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Theoretical and experimental studies of a quasi-two-dimensional quantum antiferromagnet Cu(en)(H2O)2SO4

(en = C2H8N2) were performed. ab initio calculations of exchange interactions confirmed that the system
represents a realization of a spatially anisotropic zigzag square lattice. Corresponding quantum Monte Carlo
calculations of thermodynamic quantities were realized and the results were applied in the analysis of experimental
susceptibility, magnetization, and specific heat studied at temperatures ranging from nominally 300 mK up to 8 K
and magnetic fields up to 14 T. The analysis of experimental results provided the estimates of intralayer exchange
couplings, J/kB = 3.5 ± 0.2 K and J ′ = 0.35J . Theoretical analysis of spin symmetries in Cu(en)(H2O)2SO4

structure predicted the presence of symmetric exchange anisotropies (out-of plane and in-plane spin anisotropy)
and a spin-flop transition within the easy plane induced by the magnetic field applied along the easy axis.
Isothermal magnetization measurements indicated the expected transition in the field 200 mT applied along the
b axis which was finally identified as the easy axis lying within the easy plane bc. Magnetic phase diagrams with
saturation fields about 6.5 T show nearly identical behavior in all studied directions. Differences appear only in
weak magnetic fields as a result of the presence of weak exchange anisotropies ≈10−3J . The present analysis
suggests that Cu(en)(H2O)2SO4 can be a model system for exploring the interplay of quantum fluctuations,
exchange anisotropies, and magnetic field in the two-dimensional lattice space.

DOI: 10.1103/PhysRevB.95.054436

I. INTRODUCTION

Considerable theoretical effort has been devoted to under-
standing of low-dimensional quantum magnets as examples of
strongly interacting quantum many-body systems. The two-
dimensional (2D) model of spin- 1

2 Heisenberg antiferromagnet
on the square lattice represents an important paradigm of a
low-dimensional magnetism [1,2]. Depending on the sort of
the spatial anisotropy of exchange coupling within a layer,
many variations have been derived from this simple model,
involving dimerized and frustrated lattices [1,3,4].

A model of the spatially anisotropic Heisenberg antifer-
romagnetic (HAF) square lattice with the nearest-neighbor
coupling [Fig. 1(a)] described by the Hamiltonian [5]

H =
∑
i,j

[J (Si,j · Si+1,j ) + J ′(Si,j · Si,j+1)] (1)

represents the simplest way of introducing the spatial
anisotropy of exchange coupling. Si,j denotes a spin operator
at site i of chain j . J and J ′ denote intrachain and interchain
coupling, respectively. The model interpolates between the
chain (R = J ′/J = 0) and the spatially isotropic square
lattice (R = 1). Theoretical investigations [5] of a staggered
magnetization N in the ground state of the model (1) found
that a minute amount of the interchain coupling leads to the
ordered ground state with N ∼ √

J ′/J . The small N grows
with decreasing spatial anisotropy (1 − R), where R → 1,
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quickly achieving its maximal value N ≈ 0.3 already for
R ≈ 0.5 [6–9].

The properties of the spatially isotropic square lattice
have been intensively theoretically investigated, involving
plethora effects as various kinds of exchange anisotropy,
magnetic fields, and interlayer coupling [2,10–17]. On the
other hand, the aforementioned spatially anisotropic analog
with R < 1 has not received so much attention. The lack
of corresponding theoretical predictions and difficulties with
preparation of such materials did not allow finding proper
experimental realizations of the HAF square lattice with
R < 1. A few spin- 1

2 systems appeared only recently. A tiny
spatial anisotropy of exchange coupling within a magnetic
layer was indicated in the underdoped cuprate superconductor
YBa2Cu3O6.45 [18]. Numerical simulations of susceptibility
and magnetization in the whole range of R enabled the
identification of the spatial anisotropy in quasi-2D Cu(II) based
magnetic insulators Cu(pz)Cl2 (pz=pyrazine) with R = 0.3
and J/kB = 8 K, Cu(pz)(N3)2 with R ≈ 0.5 and J/kB = 15 K
and Cu(2-apm)Cl2 (2-apm = 2-aminopyrimidine) with R ≈
0.08 and J/kB = 116 K [19]. Rather weak spatial anisotropy
was found in other quasi-2D antiferromagnet Cu(PM)(EA)2

(PM = anion of pyromellitic acid, EA = ethylamine) with
R = 0.7 and J/kB = 8 K [20].

Cu(en)(H2O)2SO4 (en=ethylendiamine) (CUEN) was orig-
inally identified as a quasi-2D representative of a spin- 1

2 HAF
spatially anisotropic triangular lattice from the Néel phase
which is characterized by pronounced square-lattice features
and ordered ground state [21]. The size of the effective
intralayer coupling was estimated Jeff/kB = 2.8 K. Recent
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FIG. 1. (a) Spatially anisotropic square lattice. (b) Spatially
anisotropic zigzag square lattice.

ab initio calculations [22] showed that a magnetic subsystem
of CUEN can be treated as a 2D array of coupled HAF chains
forming a spatially anisotropic zigzag square lattice with R ≈
0.15 [Fig. 1(b)]. While in zero magnetic field, a phase transition
to magnetic long-range order was observed at the temperature
TN = 0.91 ± 0.02 K, the application of magnetic field along
the a axis increased transition temperatures. A corresponding
magnetic phase diagram possesses features characteristic
for a magnetic-field-induced Berezinskii-Kosterlitz-Thouless
phase transition [23]. The analysis of electron paramagnetic
resonance (EPR) spectra [24] revealed the presence of the
weak exchange anisotropy ≈10−3Jeff .

Previous analysis of CUEN data could grasp only main
features of magnetism in CUEN due to the absence of
theoretical predictions involving the exchange anisotropy as
well as the spatial anisotropy of the square lattice. Therefore,
one of the goals of this work is devoted to the numerical
studies of the model of HAF spatially anisotropic zigzag
square lattice with spin 1

2 . Another goal is the theoretical
study of the exchange anisotropy and spatial anisotropy of
exchange coupling in CUEN. The results are applied in the
analysis of experimental data to show that CUEN due to its
simplicity represents a model system of the spin- 1

2 spatially
anisotropic HAF zigzag square lattice with extremely weak
exchange anisotropy.

