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The Néel temperature, staggered magnetization density, as well as the spin-wave velocity of a three-
dimensional (3D) quantum Heisenberg model with antiferromagnetic disorder (randomness) are calculated
using first-principles nonperturbative quantum Monte Carlo simulations. In particular, we examine the validity of
universal scaling relations that are related to these three studied physical quantities. These relations are relevant
to experimental data and are firmly established for clean (regular) 3D dimerized spin-1/2 Heisenberg models.
Remarkably, our numerical results show that the considered scaling relations remain true for the investigated
model with the introduced disorder. In addition, while the presence of disorder may change the physical properties
of regular dimerized models, hence leading to different critical theories, both the obtained data of Néel temperature
and staggered magnetization density in our study are fully compatible with the expected critical behavior for
clean dimerized systems. As a result, it is persuasive to conclude that the related quantum phase transitions of
the considered disordered model and its clean analogues are governed by the same critical theory, which is not
always the case in general. Finally, we also find smooth scaling curves even emerging when both the data of the
investigated disordered model as well as its associated clean system are taken into account concurrently. This in
turn implies that, while in a restricted sense, the considered scaling relations for 3D spin-1/2 antiferromagnets
are indeed universal.
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I. INTRODUCTION

Universality is an elegant concept and frequently appears
in all fields of physics in various forms. In addition to
being important in theoretical physics, the idea of universality
can also serve as useful guidelines for experiments. One
well-known example of the usefulness of universality is the
critical exponents of second order phase transitions [1–3].
Specifically, the numerical values of critical exponents, such
as ν related to the correlation length and β associated with the
magnetization, do not in principle depend on the microscopic
details of the underlying models, but are closely connected to
the symmetries of the considered systems. For example, the
zero temperature phase transitions of two-dimensional (2D)
dimerized quantum Heisenberg models are governed by the
O(3) universality class [4–10], which is originally resulted
from the three-dimensional (3D) classical Heisenberg model
[11,12]. Furthermore, the spatial dimerization patterns have
no impact on the critical theories of these quantum phase
transitions (however, there may be anomalous corrections to
scalings [6,10,13]). Another noticeable kind (and example)
of universality is the generally applicable finite-temperature
and finite-volume expressions of several physical quantities of
antiferromagnets [14–28]. To be more precise, based on the
corresponding low-energy effective field theory, the theoretical
predictions of these observables, such as staggered and
uniform susceptibilities, depend solely on a few parameters
and have the same forms regardless of the magnitude of the
spin of the systems. In conclusion, universality does play a
crucial role in major areas of physics.

Recently, the experimental data of the phase diagram of
TlCuCl3 under pressure [29–31] have triggered many studies
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both theoretically and experimentally. In particular, several
universal scaling relations are established for 3D quantum
antiferromagnets [32–36]. Specifically, near the quantum
phase transitions of clean (regular) 3D dimerized spin-1/2
Heisenberg models, the Néel temperatures TN scale in several
universal manners with the corresponding staggered magne-
tization density Ms regardless of the dimerization patterns.
In addition, a quantum Monte Carlo study conducted later
demonstrates that these universal scaling relations even remain
valid when (certain kinds of) quenched bond disorder, i.e.,
antiferromagnetic bond randomness are introduced into the
systems [37]. Notice the upper critical spatial dimension of
the mentioned zero-temperature phase transitions is three.
Consequently, close to the critical points one expects to
observe multiplicative logarithmic corrections to TN and Ms

when these quantities are considered as functions of the
strength of dimerization. Very recently, an analytic investi-
gation even argues that the widely believed phase diagram of
3D quantum antiferromagnets is modified dramatically due to
these logarithmic corrections [38]. The exponents related to
these logarithmic corrections are determined analytically in
Refs. [39–42]. Furthermore, the theoretical predictions of the
numerical values of these new exponents have been verified as
well [41]. Notice that the exponents related to the logarithmic
corrections to TN and Ms take the same values for three spatial
dimensions. Using this result as well as the fact that the β

and ν have the same mean-field values, it is straightforward
to show that close the phase transition, as functions of their
corresponding Ms , TN/c3/2, and TN/J are linear in Ms

without any logarithmic corrections. Here, c and J are the
low-energy constant spin-wave velocity and the average of
antiferromagnetic couplings, respectively. These connections
between TN and the associated Ms , namely TN/c3/2 = AMs

