
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TABLE II. Results of the structure optimization in comparison with experimental data [63]. Crystal
structure is depicted in Fig. 4(a).

LDA GGA Exp.

lattice constant a [Å] 3.48 3.51 3.533
lattice constant c [Å] 10.19 10.31 10.566
B-C length [Å] 1.483 1.494 1.492

lattice parameters, though we have found that the setting of the
parameters (either theoretically optimized or experimentally
observed values) yields little difference in the calculated
phononic and superconducting properties.

Figure 5(a) shows the calculated band structure of YNi2B2C
[the k path is depicted in Fig. 4(b)]. We here describe the
contributions of the atomic orbitals—Y 4d, Ni 3d, B 2s2p,
and C 2s2p—as the size of the symbols; for example, the Ni
3d contribution to the Kohn-Sham state nk pNi3d

nk is defined by

pNi3d
nk =

∑
τ=Ni1,Ni2

∑
m

|〈ϕτdm | ϕnk〉|2. (25)

We also depict the total and the partial density of states in
Fig. 5(b). This band structure agrees with the one obtained in
the previous study with a GGA functional [64]. There is a flat
band near the Fermi level on the X-� line; electronic states in
this flat band consist mainly of Ni 3d state. The total density of
states at the Fermi level is 29 states per Ry, spin, and unit cell,
to which Y 4d, Ni 3d, B 2s2p, and C 2s2p states contribute
by 16.5%, 62.7%, 16.6%, and 4.2%, respectively. The large
contribution from the Ni 3d orbital mainly comes from the
proximity of the flat band on the X-� line.

Figure 6 shows the Fermi surfaces, on which we describe
the distribution of the Fermi velocity with a color plot. It
varies largely over Fermi surfaces; the ratio of its maximum
to minimum is about 100. We calculate the projections of
the atomic orbitals Y 4d, Ni 3d, B 2s2p, and C 2s2s, to

the electronic states on Fermi surfaces (Fig. 7). There are no
regions dominated by B 2s2p and C 2s2p orbitals. Comparing
Figs. 6 and 7, we found that the Fermi velocity is particularly
small in the regions where Ni 3d orbitals are dominant.

B. Phonons and electron-phonon interactions

We next calculated the phonon and electron-phonon in-
teraction. The calculated frequencies of the Raman-active
modes are given in Table III. Results from the previous
Raman scattering experiment and first-principles calculation
with the all-electron full potential linear augmented plane
wave (FLAPW) method and the GGA-PBE functional are also
shown. Our results show good agreement with both previous
experimental and theoretical results.

We show the calculated phonon dispersions in Fig. 8.
The whole spectra agree well with those obtained with the
neutron scattering measurement [32] except for the behavior
of the TA band around q ∼ 0.55�Znext; although this mode
shows strong softening in experiments, the softening obtained
in our calculation is not as strong. We observe imaginary
modes in the vicinity of the � point along the �-Z line;
this indicates that the system theoretically favors long-period
modulation though such a structure has not clearly been
observed experimentally. Assuming that the present imaginary
modes are an artifact of the present approximation, we just
neglect them because phonons with such long wavelength do
not affect the superconductivity. We also depict the electron-

FIG. 5. (a) Band structure of YNi2B2C. Sizes of red squares, green circles, blue upward triangles, and magenta downward triangles indicate
the amount of components of atomic orbitals of Y 4d , Ni 3d , B 2s2p, and C 2s2p, respectively. (b) Partial and total density of states. The black
solid line, the red dashed line, the green dotted line, the blue dashed-dotted line, and the magenta dashed-two dotted line indicate the total Y
4d , Ni 3d , B 2s2p, and C 2s2p DOS, respectively.
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FIG. 6. Fermi velocity of the electronic states on Fermi surfaces. The red, green, and blue region have a high, middle, and low Fermi
velocity, respectively. Fermi surfaces in this paper are drawn by using the FermiSurfer [65] program which is developed by us.