This paper is organized as follows. A synthesis procedure
and experimental details are described in Sec. II. Section III
involves ab initio calculations of exchange interactions in
CUEN, quantum Monte Carlo simulations of magnetic prop-
erties of the spatially anisotropic zigzag square lattice, and
symmetry analysis of spin interactions in CUEN. In Sec. IV,
the theoretical results are applied for the analysis of the specific
heat, magnetization, and susceptibility data as well as for
the interpretation of experimental magnetic phase diagrams
studied in the wide interval of magnetic fields. The impact of
the exchange anisotropy and the spatial anisotropy within mag-
netic layer on the occurrence of a field-induced 2D Ising and
Berezinskii-Kosterlitz-Thouless phase transition is discussed.

II. EXPERIMENTAL DETAILS

The crystal structure of CUEN determined at 300 K is
monoclinic, space group C2/c with the unit-cell parameters
a = 7.232 Å, b = 11.725 Å, and c = 9.768 Å with the
monoclinic angle β = 105.5◦, and Z = 4. The structure
(Fig. 2) consists of neutral covalent chains running along the
crystallographic a axis which are linked by hydrogen bonds
along the b and c axes [25]. Cu(II) ions are located in the center

FIG. 2. Crystal structure of CUEN. Carbon atoms and [SO4]2−

anions are omitted for clarity. The latter connect Cu atoms with
the same label, forming covalent chains along the a axis. Cu atoms
denoted as A, B, A′, and A′′ lie within the bc plane. The axis c′ lies
in the ac plane and is orthogonal to a and b axes. In accord with
the quotation in Fig. 1, the strongest antiferromagnetic exchange
interactions found by ab initio studies [22] are also depicted.

of O4N2 octahedrons which are strongly elongated along the
a axis; the average bond lengths within the equatorial plane
do not exceed 1.98 Å and the bond lengths between Cu and
O in the apical positions are about 2.5 Å. In Fig. 2, the apical
positions are omitted for clarity. Note that equatorial plane
of the octahedron is parallel with the bc∗ plane. The analysis
of the powder neutron diffraction patterns of the deuterated
analog d-CUEN confirmed the preservation of the monoclinic
space group C2/c symmetry at least down to 0.4 K [24].
Using a modified method [25], single crystals of CUEN were
prepared in the form of blue elongated plates with typical
dimensions a′ × b′ × c′ = 15 × 0.5 × 3 mm3. The a and b

axes coincide with the a′ and b′ edges, respectively. The c axis
lies within the a′c′ plane, tilting from the c′ edge by the angle
≈15◦. We note that the c′ direction is parallel with c∗.

Magnetization and static-susceptibility measurements were
performed in a commercial Quantum Design Superconducting
Quantum Interference Device (SQUID) magnetometer with a
3He insert. A sample with a mass of 60 mg was used for
the bulk measurements. Using standard Pascal constants, the
susceptibility data were corrected for the core diamagnetism.

Specific-heat measurements of a sample with a mass
of 1 mg were performed over the temperature range from
350 mK to 4 K in the magnetic field (B ≡ μ0H ), up to
14 T in a commercial Quantum Design Physical Property
Measurements System equipped with a 3He insert. The
contribution of the background addenda was determined in
separate runs.

III. CALCULATIONS

A. Spatial anisotropy of exchange couplings in CUEN

1. First-principle calculations

The ab initio studies are focused at the calculation of
magnetic interactions to test a low-dimensional character of
magnetic correlations in CUEN as proposed in Ref. [22].
Present calculations used similar technique, i.e., the spin-
polarized density-functional theory (DFT) method implement-
ing the projector-augmented wave formalism [26] with the
generalized gradient approximation (GGA) as parametrized
by Perdew, Burke, and Ernzerhof [27] to treat the exchange
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FIG. 3. Dependence of exchange coupling parameters (corre-
sponding to the Hamiltonian introduced in Ref. [22]) on Ueff values.
Full and empty symbols represent J values calculated from relaxed
[22] and experimental structural parameters, respectively. Inset: ratio
J6/J4 vs Ueff values.

correlation effects. Additionally, the onsite Coulomb repulsion
interaction is considered within the rotationally invariant
form of GGA+U approach [28], where the localized 3d

electrons experience a spin- and orbital-dependent potential
(U ) and the exchange interaction J , while the other orbitals
are delocalized and treated by the conventional GGA. The
localization/itineracy of the 3d electrons on copper atoms
is controlled by changing the value of U and keeping the
value of J constant, i.e., using rather Ueff = (U − J ). The
Brillouin zone integration is performed with the reduced k

points 6 × 4 × 5 and the Kohn-Sham wave functions are
expanded into plane waves up to a cutoff energy of 500 eV.
In accord with the previous studies [22], we considered
14 Cu neighbors coupled by J1, J2, . . . ,J6 exchange coupling
parameters (Figs. 1 and 3 in Ref. [22]). The first nonincluded
Cu atoms were in the distance larger than 9.7 Å from the
central Cu atom.

While previous calculations [22] used relaxed lattice
parameters and atomic positions, in this study, experimental
atomic positions as well as experimental lattice parameters
reported in Ref. [25] have been used for the whole interval of
Ueff values, 0–9 eV. The differences between the relaxed and
experimental structural parameters projected into the slightly
different exchange coupling constants. It was found that the
increase of Ueff values leads to the monotonous reduction of
Ji parameters achieving saturation (Fig. 3). Besides that, the
use of experimental structural parameters slightly enhanced
the spatial anisotropy. For Ueff = 6 eV, a typical value for
Cu(II)-based magnetic insulators, R ≈ 0.1 was achieved.
Both present and previous ab initio calculations indicate that
magnetic subsystem of CUEN can be treated as a quasi-2D
array of chains approximating a spatially anisotropic zigzag
square lattice in Fig. 1(b).

2. Quantum Monte Carlo calculations

The aforedescribed first-principle calculations imply that
the quantum spin- 1

2 Heisenberg model on an anisotropic square
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FIG. 4. An example of a finite-size lattice with the linear size
L = 4 used for quantum Monte Carlo simulations.

lattice with a zigzag pattern [see Fig. 1(b)] represents a minimal
feasible model that is needed for a deeper understanding of the
spatial anisotropy in CUEN compound.

Owing to this fact, let us perform a comprehensive analysis
of the basic magnetic response functions (magnetization,
susceptibility, and magnetic specific heat) in dependence on a
relative strength of two considered coupling constants of the
spin- 1

2 Heisenberg model on a zigzag square lattice given by
the Hamiltonian

H = J
∑
〈i,j〉

Si · Sj + J ′ ∑
〈k,l〉

Sk · Sl − gμBB

N∑
i=1

Sz
i . (2)

In the above, the first summation accounts for the anti-
ferromagnetic Heisenberg interaction (J > 0) between the
nearest-neighbor spins from the same zigzag chain, the second
summation accounts for the antiferromagnetic Heisenberg
interaction (J ′ > 0) between the nearest-neighbor spins from
different zigzag chains, and the last summation is the usual
Zeeman’s term (g is the respective Landé factor, and μB is
Bohr magneton). The model interpolates between a HAF chain
(R = J ′/J = 0) and spatially isotropic HAF square lattice
(R = 1).