and TN/J = A1Ms (A and A1 are some constants) in the
vicinity of a quantum critical point are confirmed in Ref. [41].
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In real materials, impurities are often present [43]. In
addition, studies of quenched disorder effects on Heisenberg-
type models continue to be one of the active research topics
in condensed matter physics [44]. Therefore one intriguing
physics to explore further is that whether the logarithmic
corrections, as well as the linear dependence of TN/c3/2 and
TN/J on their associated Ms are valid for 3D systems with
the presence of antiferromagnetic bond disorder. Since such
studies of disordered models are relevant to the experimental
data of TlCuCl3, in this investigation we have carried out
a large-scale quantum Monte Carlo simulations of a 3D
spin-1/2 antiferromagnet with configurational disorder which
is first introduced in Ref. [45]. Remarkably, our data indicate
convincingly that for the studied disordered model, TN/c3/2

and TN/J do depend on their corresponding Ms linearly
close to the associated quantum phase transition (in this study
observables with a overline on them refer to the results of
disorder average). Furthermore, the obtained data of TN and
Ms here can be described well by the expected critical behavior
for regular dimerized models. This suggests that the related
quantum phase transition of the considered disordered system
may be governed by the same critical theory as that of its
clean analogues. It should be pointed out that while close to
the considered quantum critical point the relations TN/c3/2 =
AMs and TN/J = A1Ms hold even for the investigated model
with the employed disorder, based on the results of current
and previous studies, we find that the prefactors A and A1 are
likely to be model-dependent. Surprisingly, when both the data
of current study and that of a clean system available in Ref. [35]
are taken into account concurrently, smooth universal curves
appear. This in turn implies that, while in a restricted sense, the
investigated scaling relations of 3D spin-1/2 antiferromagnets
are indeed universal. Finally, although the prefactor A of
TN/c3/2 = AMs (TN/c3/2 = AMs) is likely not universal, we
find the quantity A/(J ′/J )3/2

c , where (J ′/J )c is the considered
critical point, obtained in this study matching very well with
the corresponding one in Ref. [41]. This indicates that with an
appropriate normalization, a true universal quantity may still
exist.

This paper is organized as follows. After the introduction,
in Sec. II, we define the investigated model as well as the
calculated observables. We then present a detail analysis of
our numerical data in Sec. III. In particular, the scaling relation
TN/c3/2 = AMs as well as the logarithmic corrections to
TN and Ms are examined carefully. Finally, in Sec. IV, we
conclude our study.

II. MICROSCOPIC MODEL, CONFIGURATIONAL
DISORDER, AND OBSERVABLES

The 3D quantum Heisenberg model with random antifer-
romagnetic couplings studied here is given by the Hamilton
operator

H =
∑

〈ij〉
Jij

�Si · �Sj +
∑

〈i ′j ′〉
J ′

i ′j ′ �Si · �Sj , (1)

where Jij and J ′
i ′j ′ are the antiferromagnetic couplings (bonds)

connecting nearest neighbor spins 〈ij 〉 and 〈i ′j ′〉, respectively,
and �Si is the spin-1/2 operator at site i. The bond disorder

J’
J

FIG. 1. The model with configurational disorder studied here.

considered in this investigation is a generalization of the
configurational disorder introduced in Ref. [45] and is realized
here as follows. First of all, a given cubical lattice is subdivided
into two by two by two cubes. Secondly, the 12 bonds within a
cube are classified into three sets of bonds so that each of them
is made up of four bonds parallel to a particular coordinate
axis. Furthermore, one of the three sets of bonds of every
cube is chosen randomly and uniformly. In particular, these
picked bonds are assigned the antiferromagnetic coupling
strength J ′. Finally, the remaining unchosen bonds as well
as those not within any cubes have antiferromagnetic coupling
strength J , which is set to be 1.0 in this investigation. Figure 1
demonstrates one realization of the model with configurational
disorder studied here. Notice in our study the couplings J ′ and
J satisfy J ′ > J . Hence as the ratio of J ′/J increases, the
system will undergo a quantum phase transition.