phonon coupling constant

λqν =
∑
knn′

2

N (εF)ωqν

∣∣gν
n′k+qnk

∣∣2
δ(ξnk)δ(ξn′k+q) (26)

of each phonon (the branch dependent Fröhlich parameter) as
radii of circles, where N (εF) is the density of states at the Fermi
level; the TA mode has large electron-phonon interaction. The
contribution of each atom to each phonon mode can be seen in
Fig. 9; there are roughly six groups in this phonon dispersion
such as three acoustic branches ranging from 0 meV to 30 meV,
Y-dominant branches ranging from 10 meV to 25 meV, Ni-
dominant branches ranging from 20 meV to 35 meV, B-C
branches ranging from 35 meV to 60 meV, B-dominant branch
at approximately 102 meV, and B-C branch at approximately
159 meV. Nondispersive branches at 102 meV and 159 meV
have been observed by the time-of-flight neutron spectroscopy
experiment [70] in good agreement with our calculation.

The electron-phonon renormalization Znk ≡
Z({gn′k′nk},{ωk′−k},ξnk) of electronic states on the Fermi
surfaces are shown in Fig. 10. This has large anisotropy and
the ratio between the maximum and the minimum of the Znk

is approximately 4; this ratio is close to the value previously
determined with the dHvA experiment [71] referring to the
band structure calculation [72]. Comparing Figs. 7 and 10, we
can see that the electronic states that have small Znk consist
mainly of Ni 3d orbitals.

From the branch dependent Fröhlich parameter λqν , we
compute the total Fröhlich parameter and the averaged phonon
frequency,

λ =
∑
qν

λqν, ωln = exp

[
1

λ

∑
qν

ln(ωqν)λqν

]
. (27)

We obtain λ = 0.72, and ωln = 270 K (23.3 meV) by using
the GGA-PBE functional; we obtain λ = 0.54, and ωln =

FIG. 7. Projection of atomic orbitals Y 4d , Ni 3d , B 2s2p, and C 2s2s on Fermi surfaces (|〈ϕAtom | ϕnk〉|2).
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TABLE III. Calculated Raman-active phonon frequencies in cm−1 in comparison with those
obtained in the previous theoretical work [64] with the full potential linear augmented plane wave
(FLAPW) method and the GGA-PBE functional and experimental Raman-scattering measurements.

This work Previous (FLAPW) [64] Previous (experiment)

Ni-B1g 193 200 199 [66], 198 [67], 193 [68]
Ni-Eg 279 271 287 [66], 282 [67]
B-Eg 461 447 460 [66], 470 [67]
B-A1g 836 821 813 [66], 832 [67], 823 [68], 847 [69]

291 K (25.1 meV) by using the LDA-PZ functional. We can
find the origin of the functional dependence of the phonon
dispersion and the Fröhlich parameter follows. Figure 11
shows phonon dispersions and Eliashberg functions computed
in three different conditions, namely, the GGA functional with
the GGA geometry (a geometry optimized with the GGA
functional), the LDA functional with the LDA geometry, and
the GGA functional with the LDA geometry. When we use the
LDA geometry, the phonon is hardened because of the underes-
timated interatomic distance. From this hardened phonon, we
obtain a small λ. This overestimation of the phonon frequency
is improved by using the GGA geometry. We see below that
this dependence on the exchange-correlation functional yields
some variation of the resulting Tc, though the superconducting
solution is robustly present. The Fröhlich parameter computed
with the GGA functional is slightly smaller than that from
the specific heat measurement λS−H = γexp/γband − 1 = 0.82,
where γexp = 18.2 mJ/mol/K2 is the Sommerfeld param-
eter from the specific heat measurement [73] and γband =
10.0 mJ/mol/K2 is that parameter obtained from the band
structure computed in the current work. This underestimation
probably comes from the incomplete reproduction of the

FIG. 8. Phonon dispersion. The radii of circles indicate mag-
nitude of λqν . Green filled circles indicate results of the neutron
diffraction [32].

phonon softening of the TA band around q ∼ 0.55�Znext (see
Fig. 8).