To simulate the magnetic properties of the spin- 1
2 Heisen-

berg zigzag square lattice, we have implemented a directed
loop algorithm in the stochastic series expansion representa-
tion of the quantum Monte Carlo (QMC) method [29] from
Algorithms and Libraries for Physics Simulations (ALPS)
project [30]. The QMC simulations were performed on finite-
size lattices (see Fig. 4) with a linear size up to L = 128,
which involve under the periodic boundary conditions in total
N = 2L2 spins. This size turns up to be sufficiently large
in order to avoid finite-size effects. The adequate numerical
accuracy was achieved through 8 × 105 Monte Carlo steps
used in addition to 2.5 × 105 steps for thermalization.

The zero-field susceptibility is plotted in Fig. 5(a) against
temperature for several values of R. As one can see, the zero-
field susceptibility gradually diminishes upon lowering of the
spatial anisotropy (i.e., by increasing R), whereas the observed
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L. LEDEROVÁ et al. PHYSICAL REVIEW B 95, 054436 (2017)

(a)

(b)

FIG. 5. Thermal variations of the zero-field susceptibility (a), and
specific heat (b) of the model (2) for a few different R values.

round maximum simultaneously shifts towards higher temper-
atures. For completeness, Fig. 5(b) depicts typical temperature
dependencies of the zero-field specific heat for a few different
values of R. It is quite evident that the specific heat shows
a smooth thermal dependence with a round maximum, which
height and position is in general suppressed upon strengthening
of the spatial anisotropy (i.e., by lowering of the interaction
ratio R). The isothermal magnetization curve is plotted in
Fig. 6(a). As could be expected, the magnetization reaches the
saturation value at higher magnetic fields as the interaction
ratio increases. Another interesting observation is that the
differential susceptibility [see Fig. 6(b)] exhibits a marked
maximum slightly below a saturation field. The maximum pro-
gressively increases its height as the interaction ratio decreases.

B. Exchange anisotropy in CUEN: Symmetry constraints

Referring to the results of the first-principle calculations
and previous experimental studies, only spin interactions in the
basal bc plane will be considered. In the following, spin vectors
are denoted by their standard symbol S, or by A, B, C, D when
a distinction among the four sublattices becomes necessary
(Fig. 2). The spin interactions in the basal and the middle

(a)

(b)

FIG. 6. The magnetization (a), and differential susceptibility (b)
of the model (2) as a function of the magnetic field at the fixed
temperature kBT /J = 0.1, calculated for several values of R.

bc planes are completely isomorphic due to the pure fractional
translation τ = ( 1

2 , 1
2 ,0) in the space group C2/c, which maps

the interactions between AB spins in the basal plane to those
between C D spins in the middle plane. The corresponding
spin Hamiltonian can be written in the general form

W =
∑
〈kl〉

[Jkl(Sk · Sl) + Dkl · (Sk × Sl)]

+ 1

2

∑
〈kl〉

∑
i,j

G
ij

kl

(
Si

kS
j

l + S
j

k Si
l

) −
∑

l

(gμB B · Sl),

(3)

where Sk is the spin localized at site k, which satisfies the
classical constraint S2

k = s2. The first and the second terms
in Eq. (3) describe the isotropic exchange interaction and
antisymmetric Dzyaloshinskii-Moriya [31] (DM) anisotropy,
respectively. The third term contains all symmetric exchange
anisotropies. The interactions run over in-plane bonds denoted
by 〈kl〉. The indices i and j are summed over the three values
corresponding to the Cartesian components of the spin vectors
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FIG. 7. Distribution of the symmetric exchange spin interaction
matrices on a finite portion of the basal bc plane. The greek indices
β and γ advance along the crystal axes b and c, respectively. Spin
interactions in the middle bc plane are completely isomorphic, and
may be obtained from this figure by the simple substitution Aβ,γ →
Cβ,γ , Bβ,γ → Dβ,γ . Dashed and dotted lines represent bonds between
NNN and NN Cu atoms, respectively.

along the axes a, b, and c′ (Fig. 2). Finally, the last term
describes the usual Zeeman interaction.

Our complete symmetry analysis is restricted to the nearest-
neighbor (NN) and next-nearest-neighbor (NNN) exchange
couplings. The denotation corresponds to the spatial distances
between Cu atoms within the bc plane (Fig. 7). Consequently,
the isotropic exchange constant Jkl can take two values

Jkl = J for NNN in-plane neighbors, and

Jkl = J ′ for NN in-plane neighbors. (4)

A nonstandard notational setting for J and J ′ (corresponding
to J4 and J6 in Fig. 2) should be attributed to the fact
that, according to ab initio calculations [22], the strongest
interaction (J ) occurs between the next-nearest-neighbor Cu
atoms.

The bond centers in Fig. 7 have inversion symmetry I ,
which precludes the existence of the antisymmetric DM
interactions (Dkl = 0). However, the inversion symmetry does
not affect any of the symmetric terms, so all elements are
allowed in the symmetric anisotropic exchange tensor. The
bonds G+ and G− (G ′

+ and G ′
−) are related by the c-type

glide operation σ̃b = σb + (0,0, 1
2 ), where σb is the reflection

about the plane b = 0. No other restrictions are imposed on
the interactions matrices; all other elements of the unit-cell
symmetry group can be generated from the fundamental set τ ,
I , σ̃b by suitable group multiplications.

Therefore, all symmetric exchange anisotropies are de-
scribed by the four distinct matrices

G+ =
⎛
⎝Gaa Gab Gac′

Gab Gbb Gbc′

Gac′ Gbc′ Gc′c′

⎞
⎠,

G− =
⎛
⎝ Gaa −Gab Gac′

−Gab Gbb −Gbc′

Gac′ −Gbc′ Gc′c′

⎞
⎠

for NNN in-plane neighbors, and

G ′
+ =

⎛
⎝G ′

aa G ′
ab G ′

ac′
G ′

ab G ′
bb G ′

bc′
G ′

ac′ G ′
bc′ G ′

c′c′

⎞
⎠,

G ′
− =

⎛
⎝ G ′

aa −G ′
ab G ′

ac′
−G ′

ab G ′
bb −G ′

bc′
G ′

ac′ −G ′
bc′ G ′

c′c′

⎞
⎠ (5)

for NN in-plane neighbors, which are distributed as shown
in Fig. 7. The above matrices may be considered as traceless
because the isotropic component of the exchange interaction
has already been accounted for by Eq. (4).