To determine the Néel temperature TN , the staggered
magnetization density Ms , as well as the spin-wave velocity
c of the considered models with the employed configurational
disorder, the observables staggered structure factor S(π,π ),
both the spatial and temporal winding numbers squared (〈W 2

i 〉
for i ∈ {1,2,3} and 〈W 2

t 〉), spin stiffness ρs , first Binder
ratio Q1, and second Binder ratio Q2 are calculated in our
simulations. The quantity S(π,π ) takes the form

S(π,π ) = 3
〈(
mz

s

)2〉
(2)

on a finite cubical lattice with linear size L. Here, mz
s =

1
L3

∑
i(−1)i1+i2+i3Sz

i with Sz
i being the third-component of the

spin-1/2 operator �Si at site i. In addition, the spin stiffness ρs

has the following expression:

ρs = 1

3βL

∑

i=1,2,3

〈
W 2

i

〉
, (3)

where β is the inverse temperature. Finally, the observables
Q1 and Q2 are defined by

Q1 =
〈∣∣mz

s

∣∣〉2

〈(
mz

s

)2〉 (4)
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and

Q2 =
〈(
mz

s

)2〉2

〈(
mz

s

)4〉 , (5)

respectively. With these observables, the physical quantities
required for our study, namely TN , Ms , and c, can be calculated
accurately.

III. THE NUMERICAL RESULTS

To examine whether the scaling relations TN/c3/2 = AMs

and TN/J = A1Ms , where A and A1 are some constant, appear
for the considered 3D quantum Heisenberg models with the
introduced configurational disorder, we have carried out a
large-scale Monte Carlo simulation using the stochastic series
expansion (SSE) algorithm with very efficient loop-operator
update [46]. We also use the β-doubling scheme [47] in our
simulations so that Ms can be obtained efficiently. Here, β

refers to the inverse temperature. Specifically the β-doubling
scheme works as follows [48]. First of all, each generated dis-
ordered configuration is simulated with inverse temperatures
β = 2n, n = 0,1,2,3,4,5, . . . ,nmax sequentially. Furthermore,
for every fixed β = 2i , one carries out simulations with N

Monte Carlo steps for thermalization (without performing
the measurement). Here, one Monte Carlo step consists of
one diagonal update, one loop update, and flipping each free
spin with probability 1/2. Following this one additionally
executes 2N Monte Carlo steps with measurements for the
same β = 2i . This N–2N procedure is done two times before
moving to the calculations of β = 2i+1. Notice prior to starting
the simulations for β = 2i+1, i.e., performing the N–2N

procedure at β = 2i+1, the (number of) operators including
the identity operator in the last operator sequence SM (SSE
sequence) associated with β = 2i is doubled from M to 2M ,
resulting in a new operator sequence S2M which will be used
as the initial configuration for the calculations at β = 2i+1. In
the initial SSE sequence S2M of the simulations for β = 2i+1,
the first M operators are the same as the ones of SM . Moreover,
the second set of M operators in S2M , namely the (M + 1)th to
2Mth operators are exact copy of those of the first M operators,
either in the same order or reversed order. These described
procedures are repeated until the calculations for β = 2nmax

are finished.
Notice the convergence of the considered observables to

their ground state values is reached when the disorder-averaged
results from the last four consecutive measurements, namely
the measurements carried out at β = 2nmax and β = 2nmax−1,
are consistent quantitatively with each other. Furthermore, the
consistency between the two successive measurements done
at the same β in the disordered average indicates that the
errors related to equilibration (thermalization), at least for
the second measurement, is smaller than the statistical errors.
Hence in the production simulations, ideally one has to make
sure that the nmax, as well as the Monte Carlo steps N in the
N–2N procedure introduced above, should be large so that the
zero temperature results are obtained and the thermalization
is reached for all temperatures. We would like to emphasize
the fact that with the β-doubling scheme, the starting operator
sequences for lower temperatures should be in general not far

1 10 100 1000

βJ

0

0.05

0.1

0.15

0.2

S
(π

,π
)

J’ /J= 3.0, L = 12
J’ /J= 3.5, L = 16
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J’ /J= 4.075, L = 24
J’ /J= 4.1, L = 24

FIG. 2. Convergence of the structure factors S(π,π ) to their
ground-state values for several considered J ′/J and box sizes L.
The solid lines are added to guide the eye.

away from being thermalized. As a result, this method is very
efficient for studying the ground state properties of disordered
systems.