C. Superconducting gaps and transition temperature

Let us now move on to the superconducting properties.
We calculated the superconducting gap function at various
temperatures. The values of the gap function averaged over
the Fermi surfaces for the respective temperatures, as well
as the maximum and minimum values are plotted in Fig. 12.
The calculated transition temperature where superconducting
gaps disappear, 13.8 K, agrees well with the experimental
value, 15.4 K. We also obtained the superconducting solution
with the LDA-PZ functional; although the resulting Tc is
8.73 K, this result indicates that the superconducting phase
is numerically robust against the change of the exchange-
correlation functional. The calculated isotope effect exponent
for boron atoms αB is 0.16, in fair agreement with the
experimentally observed values (αB = 0.11 ± 0.05, 0.21 ±
0.07 [31], 0.25 ± 0.04, 0.27 ± 0.07, 0.26 ± 0.03 [30]).

We depict the superconducting gap function �nk on Fermi
surfaces at low temperature (0.1 K) in Fig. 13 [74]. As we

FIG. 9. Phonon dispersion. Sizes of red squares, green circles,
blue upward triangles, and magenta downward triangles indicate
magnitude of components of Y, Ni, B, and C, respectively, of the
displacement pattern.
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FIG. 10. Electron-phonon renormalization Znk on Fermi surfaces.

expected, superconducting gaps of YNi2B2C are anisotropic;
similar to the case of Znk , electronic states that have a small
superconducting gap consist of Ni 3d orbitals. However, the
degree of anisotropy is smaller than that of the electron-phonon
coupling; the ratio between the maximum and minimum of
the gap functions on Fermi surfaces is 2.4. This suppression
of anisotropy comes from the following two reasons: First, the
nk dependence of the screened Coulomb interaction cancels
the nk-dependent pairing induced by the phonon. Figure 14
shows the nk dependent Coulomb potential

μnk ≡
∑
qn′

δ(ξn′k+q)Kee[Vn′k+qnk](ξnk,ξn′k+q). (28)

The sign of the Coulomb repulsion and the phonon mediated
attraction is opposite, while their absolute values are positively
correlated. The dependence of their sum is thus moderated.
Second, the integration kernel in Eq. (2) is reduced by a factor
1/(1 + Znk); this renormalization is large in the region where

FIG. 11. Phonon dispersions and Eliashberg functions computed
in three different conditions. The red dashed-dotted line, the blue
solid line, and the yellow dashed line indicate those computed by
using the GGA functional with the GGA geometry (a geometry
optimized with the GGA functional), the LDA functional with the
LDA geometry, and the GGA functional with the LDA geometry,
respectively. Green and gray filled circles indicate results of the
neutron diffraction experiment in Refs. [32,70], respectively.

the electron-phonon interaction is strong. Consequently, the
anisotropy of the integration kernel becomes smaller than that
of the electron-phonon interaction, and the anisotropy of the
superconducting gap is suppressed.

To examine the effect of the exchange-correlation kernel
δ2EXC/δ2ρ in the electron-electron kernel [Eq. (6)], we
calculate superconducting gap by using RPA also; the
difference in the Tc was less than 0.1 K compared with
that from the ALDA. Therefore, in YNi2B2C, the effect of
the exchange-correlation kernel is very small at the ALDA
level. We perform a converse calculation of the Coulomb
pseudopotential μ∗, which is usually treated as a fitting
parameter for McMillan’s formula [75,76]

Tc = ωln

1.2
exp

( −1.04(1 + λ)

λ − μ∗(1 + 0.62λ)

)
. (29)

Namely, we determined μ∗ so that the transition temperatures
calculated with the RPA-SCDFT and ALDA-SCDFT are
reproduced with λ = 0.72 and ωln = 267 K; We obtain
μ∗ = 0.053 in both cases. Notably, this value is far smaller
than the conventional range (0.10–0.13 [77]). This indicates
that the nk-averaging approximation, which is applicable to
ordinary materials, substantially underestimate Tc and the
anisotropy is important for the observed high Tc.