Considering the absence of frustration and weakness of
exchange anisotropies, we can assume a ground state that is
commensurate on each sublattice. Then, within the mean-field
approximation, the energy per spin is given by

WS = J̃A · B + G̃aaAaBa + G̃bbAbBb + G̃c′c′Ac′Bc′

+ G̃ac′ (AaBc′ + Ac′Ba) − 1
2gμB B · (A + B), (6)

where

J̃ = J + J ′, G̃ii = Gii + G ′
ii (i = a,b,c′),

G̃ac′ = Gac′ + G ′
ac′ . (7)

A notable fact is that neither Gab (G′
ab) nor Gbc′ (G′

bc′ ) enter
Eq. (6) because their contribution averages out completely.
The only remaining off-diagonal element G̃ac′ in Eq. (6) can
also be eliminated by rotating the axes a, c′ by an angle ψ

around the b axis, i.e., by the transformation

(S1 + iS3) = (Sa + iSc′ )eiψ , S2 = Sb,

tan 2ψ = 2G̃ac′

G̃c′c′ − G̃aa

. (8)

The above transformation defines the new orthogonal axes 1,
2, 3, whose advantage is that WS acquires diagonal form

WS = J̃A · B + (G̃1A1B1 + G̃2A2B2 + G̃3A3B3)

− 1
2gμB B · (A + B), (9)

where A1, A2, A3 (B1, B2, B3) are the components of the spin
A (B) along the axes 1, 2, 3.

However, a more transparent formulation of our results
is obtained in terms of new variables, the normalized mag-
netization m = (A + B)/2s and the normalized staggered
magnetization n = (A − B)/2s, which satisfy the classical
constraints m · n = 0 and m2 + n2 = 1. Note that m is related
to the magnetization M expressed in physical units as M =
gμBsm.

To ascertain the relative significance of individual terms
in Eq. (9), we can employ a dimensionless scale ε

[32] to introduce rescaled anisotropies g1 = −2G̃1/ε
2J̃ ,

g2 = −2G̃2/ε
2J̃ , g3 = −2G̃3/ε

2J̃ and magnetic field h =
gμB B/2sεJ̃ .

The magnetization m is treated as a quantity of order
ε, whereas the staggered magnetization n and the rescaled
variables are assumed to be of order of unity. Then, to
leading order, the classical constraints reduce to m · n = 0
and n2 = 1. Finally, the (rescaled) energy per spin, measured
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in units J̃ ε2s2, is expressed entirely in terms of the staggered
magnetization n,

wS = 1
2

[
g1n

2
1 + g2n

2
2 + g3n

2
3

] + 1
2 (n · h)2, (10)

and n1, n2, n3 are the components of n taken along the axes 1,
2, 3. We note that the energy of the pure Néel state has already
been removed from the above expression. The magnetization
m is also expressed in terms of n:

m = −ε

2
[n × (n × h)]. (11)

Although Eq. (9) is more general than Eq. (10), the latter
provides adequately accurate results as long as all anisotropies
G̃1, G̃2, G̃3 and the applied field gμBB/s are sufficiently weak
compared to the exchange constant J̃ .

In the absence of external fields (h = 0), ws in Eq. (10)
is minimized by the Néel state polarized along the easy axis,
determined by min{g1,g2,g3}. The net magnetization, given
by Eq. (11), is zero. For a field applied along the easy axis,
the antiferromagnetic (AF) ground state first remains spin
polarized along the same axis with m = 0. A spin-flop (SF)
transition occurs at the critical field hSF above which minimum
energy is achieved for the configuration with n perpendicular
to the easy axis; the actual direction of n is determined by
min{{g1,g2,g3}\min{g1,g2,g3}}, where \ denotes set comple-
ment. The transition is accompanied by a sudden jump in the
magnetization along the direction of the applied field, which
further grows linearly with h as dictated by Eq. (11). We
mention that the dimensionless anisotropy constant along the
easy axis in Eq. (10) can be set equal to zero without any loss
of generality. The remaining two anisotropies can be taken
positive, the smaller of the two would equal to h2

SF. However,
in view of uncertainty regarding the actual direction of the
easy axis, we keep Eq. (10) for the moment in its current form.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Exchange anisotropy in CUEN

1. Magnetic susceptibility

Temperature dependence of magnetic susceptibility χ was
studied at temperatures from 0.5 to 8 K. The measurements
were performed in the field-cooling (FC) and zero-field-
cooling (ZFC) regimes. The magnetic field B = 10 mT was
applied along the a, b, and c′ directions (Fig. 8).

The data are characterized by a round maximum at about
2.5 K resulting from the contribution of short-range magnetic
correlations. The transition to the long-range magnetic order
manifests as a sharp minimum appearing at about 0.93 K in
all studied directions (Figs. 8 and 9). All FC and ZFC data
coincide in the paramagnetic phase. In the ordered phase,
FC and ZFC data bifurcate for the fields applied along the a

and c′ directions, while they remain identical for B ‖ b. The
observed spatial anisotropy in χ clearly reflects the anisotropy
of g factor, as already indicated by EPR and susceptibility
studies, ga > gb,c′ and gb ∼ gc′ [24]. To exclude the effects
introduced by g factors, susceptibility data were normalized
properly, considering conclusions of previous Monte Carlo
calculations [13].

The MC studies investigated the effects of extremely weak
exchange anisotropies on the finite-temperature properties of

FIG. 8. Temperature dependence of CUEN susceptibility in the
field 10 mT applied along the a, b, and c′ directions. Full and
open circles correspond to data obtained in FC and ZFC regimes,
respectively.

a spin- 1
2 XXZ model on the square lattice (R = 1) described

by the Hamiltonian [13]

H = J

[∑
i,d

(1−	μ)
(
Sx

i Sx
i+d + S

y

i S
y

i+d

) + (1−	λ)Sz
i S

z
i+d

]
.

(12)

The parameter i = (i1,i2) runs over all sites of the square
lattice and d connects each site to its four nearest neighbors.
Aside from isotropic HAF model (	λ,μ = 0), Eq. (12) defines
a system with easy-axis (	λ = 0, 0 < 	μ � 1) or easy-plane
exchange anisotropy (	μ = 0, 0 < 	λ � 1). The study re-
vealed that for extremely weak exchange anisotropies 	λ,μ ≈
10−2, the uniform susceptibility follows the prediction for the
isotropic model at sufficiently high temperatures comparable
to J while at about 0.3J , a crossover to the anisotropic
easy-axis or easy-plane (XY) regime appears.