It should be pointed out that each disordered configuration
in this study is generated by its own random seed in order
to reduce the effect of correlation between observables
determined from different configurations. Our preliminary
results indicate that the critical point (J ′/J )c lies between
4.15 and 4.17. Hence we have focused on the data of
J ′/J � 4.13. Notice in our study, Ms are calculated using
several hundred configurations and TN (c) are determined
with several thousand (few to several ten thousand) disorder
realizations. The convergence of the considered observables to
their correct values associated with the employed disorder, as
well as the systematic uncertainties due to Monte Carlo sweeps
within each randomness realization, number of configurations
used for disorder average, and thermalization are examined
by performing many trial simulations and analysis. The
resulting data from these trial simulations and analysis agree
quantitatively with those presented here. Notice the statistics
reached for studies of clean systems typically are better than
those of investigation related to disordered models. Therefore
we have additionally carried out many calculations using
exactly the same parameters to estimate the uncertainties due
to the statistics obtained here. In summary, the quoted errors
of the calculated observables in this study are estimated with
conservation so that the influence of these mentioned potential
systematic uncertainties are not underestimated.

A. The determination of Ms

The observable considered here for the calculations of
Ms is S(π,π ). Specifically, for a given J ′/J , the related
Ms is given by the square root of the corresponding bulk
S(π,π ). It should be pointed out that the zero temperature,
namely the ground state values of S(π,π ) are needed for these
calculations. Hence the β-doubling scheme is used here. The
β dependence, i.e., inverse temperature-dependence of S(π,π )
for several considered J ′/J and L is shown in Fig. 2. In
addition, the 1/L dependence of the ground-state S(π,π ) for
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FIG. 3. 1/L dependence of the staggered structure factors S(π,π )
for several considered values of J ′/J . The dashed lines are added to
guide the eye.

some studied J ′/J is depicted in Fig. 3. The largest box size
reached here for calculating the staggered structure factors is
L = 36. Motivated by the theoretical predictions in Ref. [49],
the determination of Ms is done by extrapolating the related
finite volume staggered structure factors to the corresponding
bulk results, using the following four Ansätze:

a0 + a1/L + a2/L
2 + a3/L

3, (6)

b0 + b1/L + b2/L
2, (7)

c0 + c2/L
2 + c3/L

3, (8)

d0 + d2/L
2. (9)

In particular, the Ms corresponding to each (good) fit is
obtained by taking the square root of the resulting constant
term. The numerical values of Ms determined from the fits
employing Ansätze (6), (7), and (8) are shown in Fig. 4. For
most considered J ′/J , the Ms obtained from the fits using

2 2.5 3 3.5 4 4.5 5

J’/J
0

0.1

0.2

0.3

0.4

0.5

M
s

Eq. (6)
Eq. (7)
Eq. (8)

FIG. 4. Ms as functions of the considered values of J ′/J . The
dashed lines are added to guide the eye.

2 2.5 3 3.5 4 4.5 5

J’/J

0

0.1

0.2

0.3

0.4

0.5

M
s

FIG. 5. Fits of Ms to the Ansatz of Eq. (10) (solid line) and a pure
power function a1|jc − j |b1 (dashed line). The range of J ′/J and
χ 2/DOF for the fit using Eq. (10) (Ansatz a1|jc − j |b1 ) are J ′/J �
3.75 and 1.2 (J ′/J � 3.9 and 1.1), respectively. The leading exponent
b of Eq. (10) (b1 of a1|jc − j |b1 ) determined from the fit is 0.513(6)
(0.42(1)). Applying the Ansatz a1|jc − j |b1 [Eq. (10)] to fit the data
containing those of J ′/J � 3.5 (J ′/J � 2.5) leads to very poor fitting
quality.

these three Ansätze match each other very well. For the few
cases where the agreement between the three results of Ms is
not satisfactory, we find that the ones computed from the fits
associated with Ansatz (7) are consistent with those obtained
by applying either Ansatz (6) or Ansatz (8) to fit the data.
Therefore the Ms resulting from the analysis using Ansatz
(7) are used for the required investigation in the following.
Occasionally, Ansatz (9) is considered for consistency check
as well.