Using the calculated k-dependent gap function, we next
evaluated the quasiparticle density of states (QPDOS) in the
superconducting phase. The calculated QPDOS is compared

FIG. 12. Calculated and experimental superconducting transition
temperature. Red squares, green triangles, and blue circles indicate
the maximum, the averaged, and the minimum superconducting gaps
on Fermi surfaces; solid lines are a fit of these gaps with a function
�(T ) = �0{1 − (T/Tc)p}1/q via �0,Tc,p, and q.
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FIG. 13. Superconducting gap functions �nk on Fermi surfaces at 0.1 K.

to the density of states extracted from the tunnel-conductance
measurement [11] (Fig. 15); although there is a visible
discrepancy between the peak positions of the calculated
QPDOS and the experimental spectrum, their whole shapes
are very similar (Fig. 12). Note that we did not use the
smearing method for the four-dimensional integral; therefore,
the broadened peak structure definitely originates from the
k-space variation of the gap function. If we use the smearing,
we cannot distinguish a broadened peak made by the variation
of the gap function and one made by the smearing.

V. DISCUSSION

As revealed with Fig. 13, the k-space distribution shows
full s-wave gap with subtle dependence which is obviously
composed of multiple high order spherical harmonics. As a
result, �nk shows continuous spectrum across the multiple
Fermi surfaces; namely, multiband extended s-wave gap. Here
we note that the superconducting gap has significant intraband
anisotropy; this is in stark contrast with the “anisotropic gap”
in MgB2, where the gap value varies with bands but does
not vary much within each Fermi surface [78]. We have
found a significant correlation between the anisotropy of the
superconducting gaps in YNi2B2C and the variation of the
ratio of atomic orbitals on the Fermi surfaces. The electronic
states on the Fermi surfaces in YNi2B2C consist of Y 4d,
Ni 3d, B 2s2s, and C 2s2p; in particular, the electronic
states dominated by Ni 3d orbitals couple to phonons very
weakly, consequently exhibiting very small gap. To evaluate
contributions from each atomic orbital to the superconducting
gap, we defined the superconducting gaps of each orbital �o

(o = Y4d,Ni3d,B2s2p, and C2s2p) as the fitting parameters
of �nk in the following form:

�test
nk = �Y4dp

Y4d
nk + �Ni3dp

Ni3d
nk + �B2s2ppB4d

nk

+�C2s2pp
C2s2p

nk . (30)

The factors pnks are contributions of the respective atomic
orbitals to the electronic state ϕnk [Eq. (25)]. We determined
�Y4d , �Ni3d , �B2s2p, and �C2s2p so that the following variance
is minimized

σ 2 =
∑
nk

δ(ξnk)
(
�nk − �test

nk

)2
; (31)

we obtained �Y4d = 2.0, �Ni3d = 1.5, �B2s2p = 3.9, and
�C2s2p = 10.8, with the fitting error〈

δ�

�

〉
=

∑
nk δ(ξnk)

∣∣�nk − �test
nk

∣∣/|�nk|∑
nk δ(ξnk)

(32)

being 12.6 %. We also applied a similar analysis on
the electron-phonon renormalization Znk: Namely, we fit
the electron-phonon renormalization Znk into the orbital-
dependent form

Ztest
nk = ZY4dp

Y4d
nk + ZNi3dp

Ni3d
nk + ZB2s2ppB4d

nk

+ZC2s2pp
C2s2p

nk . (33)

We obtain ZY4d = 0.85, ZNi3d = 0.45, ZB2s2p = 1.21, and
ZC2s2p = 4.22, with the fitting error 〈δZ/Z〉 = 14.9. The
small value of ZNi3d indicates that the mixing of Ni 3d orbitals
weakens the interaction with the phonons, which is the key
factor behind the mechanism of the anisotropic gap.

The relatively accurate fitting errors in the above analysis
suggest that, in the real space, the coupling to phonons
and gaps at the respective atoms possibly exhibit specific
values. The gap structure varying within the respective
Fermi-surface sheets is then interpreted to originate from the
complicated hybridization between the atomic orbitals. A
recently developed real-space method [79] could be helpful
to substantiate this scenario.