FIG. 9. Temperature dependence of normalized CUEN suscep-
tibility in the field 10 mT. Full and open symbols represent data
obtained in FC and ZFC regimes, respectively. The solid line
represents the magnetic specific heat of CUEN in B = 0 T.
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Hence, CUEN susceptibility data were normalized at
temperatures above 2 K (≈0.7Jeff) to obtain a universal curve
χ/g2. The g values

ga = 2.200, gb = 2.005, and gc′ = 2.000, (13)

used in the normalization, within the experimental accuracy
correspond to those extracted from the susceptibility analysis
in Ref. [24]. The normalization was extrapolated down to the
lowest temperatures (Fig. 9).

As can be seen, in the paramagnetic phase, only slight
deviations from the universal curve appear in the vicinity
of a phase transition as a result of extreme weakness of the
exchange anisotropy. In such a case, a reliable indication of the
aforementioned 2D Heisenberg-Ising or XY crossover is not
possible. On the other hand, a significant anisotropy of χ/g2

persisting in the ordered phase can be ascribed to the effect of
the exchange anisotropies. The low-temperature susceptibility
data (Fig. 9) show that CUEN is not a simple XXZ system
described by Eq. (12). Considering the results of the symmetry
analysis in Sec. III B, two exchange anisotropies can be
expected in CUEN; an easy-plane (out-of-plane) anisotropy
	λ [in coincidence with a notation in Eq. (12)], and in-plane
exchange anisotropy 	in. The latter is associated with the
presence of the symmetry-breaking easy axis within the easy
plane and 	λ > 	in.

At this moment, there are no theoretical predictions for the
uniform susceptibility of the XYZ model on the square lattice,
so we can believe that the extraordinary behavior of CUEN
susceptibility observed along the b axis, namely, the absence
of FC-ZFC difference and a steep decrease of the susceptibility
below the second maximum appearing around 0.85 K, support
a conjecture about identifying the b axis as the easy axis of the
system. It should be noted that previous studies [24] revealed
the presence of DM anisotropy in the interlayer coupling. This
mechanism could be considered as a possible source of hidden
spin canting which might lead to the observed behavior of the
susceptibility along the b axis.

2. Magnetization

Magnetic-field dependence of magnetization was studied at
constant temperatures below a phase transition (T = 0.5 and
0.8 K) and above the phase transition (1.2 K) in magnetic
fields applied along the a, b, and c′ directions (Fig. 10).
Despite relatively large temperature interval ranging from
about 0.5 TN to 1.3 TN , thermal fluctuations do not seem
to play a significant role. A tiny increase of magnetization
at 1.2 K indicates that thermal fluctuations slightly enhance
polarizing effects of external magnetic field. The individual
components of a magnetic moment induced in the field 5 T
achieve values ≈0.5μB , which represents only half of the full
moment per Cu(II) ion. It reflects rather strong influence of
intralayer antiferromagnetic correlations with 2D saturation
field, B2D

sat , higher than 5 T. Previous powder studies [21]
estimated B2D

sat = 7.2 T.
In the low-field region below 0.5 T, magnetization curve is

linear in the field applied along the a and c′ directions at all
studied temperatures. In the field parallel to the b axis, the lin-
earity is observed only in the data taken above TN , while below
TN an anomalous jump appears in the field ≈200 mT (Fig. 10,

(a)

(b)

FIG. 10. Isothermal magnetization of CUEN studied in the field
applied along the a, b, and c′ directions. Solid lines represent QMC
calculations of magnetization (L = 128) for the model (2) with
J/kB = 3.6 K, R = 0.35, and T = 0.8 K. The g factors were taken
according to Eq. (13). Upper insets: zooming of the low-field region.
Lower insets: (a) M/(Bg2) in the low-field region at 0.5 K (see text).
(b) Derivative of magnetization in the low-field region B ‖ b.

upper insets). As mentioned in Sec. III B, a spin-flop transition
should be expected in the field applied along the easy axis.

Therefore, the b axis (or axis 2 from Sec. III B) can be
identified with the easy axis. By further noting that the angle
ψ from the transformation in Eq. (8) is defined up to the integer
multiple of π/2, we can deliberately assume that G̃2 > G̃3 >

G̃1. Then, the anisotropies in Eq. (9) can be rewritten in the
form of the in-plane exchange anisotropy G̃in ≡ (G̃2 − G̃3),
and out-of-plane exchange anisotropy G̃out ≡ (G̃2 − G̃1), and
G̃out > G̃in. They correspond to aforementioned 	λ and 	in

through the relation

	λ = G̃out

J̃
, 	in = G̃in

J̃
. (14)

Similarly, gin ≡ (g3 − g2), gout ≡ (g1 − g2), and gout > gin >

0. Then, Eq. (10) can be rewritten as

wS = (1/2)
[
goutn

2
1 + ginn

2
3 + (n · h)2], (15)

where the irrelevant constant term was omitted.
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In the absence of the external field, the ground state is
achieved by the configuration n2 = ±1, n1 = n3 = 0, and
m = 0. When the field is applied along the easy axis, the
above configuration with the energy ws = h2/2 remains stable
until h2 < h2

SF = gin. For higher fields, h > hSF, the energy is
minimized by the configuration n3 = ±1, n1 = n2 = 0, i.e.,
spins flip within the easy plane from the easy axis 2 to the
middle axis 3 and the ground state develops a nonzero net
magnetization along the easy axis m2 = hε/2 as dictated by
Eq. (11). In physical units,

(gbμBBSF)2 = 8J̃ s2G̃in. (16)

To obtain a more accurate experimental estimate of the
spin-flop field, a derivative of the magnetization dM/dB was
calculated [Fig. 10(b), lower inset]. Then, the position of
the maximum was taken as the critical field [33], namely,
220 ± 20 mT and 250 ± 10 mT for dM/dB at 0.5 and
0.8 K, respectively. Considering the critical field at 0.5 K
as the estimation of the spin-flop field, the application of
Eqs. (14) and (16) with gb = 2.005, s = 1

2 and the effective
intralayer coupling J̃ /kB ≡ 2Jeff/kB = 5.6 K, provides the
estimate 	in ≈ 1.4 × 10−3. The value is within the range
of exchange anisotropies observed in quasi-2D Cu(II)-based
antiferromagnets [33,34].

The exchange anisotropies (14) introduce k = 0 gaps in the
magnon spectrum. In the absence of magnetic fields,

h̄�in = 2s

√
2J̃ G̃in, h̄�out = 2s

√
2J̃ G̃out. (17)

Note that the lower magnon gap (in the absence of magnetic
fields) can be expressed as

h̄�in = gbμBBSF, (18)

and depends only on the measured value of BSF. Using gb =
2.005 and BSF = 0.22 T, the predicted lower magnon gap is
about 0.3 K. It would be interesting to verify this prediction in
the antiferromagnetic resonance experiment.