In Ref. [41], the 3D dimerized double cubic quantum
Heisenberg model is studied. In particular, the relation of
TN/c3/2 = AMs is examined in detail. Since three spatial
dimensions is the upper critical dimension of the quantum
phase transition considered in Ref. [41], one expects to observe
logarithmic corrections to Ms and TN when approaching
the critical point. The theoretical calculations of the critical
exponents associated with these logarithmic corrections are
available in Refs. [39–41], and the predicted values are
confirmed by a careful analysis of Ms and TN conducted
in Ref. [41]. Since disorder may change the upper critical
dimension of the clean system, it will be interesting to check
whether this is indeed the case for our model. The exponent
related to the logarithmic correction to Ms , namely β̂ has a
value of 3

11 for 3D clean dimerized model. Inspired by this, we
have fitted our Ms data to an Ansatz of the form

a|jc − j |b| ln(|(jc − j )/jc|)|3/11, (10)

where j = J ′/J [jc = (J ′/J )c is the critical point] and a

is a constant. Notice the b appearing in Eq. (10) is the
associated leading critical exponent, which is predicted to be
0.5. Interestingly, we find that the numerical values of b [in
Eq. (10)] obtained from the fits have an average of 0.507(18),
which is in reasonably good agreement with the predicted
mean-field result 0.5 (see Fig. 5 for one of such fitting results).
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In other words, our Ms data are consistent with the standard
scenario for clean systems. This implies that the upper critical
dimension of the clean model is not affected by the considered
configurational disorder.

We would like to point out that the Ms data obtained here
can also be fitted to the Ansatz a1|jc − j |b1 . Furthermore, the
average value of b1 determined from the corresponding good
fits is 0.410(16). Finally, the critical points (J ′/J )c obtained
from the fits of these two Ansätze are given by 4.166(3)
and 4.162(3) on average, respectively. Based on these results,
at this stage, we are not able to reach a definite answer of
whether the calculated Ms data here receive any logarithmic
correction. Later, when discussing the determination of TN ,
we will argue that our data are in favor of the scenario that
logarithmic corrections do enter the J ′/J dependence of the
related observables.

B. The determination of TN

The employed observables for calculating TN are ρsL, Q1,
as well as Q2. Notice a constraint standard finite-size scaling
Ansatz of the form (1 + b0L

−ω)[b1 + b2tL
1/ν + b3(tL1/ν)2 +

. . . ], up to second, third, and (or) fourth order in tL1/ν , is
adopted to fit the data. Here, bi for i = 0,1,2, . . . are some
constants and t = T −TN

TN
. For some J ′/J , Ansatz up to fifth

order in tL1/ν is used. The data of ρsL and Q2 for J ′/J =
2.0 (J ′/J = 3.0) are shown in Fig. 6 (Fig. 7). In addition,
the Q1 data of J ′/J = 3.8 and J ′/J = 3.95 are presented in
Fig. 8. For every J ′/J , Ansätze of various orders in tL1/ν

are employed to fit several sets of data (each set of data has
different range of L). The cited values of TN in this study are
estimated by averaging the corresponding results of good fits.
Furthermore, the error bar of each quoted TN is determined
from the uncertainty of every individual TN of the associated
good fits. For this analysis, we consider a fit with χ2/DOF �
2.0 a good fit. In some cases, more restricted conditions on
χ2/DOF and the obtained results are imposed for consistency.
The determined TN from the observables ρsL, Q1, and Q2

are shown in Fig. 9 [50]. In addition to TN , other interesting
physical quantities to study are the critical exponents ν and ω

appearing in the relevant finite-size scaling Ansätze . Notice the
dimensionality as well as some critical exponents are present
in the conventional finite-size scaling Ansatz involving ρs .
Based on the analysis of Ms in previous section, while it is
plausible to employ the conventional finite-size scaling Ansatz
of clean models for the considered finite-temperature phase
transitions, one cannot rule out the possibility that when J ′/J
is close enough to the critical point, the effective dimensions of
the systems as well as the values of the exponents in the scaling
Ansatz receive corrections due to the employed disorder. On
the other hand, because of their definition, Binder ratios, like
Q1 and Q2 calculated here, do not encounter such kind of
subtlety. Indeed, the values of ν obtained from the fits related
to ρsL are systematic smaller than the corresponding results
associated with Q1 and Q2. Such a trend is becoming more
clear as one approaches the quantum critical point (J ′/J )c.
Hence here we only summarize the results of ν obtained from
fitting the data of Q1 and Q2 to their expected Ansätze [51].
The individual average ν of J ′/J with J ′/J < 4.0, obtained
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FIG. 6. ρsL (top) and Q2 (bottom) as functions of T/J for
J ′/J = 2.0 and L = 8, 10, 12, 16, 20, 24, 28, 32, and 36. J is
1.0 in our calculations. The solid lines are added to guide the eye.