Here we discuss why the Ni 3d orbital results in the
weak electron-phonon interaction. We infer that the localized
nature of Ni 3d orbitals has a crucial role; this localization

FIG. 14. The nk dependent Coulomb potential defined in Eq. (28).
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FIG. 15. Calculated superconducting quasiparticle density of
states at 0.1 K and experimental tunnel conductance spectrum at
0.5 K [11].

affects the screened electron-phonon interaction through the
following two possible routes: It makes the electronic states
more sensitive to the deformation potential of the Ni ion, which
should yield stronger electron-phonon coupling. On the other
hand, the highly localized Ni 3d electrons participate in the
local screening of the deformation potential, which should
make the electron-phonon coupling weak. In the present case,
the latter is considered to be dominant. To confirm this point,
we calculate the renormalization factor Znk by using the
bare electron-phonon vertex (note that the electron-phonon
vertex employed for the superconducting calculations are
usually calculated with the screened perturbation potential
of atomic displacements). Figure 16 shows the resulting
Zbare: Performing the same fitting as before, we obtain
ZY4d = 6.3 × 103, ZNi3d = 3.8 × 104, ZB2s2p = −1.3 × 104,
and ZC2s2p = 6.7 × 103; the fitting error is 39.1% [80]. ZNi3

is larger than other Zs when we use the bare vertex whereas
it is smaller than the others when we use the screened vertex.
This result shows that the screening effect on the interaction
between the Ni 3d orbital and phonons is particularly large;
this strong screening makes the interaction especially weak.
There is also some supporting experimental evidence of our
scenario. First, YPd2B2C has the transition temperature higher
than that of YNi2B2C [81]. Second, the anomalous behavior
of the specific heat of YNi2B2C is reduced when some
Ni atoms are replaced with Pt atoms in the specific-heat
measurement [8–10]. According to our scenario, the Pd 4d

orbitals and Pt 5d orbitals are more delocalized than the Ni
3d orbitals, and this delocalized nature is advantageous to the
electron-phonon coupling. We reproduced quantitatively the

superconducting Tc, the isotope effect constant, the phonon
dispersion excepting the large softening of the TA mode
and reproduced qualitatively by the broadened peak structure
in the tunnel conductance [11], and the k dependence of
�nk observed by ARPES [14]. However, the anisotropy of
the superconducting gap in our calculation is too small to
reproduce the ultrasonic attenuation measurement [12] and the
magnetic field dependence of the thermal conductivity [13].
We assume one of the origin of this underestimation of the
anisotropy to be in the calculation of the electronic structure in
the normal state. In the previous study of the combination of
dHvA experiment [71] and the band-structure calculation [72],
authors shifted upwardly Y 4d and Ni 3d levels from the
LDA levels by 0.11 Ry and 0.05 Ry. They state these
shifts correspond to the self-interaction and/or the nonlocal
correction to the LDA. On the other hand, reproduction of the
Fermi surfaces that agree well with the experiments without
such an empirical treatment has not been achieved so far. Thus,
the detailed shape of the Fermi surfaces has not been settled.
If we improve on the description of the Fermi surface, the
following may be accomplished.

(1) The nesting which corresponds to the TA mode at
q = 0.55�Znext becomes more significant, yielding stronger
softening of the low-energy phonon mode; the strength of the
nesting is sensitive to the fine structure of the Fermi surface.

(2) Regions which consist only of Ni 3d orbital appear;
such regions should couple with phonons very weakly and
have quite small gaps.

VI. SUMMARY

In this study, we performed a first principle investigation
to clarify the origin of the anisotropic superconductivity in
YNi2B2C. We improved the numerical method for the k inte-
gration in the gap equation to treat accurately k dependencies
of the electron-phonon interaction and the gap function. From
calculations with this method, we found that the anisotropic
superconductivity is traced back to the variation of the rate
of the Ni 3d orbital on the Fermi surface. As the component
of the Ni 3d orbital increases, the electron-phonon coupling
of the electronic state becomes weak and its superconducting
gap function becomes small. Because of this effect, the super-
conducting gap significantly varying over the Fermi surface
emerges. As a possible scenario, we proposed that the localized
nature of the Ni 3d orbitals is a key factor for the weakening of
the electron-phonon coupling. We found the relation between
the peculiar electron-phonon interaction and the electronic
state in the vicinity of the Fermi surface in this material.