Both anisotropies affect the development of a ground-state
(T = 0) magnetization, obtained by a direct minimization of
Eq. (9):

M1 = g2
1μ

2
BB

4[J̃ + 1/3(G̃out + G̃in)] − 2G̃out
, B ‖ 1

M3 = g2
3μ

2
BB

4[J̃ + 1/3(G̃out + G̃in)] − 2G̃in
, B ‖ 3

and finally for B ‖ 2

M2 =
{

0, B < BSF
g2

bμ
2
BB

4[J̃+1/3(G̃out+G̃in)]−2G̃in
, B > BSF.

(19)

It is clear that a reduced magnetization Mi/(Big
2
i ) along the

hard axis (i = 1) is predicted to grow faster than magnetiza-
tions for the fields applied in the 23 plane. Moreover, above
the spin-flop transition, both reduced magnetizations (i = 2,3)
should grow with the same rate.

Using aforementioned g factors (13), reduced experimental
magnetizations were calculated for a, b, c′ at the lowest
temperature T = 0.5 K [Fig. 10(a), lower inset]. A qualitative
comparison of the experimental data with the prediction (19)

suggests that at least within a few degrees, the axes 1 and 3
could coincide with the a and c′ directions, respectively. The
identification of the hard axis can be supported by previous
EPR studies which revealed the presence of the exchange
anisotropy, with the easy plane bc∗, perpendicular to the a axis
[24]. The coincidence of the easy plane bc∗ with the equatorial
plane of a local octahedron significantly elongated along the
a axis (Fig. 2) suggests that a weak single-ion anisotropy
produced within the octahedron [35] might contribute to the
observed effective exchange anisotropy in CUEN. Recall that
the axis 2 coincides with the crystallographic b axis by
definition. This choice of the anisotropy axes corresponds
to extremal values of g factors observed in previous EPR
studies [24]. Thus, the intrinsic spin anisotropy in CUEN
can result from the interplay of dipolar coupling between
Cu(II) ions [24], single-ion anisotropy within the CuO4N2

units [35], and virtual hopping of electrons between ground
and excited orbitals of neighboring Cu(II) ions [36]. Additional
ab initio studies that include spin-orbit interaction are required
to further clarify the role of individual contributions.

It should be noted that within the experimental accuracy,
in higher fields above ≈0.5 T, the differences between the
reduced data completely vanish and they fall on a universal
curve. Such behavior could be ascribed to the prevailing effect
of magnetic field after compensating the influence of weak
exchange anisotropies. Potentially, in higher fields, the system
might mimic an isotropic Heisenberg in external magnetic
field. Consequently, a field-induced Berezinskii-Kosterlitz-
Thouless transition could be observed as predicted in Ref. [14].

B. Spatially anisotropic square lattice in CUEN

As was shown in Sec. III A 1, a spatial distribution of
exchange interactions in CUEN approximates a spatially
anisotropic zigzag square lattice with R ≈ 0.15. A model of
Heisenberg antiferromagnet (	λ,μ = 0) on the corresponding
lattice studied in Sec. III A 2 was applied in the analysis
of a normalized experimental susceptibility above a phase
transition [Fig. 11(a)]. The best agreement with experimental
data was achieved for the intrachain coupling J/kB ≈ 3.7 K
and R ≈ 0.35. Concerning experimental magnetization data
which are nearly insensitive to temperature (Fig. 10), QMC cal-
culations were performed at 0.8 K and a reasonable agreement
was achieved for J/kB = 3.6 K and R = 0.35. Very similar
fitting set of the interaction parameters was also obtained
from the analysis of the specific-heat data in zero magnetic
field, namely, J/kB ≈ 3.4 K and R ≈ 0.35 [Fig. 11(b)]. A
difference between the R extracted from the present analysis
and the ab initio calculations could be ascribed to a combined
influence of spin-orbit coupling and hydrogen bonds present in
the structure of CUEN. The improvement could be achieved
by incorporation of spin-orbit coupling and van der Waals
interactions, which could modify the ab initio results by
accounting for the influence of H-O and N-H bridges [37].

Considering deviations from 2D behavior, previous quan-
tum MC studies [39] of HAF square lattice (R = 1) with
interlayer coupling J ′′ provided the estimation of the ordering
temperature as a function of J ′′. While for isotropic HAF
on a simple cubic lattice (	λ,μ = 0, J ′′/J ≈ 1) the ordering
temperature is kBTN/J ≈ 0.95, in CUEN the corresponding
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(b)

(a)

FIG. 11. (a) Temperature dependence of normalized CUEN
susceptibility in the field 10 mT. Open symbols represent data in
ZFC regime. Solid and dashed lines represent corresponding QMC
calculations (L = 128) for the model (2) with R = 0.35 and 0.15,
respectively. (b) Temperature dependence of magnetic specific heat
of CUEN single crystal in zero magnetic field. A lattice contribution
in the effective form of 0.003T 2.8 has been subtracted from the total
specific heat [38]. Solid and dashed lines represent corresponding
QMC calculations (L = 128) of the specific heat for the model (2)
with R = 0.35 and 0.15, respectively.

ratio kBTN/Jeff is reduced to the value ≈0.3, indicating a
strong 2D character of magnetic correlations with J ′′/Jeff �
0.03. To include the effect of the intralayer spatial anisotropy,
alternative approach was applied to estimate the strength of J ′′
by using a relation [40]

kBTN = J ′′
(

N

N0

)2(
ξ

a

)2

. (20)

Parameter a represents a lattice constant, and N/N0 is the
reduction in the T = 0 staggered magnetization relative to
the Néel value induced by 2D quantum fluctuations at length
scales shorter than the intralayer correlation length ξ . MC
studies [7,9] of a spatially anisotropic square lattice [Fig. 1(a)]
provided for R = 0.3 a reduced value of the staggered
magnetization N ∼ 0.25, as well as a reduction of correlation

lengths ξchain/a ≈ 6 and ξinterchain/a ≈ 2. Both values are
lower than previously estimated ξ/a ≈ 14 for the isotropic
square lattice at the transition temperature in CUEN [21].
For TN = 0.93 K and aforementioned intrachain correlation
length, Eq. (20) provides the estimation of the interlayer
coupling J ′′/kB ≈ 0.1 K, which agrees very well with the
aforementioned estimate J ′′/Jeff � 0.03.