FIG. 16. The electron-phonon renormalization Z calculated by using the bare electron-phonon vertex on Fermi surfaces.
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APPENDIX A: FREQUENCY INTEGRATION IN EQ. (4)

In Eq. (4), we perform an integration from 0 to the infinity
as follows: First we employ a new variable x, where

ω = (|ξnk| + |ξn′k′ |)1 + x

1 − x
, (A1)

and we obtain

Kee[Vn′k′nk](ξnk,ξn′k′) = 2

π

∫ 1

−1
dx

1

1 + x2
Vnkn′k′

×
(

(|ξnk| + |ξn′k′ |)1 + x

1 − x

)
. (A2)

We use the Gauss-Legendre quadrature for this integration.
To obtain the Coulomb interaction Vnkn′k′(ω) at an arbitrary
frequency ω, we employ the Chebyshev interpolation [82].

APPENDIX B: FOUR-DIMENSIONAL NUMERICAL
INTEGRATION SCHEME FOR DOS

We calculate the integration weight wi in Eq. (24) as
follows, where fij ≡ (ε − εj )/(εi − εj ), εi is εk(ξ ) at the each
corner of a pentachoron.

(1) For ε1 < ε < ε2 < ε3 < ε4 < ε5, we obtain

C = f21f31f41

ε5 − ε1
(B1)

w1 = C(f12 + f13 + f14 + f15),

w2 = Cf21, w3 = Cf31,

w4 = Cf41, w5 = Cf51. (B2)

(2) For ε1 < ε2 < ε < ε3 < ε4 < ε5, we obtain

C1 = f31f41f23

ε5 − ε1
, C2 = f41f32f24

ε5 − ε1
, C3 = f32f42f25

ε5 − ε1

(B3)

w1 = C1(f13 + f14 + f15) + C2(f14 + f15) + C3f15,

w2 = C1f23 + C2(f23 + f24) + C3(f23 + f24 + f25),

w3 = C1(f31 + f32) + C2f32 + C3f32,

w4 = C1f41 + C2(f41 + f42) + C3f42,

w5 = C1f51 + C2f51 + C3(f51 + f52). (B4)

(3) For ε1 < ε2 < ε3 < ε < ε4 < ε5, we obtain

C1 = f35f25f43

ε5 − ε1
, C2 = f25f34f42

ε5 − ε1
, C3 = f34f24f41

ε5 − ε1

(B5)

w1 = C1f15 + C2f15 + C3(f14 + f15),
w2 = C1f25 + C2(f24 + f25) + C3f24,

w3 = C1(f34 + f35) + C2f34 + C3f34,

w4 = C1f43 + C2(f42 + f43) + C3(f41 + f42 + f43),

w5 = C1(f53 + f52 + f51) + C2(f51 + f52) + C3f51.

(B6)

(4) For ε1 < ε2 < ε3 < ε4 < ε < ε5, we obtain

C = f45f35f25

ε5 − ε1
(B7)

w1 = Cf15, w2 = Cf25,

w3 = Cf35, w4 = Cf45,

w5 = C(f51 + f52 + f53 + f54). (B8)

[1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957).

[2] G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 (1960) [Sov.
Phys. JETP-USSR 11, 696 (1960)].

[3] N. Plakida, High-Temperature Cuprate Superconductors: Ex-
periment, Theory, and Applications, Springer Series in Solid-
State Sciences, Vol. 166 (Springer, Berlin, Heidelberg, 2010),
pp. 1–570.

[4] G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).
[5] C. Pfleiderer, Rev. Mod. Phys. 81, 1551 (2009).
[6] C. Mazumdar, R. Nagarajan, C. Godart, L. Gupta, M. Latroche,

S. Dhar, C. Levy-Clement, B. Padalia, and R. Vijayaraghavan,
Solid State Commun. 87, 413 (1993).

[7] R. Cava, H. Takagi, H. Zandbergen, J. Krajewski, W. Peck,
T. Siegrist, B. Batlogg, R. Vandover, R. Felder, K. Mizuhashi,
J. Lee, H. Eisaki, and S. Uchida, Nature(London) 367, 252
(1994).

[8] M. Nohara, M. Isshiki, F. Sakai, and H. Takagi, J. Phys. Soc.
Jpn. 68, 1078 (1999).

[9] M. Nohara, H. Suzuki, N. Mangkorntong, and H. Takagi,
Physica C 341-348, 2177 (2000).

[10] K. Izawa, A. Shibata, Y. Matsuda, Y. Kato, H. Takeya, K. Hirata,
C. J. van der Beek, and M. Konczykowski, Phys. Rev. Lett. 86,
1327 (2001).

[11] P. Martı́nez-Samper, H. Suderow, S. Vieira, J. P. Brison, N.
Luchier, P. Lejay, and P. C. Canfield, Phys. Rev. B 67, 014526
(2003).

[12] T. Watanabe, M. Nohara, T. Hanaguri, and H. Takagi, Phys. Rev.
Lett. 92, 147002 (2004).

[13] K. Izawa, K. Kamata, Y. Nakajima, Y. Matsuda, T. Watanabe,
M. Nohara, H. Takagi, P. Thalmeier, and K. Maki, Phys. Rev.
Lett. 89, 137006 (2002).

[14] T. Baba, T. Yokoya, S. Tsuda, T. Watanabe, M. Nohara, H.
Takagi, T. Oguchi, and S. Shin, Phys. Rev. B 81, 180509 (2010).

[15] T. Kohara, T. Oda, K. Ueda, Y. Yamada, A. Mahajan, K.
Elankumaran, Z. Hossian, L. C. Gupta, R. Nagarajan, R.
Vijayaraghavan, and C. Mazumdar, Phys. Rev. B 51, 3985
(1995).

054506-12

https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/RevModPhys.83.1589
https://doi.org/10.1103/RevModPhys.83.1589
https://doi.org/10.1103/RevModPhys.83.1589
https://doi.org/10.1103/RevModPhys.83.1589
https://doi.org/10.1103/RevModPhys.81.1551
https://doi.org/10.1103/RevModPhys.81.1551
https://doi.org/10.1103/RevModPhys.81.1551
https://doi.org/10.1103/RevModPhys.81.1551
https://doi.org/10.1016/0038-1098(93)90788-O
https://doi.org/10.1016/0038-1098(93)90788-O
https://doi.org/10.1016/0038-1098(93)90788-O
https://doi.org/10.1016/0038-1098(93)90788-O
https://doi.org/10.1038/367252a0
https://doi.org/10.1038/367252a0
https://doi.org/10.1038/367252a0
https://doi.org/10.1038/367252a0
https://doi.org/10.1143/JPSJ.68.1078
https://doi.org/10.1143/JPSJ.68.1078
https://doi.org/10.1143/JPSJ.68.1078
https://doi.org/10.1143/JPSJ.68.1078
https://doi.org/10.1016/S0921-4534(00)01259-4
https://doi.org/10.1016/S0921-4534(00)01259-4
https://doi.org/10.1016/S0921-4534(00)01259-4
https://doi.org/10.1016/S0921-4534(00)01259-4
https://doi.org/10.1103/PhysRevLett.86.1327
https://doi.org/10.1103/PhysRevLett.86.1327
https://doi.org/10.1103/PhysRevLett.86.1327
https://doi.org/10.1103/PhysRevLett.86.1327
https://doi.org/10.1103/PhysRevB.67.014526
https://doi.org/10.1103/PhysRevB.67.014526
https://doi.org/10.1103/PhysRevB.67.014526
https://doi.org/10.1103/PhysRevB.67.014526
https://doi.org/10.1103/PhysRevLett.92.147002
https://doi.org/10.1103/PhysRevLett.92.147002
https://doi.org/10.1103/PhysRevLett.92.147002
https://doi.org/10.1103/PhysRevLett.92.147002
https://doi.org/10.1103/PhysRevLett.89.137006
https://doi.org/10.1103/PhysRevLett.89.137006
https://doi.org/10.1103/PhysRevLett.89.137006
https://doi.org/10.1103/PhysRevLett.89.137006
https://doi.org/10.1103/PhysRevB.81.180509
https://doi.org/10.1103/PhysRevB.81.180509
https://doi.org/10.1103/PhysRevB.81.180509
https://doi.org/10.1103/PhysRevB.81.180509
https://doi.org/10.1103/PhysRevB.51.3985
https://doi.org/10.1103/PhysRevB.51.3985
https://doi.org/10.1103/PhysRevB.51.3985
https://doi.org/10.1103/PhysRevB.51.3985