For such a low ratio, the MC studies [39] predict much lower
height of the specific-heat peak. The difference can be ascribed
not only to finite-size effects accompanying MC calculations,
but also to the presence of the easy-axis exchange anisotropy
in CUEN. The latter together with a nonzero J ′′ support the
ordering process at TN .

The aforementioned estimate of the spatial anisotropy of
the intralayer exchange coupling allowed to refine the strength
of the in-plane exchange anisotropy. Taking J̃ = J (1 + R)
then the values J/kB = 3.4 K and R = 0.35 provide J̃ /kB

∼=
4.6 K, and application of Eqs. (14) and (16) yields 	in ≈
2 × 10−3. This value is about one order of magnitude lower
than the ratio J ′′/Jeff , suggesting the predominance of the
interlayer coupling in the ordering process in CUEN. The
prevalence of the interlayer correlations might also manifest in
the coincidence of the transition temperature with the position
of a minimum appearing in the susceptibilities along the b and
c′ directions (Fig. 9).

C. Magnetic phase diagrams of CUEN

Previous studies [23] of a magnetic B-T phase diagram of
CUEN in the magnetic field applied along the a axis revealed
the enhancement of transition temperatures which is a typical
feature of a field-induced Berezinskii-Kosterlitz-Thouless
(BKT) phase transition [14]. Quantum MC calculations [17]
showed that this characteristic preserves in highly anisotropic
quasi-2D magnets, i.e., the systems with extremely weak
interlayer coupling. The applied magnetic field reduces the
amplitude of phase fluctuations and the magnitude of the order
parameter [17]. The former dominates in a low-field regime
and increases the entropy S3D and the amplitude of the specific-
heat anomaly C3D associated with a 3D ordering process. The
diminishing of the order parameter in higher magnetic fields
is accompanied with the decrease of a transition temperature
as well as both S3D and C3D quantities [17].

Such a behavior of the entropy and the specific-heat
anomaly was already observed in CUEN in the field applied
along the a axis [23]. Thus, for completeness, we investigated
B-T diagrams in the fields applied along the b and c′ directions.
A temperature dependence of specific heat was measured
in constant magnetic fields (Fig. 12). It is obvious that in
both directions, an enhancement of a transition temperature
and C3D occurs in the fields up to about 2 T. A slight
anisotropy of B-T diagrams (Fig. 13) is fully determined by
the g-factor anisotropy, as manifested by the behavior of the
Bg product. Within experimental accuracy, the data fall on a
nearly universal curve for all three orientations (Fig. 13, inset).
It can be seen that the shape of the phase diagrams mimics the
BKT transition expected for the isotropic Heisenberg square
lattice in applied magnetic fields [14]. However, theoretical
saturation fields are rather overestimated as a result of existing
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(b)

(a)

FIG. 12. Temperature dependence of magnetic specific heat of
CUEN single crystal in a magnetic field (a) B ‖ b, (b) B ‖ c′. For
clarity, only data for selected field values are depicted.

spatial anisotropy of exchange coupling within a magnetic
layer in CUEN.

1. B-T diagram in B ‖ b

As was shown in Secs. III B and IV A, the symmetry of
the crystal structure of CUEN supports a weak exchange
anisotropy within the magnetic layer, which should influence
the magnetic phase diagram at least in the region of low
magnetic fields. Considering AF-SF transition within the easy
plane, the B-T diagram in B ‖ b was completed showing
nearly negligible ordered AF phase (Fig. 13) which could
not be directly identified by aforementioned specific-heat data
depicted in Fig. 12.

Since the in-plane anisotropy 	in is weaker than the
out-of-plane anisotropy 	λ, in fields slightly above BSF,
the spins should lie within the easy plane as in the case
of the easy-plane magnet (	in = 0). As was suggested in
Refs. [41,42], magnetic field applied within the easy XY plane
acts as an effective easy-axis exchange anisotropy breaking the
XY symmetry. As a result, further increase of magnetic field
leads to establishing Ising-type symmetry and the formation
of 2D long-range Ising order [41,42]. It should be noted that

FIG. 13. B-T phase diagram of CUEN single crystal as derived
from specific-heat data (full symbols). For B ‖ b, also the AF phase
derived from the isothermal magnetization is depicted. The data for
B ‖ a are taken from Ref. [23]. Saturation fields estimated from the
specific heat in 14 T are also included (see text). Open symbols
represent the theoretical predictions [14] for a field-induced BKT
transition in HAF square lattice [R = 1, J/kB ≡ Jeff/kB = 2.8 K,
g factors are taken from Eq. (13)]. Inset: the same diagram, B is
replaced by a product gB.

the statement holds for a pure 2D XY magnet, i.e., 	in = 0,
	μ = 0, and 	λ = 1 in Eq. (12). Experimental studies of
quasi-2D magnets with extremely weak easy-plane anisotropy
	λ = 0.007 suggest a field-induced Ising-type behavior only
in low magnetic fields applied within the easy plane [42].
The authors believe that in higher fields a field-induced XY
anisotropy develops similarly like in the case of the isotropic
Heisenberg lattice [14]. This conjecture coincides with the
aforementioned behavior of isothermal magnetization curves
at 0.5 K falling on a universal curve above ≈0.5 T [lower inset
of Fig. 10(a)]. The corresponding prediction for the saturation
field of the isotropic antiferromagnet [43]

B2D
sat = 2zJ s

gμB

, (21)

with z = 4, s = 1
2 , and J = Jeff , provides B

2D,b
sat ≈ 8.3 T,

which is much higher than the previous powder estimate
[21]. The inclusion of the spatial intralayer anisotropy zJ →
2(J + J ′) with R = 0.35 and J/kB = 3.4 K, estimated from
the specific-heat analysis, yields B

2D,b
sat ≈ 6.9 T. The value

is even lower than a critical field Bc = 7 T corresponding
to the position of a specific-heat anomaly at Tc = 0.45 K in
Fig. 12 and can be treated as a lower limit of a saturation
field, involving only 2D correlations. Actual value should
involve also the contribution of the interlayer coupling Bsat =
B2D

sat + 2z′′J ′′s/(gμB) [17].
To obtain a more realistic estimate, the specific-heat data in

14 T were analyzed within a spin-wave theory [44]. Above
saturation fields, a gap 	H opens in the spin excitation
spectrum, developing linearly with magnetic field

	H = gμB(B − Bsat). (22)
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The corresponding specific heat is characterized by exponen-
tial behavior at sufficiently low temperatures T < 	H/kB :

C ≈ exp
(

	H

kBT

)
T

. (23)

Fitting the specific-heat data with Eq. (23) below 3 K, and
subsequent application of Eq. (22), yields 	H/kB = 8.9 ±
0.3 K and Bb

sat = 7.3 ± 0.3 T. It is clear that the experimental
uncertainty ≈0.6 T is comparable with the hypothetical
contribution of interlayer correlations. Considering the afore-
mentioned value J ′′/kB ≈ 0.1 K, the field 0.6 T corresponds
to z′′ ∼ 8, i.e., eight neighbors in adjacent magnetic layers.
This result coincides well with the spatial distribution of Cu
atoms. Specifically, each Cu atom in the bc layer has four
nearest neighbors in the adjacent bc layer at distances ranging
from 5.2 to 6.8 Å. Other neighbors in adjacent layers lie at
distances 11 Å and more.