ANISOTROPIC SUPERCONDUCTING GAPS IN YNi2B . . . PHYSICAL REVIEW B 95, 054506 (2017)

[16] Z. Hossain, S. K. Dhar, R. Nagarajan, L. C. Gupta, C. Godart,
and R. Vijayaraghavan, IEEE Trans. Magn. 31, 4133 (1995).

[17] R. Nagarajan, L. Gupta, C. Mazumdar, Z. Hossain, S. Dhar, C.
Godart, B. Padalia, and R. Vijayaraghavan, J. Alloys Compd.
225, 571 (1995).

[18] K. Prassides, A. Lappas, M. Buchgeister, and P. Verges,
Europhys. Lett. 29, 641 (1995).

[19] P. Canfield, B. Cho, and K. Dennis, Physica B 215, 337 (1995).
[20] B. K. Cho, P. C. Canfield, and D. C. Johnston, Phys. Rev. B 53,

8499 (1996).
[21] B. K. Cho, P. C. Canfield, and D. C. Johnston, Phys. Rev. B 52,

R3844(R) (1995).
[22] A. I. Goldman, C. Stassis, P. C. Canfield, J. Zarestky, P.

Dervenagas, B. K. Cho, D. C. Johnston, and B. Sternlieb,
Phys. Rev. B 50, 9668(R) (1994).

[23] J. Zarestky, C. Stassis, A. I. Goldman, P. C. Canfield, P.
Dervenagas, B. K. Cho, and D. C. Johnston, Phys. Rev. B 51,
678 (1995).

[24] B. K. Cho, M. Xu, P. C. Canfield, L. L. Miller, and D. C.
Johnston, Phys. Rev. B 52, 3676 (1995).

[25] Z. Zeng, D. Guenzburger, D. Ellis, and E. Baggio-Saitovitch,
Physica C: Superconductivity 271, 23 (1996).

[26] A. O. Shorikov, V. I. Anisimov, and M. Sigrist, J. Phys.:
Condens. Matter 18, 5973 (2006).

[27] M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
[28] T. Kasuya, Prog. Theor. Phys. 16, 45 (1956).
[29] K. Yosida, Phys. Rev. 106, 893 (1957).
[30] D. Lawrie and J. Franck, Physica C 245, 159 (1995).
[31] K. Cheon, I. Fisher, and P. Canfield, Physica C 312, 35 (1999).
[32] F. Weber, L. Pintschovius, W. Reichardt, R. Heid, K.-P. Bohnen,

A. Kreyssig, D. Reznik, and K. Hradil, Phys. Rev. B 89, 104503
(2014).

[33] P. B. Allen and B. Mitrovic in Solid State Physics, edited by
H. Eurenreich, F. Seitz, and D. Turnbull (Academic, New York,
1982), Vol. 37, p. 1.

[34] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J.
Akimitsu, Nature (London) 410, 63 (2001).

[35] H. Choi, D. Roundy, H. Sun, M. Cohen, and S. Louie, Nature
(London) 418, 758 (2002).

[36] H. Kamimura, S. Matsuno, Y. Suwa, and H. Ushio, Phys. Rev.
Lett. 77, 723 (1996).

[37] L. N. Oliveira, E. K. U. Gross, and W. Kohn, Phys. Rev. Lett.
60, 2430 (1988).
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