It should be noted that the application of Eq. (21) for J

and J ′ obtained from the susceptibility and magnetization
data analysis provides 2D saturation fields 7.45 and 7.25 T,
respectively. Thus, even negligible dispersion of exchange
parameters precludes reliable estimation of the contribution
of 3D correlations to the saturation field.

2. B-T diagram in B ‖ a,c′

For the field applied along the c′ direction, no spin-flop
transition is expected. The spins lie in the easy plane, already
perpendicular to the magnetic field. Applying the results of
Ref. [41], we can speculate that for small fields up to about
BSF, the same scenario with 2D Ising order can realize. For
higher field, prevailing the energy of intrinsic easy-plane
anisotropy 	λ, a field-induced XY anisotropy develops as
in the case of the isotropic Heisenberg lattice [14]. The
application of Eq. (21) provides the same saturation field along
the c′ direction as that for the field along the b axis, namely,
B

2D,c′
sat ≈ B

2D,b
sat .

Concerning the field applied along the a axis, i.e., perpen-
dicular to the easy plane, theoretical studies of the square lattice
with weak easy-plane exchange anisotropy 	λ show that at
least moderate magnetic fields reinforce the planar character
of the system [41,45]. A ground state becomes fully aligned at
a saturation field [45]

B2D
sat = (2 − 	λ)zJ s

gμB

. (24)

Application of the same procedure with the specific-heat data
in the field 14 T applied along the a axis yields a gap 	H /kB =
10.9 ± 0.3 K and Ba

sat = 6.6 ± 0.2 T, for g = 2.2. On the other
hand, the application of Eq. (24) with 	λ ≈ 	in, R = 0.35,
J/kB = 3.4 and 3.7 K provides the saturation fields B

2D,a
sat =

6.2 and 6.8 T, respectively.
It is obvious that in CUEN, unlike the spatial anisotropy

of intralayer exchange coupling, the exchange anisotropy has
a negligible effect on the saturation fields. However, the
extremely weak exchange anisotropy and relatively strong
2D quantum fluctuations seem to play an important role in
the determination of the symmetry of the order parameter.
Preliminary study [46] of the temperature dependence of a
magnetic Bragg reflection (001) in zero magnetic field revealed

a critical index β = 0.18, which is very close to 0.125, a value
predicted for a 2D Ising universality class.

V. CONCLUSION

First-principle calculations of exchange interactions in
CUEN confirmed that the system represents a 2D array of
coupled chains forming a zigzag square lattice within the
bc layer. Using quantum Monte Carlo calculations, finite-
temperature properties including specific heat, magnetization,
and uniform susceptibility were calculated for the zigzag
square lattice with various strength of a spatial anisotropy
ranging from independent chains (R = 0) to a square lattice
(R = 1). The analysis of experimental single-crystal magnetic
susceptibility, specific heat, and magnetization confirmed the
presence of a spatial anisotropy of exchange couplings within
a magnetic layer as expected from first-principle calculations.

Theoretical analysis of the underlying crystal symmetry in
CUEN restricted to NN and NNN spin interactions within
the bc layer ruled out the presence of Dzyaloshinskii-
Moriya interactions. The symmetric exchange anisotropies
were described within a concept of out-of-plane and in-plane
exchange anisotropies. Consequent analysis of experimental
data enabled the identification of the easy plane with the bc′
plane and the in-plane easy axis with the b axis.

Magnetic phase diagrams studied in a wide range of
magnetic fields show only weak dependence on the field ori-
entation. The main feature is a nonmonotonous development
of transition temperatures characteristic for a field-induced
Berezinskii-Kosterlitz-Thouless phase transition [14]. Another
feature, a spin flop within the easy plane in the field applied
along the b axis, arises from the interplay of the magnetic
field and the weak exchange anisotropy. In the other two
orientations a and c′, only one phase was detected.

It is obvious that the application of magnetic field can
change the universality class of a phase transition in quasi-2D
magnets, depending on the orientation of magnetic field. Up
to now, theoretical studies of a square lattice with a weak
easy-plane exchange anisotropy 	λ in the field applied within
the easy plane are missing. For a 2D XY model on the square
lattice, existing theoretical studies unambiguously indicate a
field-induced 2D Ising behavior [41]. It is not clear whether
this result can be directly extrapolated also for the case of
rather weak exchange anisotropies (	λ ≈ 10−3–10−2) typical
for real quasi-2D magnets. Experimental studies [42] suggest
that in such systems, a crossover between low-field-induced
2D Ising behavior and higher-field-induced XY regime exists.
A more complicated situation can be expected in the low-field
region of magnets with nonzero in-plane exchange anisotropy
	in. Therefore, further theoretical studies are desirable to
understand the behavior of real quasi-2D magnets in magnetic
field.
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Kajňáková, M. Orendáč, V. A. Starodub, A. G. Anders, O.
Kravchyna, and A. Feher, Solid State Commun. 147, 239 (2008).

[39] P. Sengupta, A. W. Sandvik, and R. R. P. Singh, Phys. Rev. B
68, 094423 (2003).

[40] S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev.
Lett. 60, 1057 (1988).

[41] A. R. Pereira and A. S. T. Pires, Phys. Rev. B 51, 996 (1995).
[42] Y. Kohama, M. Jaime, O. E. Ayala-Valenzuela, R. D. McDonald,

E. D. Mun, J. F. Corbey, and J. L. Manson, Phys. Rev. B 84,
184402 (2011).

[43] L. J. de Jongh and A. R. Miedema, Adv. Phys. 23, 1 (1974).
[44] T. Radu, H. Wilhelm, V. Yushankhai, D. Kovrizhin, R. Coldea,

Z. Tylczynski, T. Lühmann, and F. Steglich, Phys. Rev. Lett. 95,
127202 (2005).

[45] A. Cuccoli, G. Gori, R. Vaia, and P. Verruchi, J. Appl. Phys. 99,
08H503 (2006).
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