from the related good fits of Q1 (Q2), range from 0.69 to 0.72
(0.69 to 0.73). On the other hand, the values of ν calculated for
4.0 � J ′/J � 4.12 (J ′/J = 4.13) lie between 0.63 and 0.69
(0.60 and 0.62). We attribute this result to the fact that data
of large box size are limited for J ′/J � 4.0. Such scenario is
observed for clean dimerized models as well [6,10]. Finally,
the determination of ω with reasonable precision is hindered
by the strong correlation between ω and its related prefactor
b0 in the fitting formulas.

After obtaining the numerical values of TN , we turn to
the study of whether a logarithmic correction, like the one
associated with Ms , exists for TN when TN is treated as a
function of J ′/J . Similar to our earlier analysis for Ms , we
use two Ansätze, namely,

a2|jc − j |b2 and

a3|jc − j |b3 | ln(|(jc − j )/jc|)|3/11 (11)

to fit the data of TN/J determined from all the calculated
observables Q1, Q2, and ρsL. The exponent b3 of the second
Ansatz of Eq. (11) is predicted to take its mean-field value
0.5. Furthermore, the number 3/11 appearing above is the
expected theoretical value for the exponent τ̂ associated with
this logarithmic correction. Notice we investigate the physical
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FIG. 7. ρsL (top) and Q2 (bottom) as functions of T/J for
J ′/J = 3.0 and L = 8, 10, 12, 16, 20, 24, 28, 32, and 36. J is
1.0 in our calculations. The solid lines are added to guide the eye.

quantity TN/J instead of TN . This is motivated by the analysis
done in [41]. The consideration of TN/J is also natural since
it is a dimensionless quantity. Interestingly, for all three data
sets, we arrive at good fits (χ2/DOF � 1.0) using the second
Ansatz of Eq. (11) when data points of TN/J with J ′/J � 3.75
are included in the fits. On the other hand, the results obtained
from applying the first Ansatz to fit the data have much worse
fitting quality. As fewer data are included in the fits, while the
results related to the second Ansatz remain good, the χ2/DOF
associated with the fits employing the first Ansatz continue
to be very large (except those of the fits using data sets close
to (J ′/J )c). Notice occasionally fits with the first Ansatz lead to
good results, but not in a systematic manner. The exponent b3

and the critical point (J ′/J )c obtained from all the good fits are
given by 0.49(1) and 4.166(2) on the average, respectively. The
calculated value of b3, namely b3 = 0.49(1) is in reasonably
good agreement with the expected mean-field result 0.5. A fit
of this analysis including the logarithmic correction is shown
in Fig. 10. According to what has been reached so far, we
conclude that our data are fully compatible with the scenario
that the upper critical dimension (Dc), associated with the
relevant quantum phase transition of our model, is the same
as that of the corresponding clean model. In particular, the
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FIG. 8. Q1 as functions of T/J for J ′/J = 3.8 (top) and J ′/J =
3.95 (bottom). The box sizes L for these two values of J ′/J are
L = 8, 10, 12, 16, 20, 24, 28, 32, and 36 (and 40 for J ′/J = 3.95). J
is 1.0 in our calculations. The solid lines are added to guide the eye.

related critical exponents are in agreement with the theoretical
predictions of clean systems.

For the analysis conducted above, the exponents β̂ and τ̂ are
fixed to their theoretical values for pure systems. Furthermore,
the corresponding leading exponents, namely β and ν obtained
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FIG. 9. TN , obtained from Q1, Q2, and ρsL, as functions of J ′/J .
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FIG. 10. Fit of TN/J data (obtained from Q1) with J ′/J � 4.0
to their theoretical expression with a logarithmic correction a3|jc −
j |b3 | ln(|(jc − j )/jc|)|3/11. The b3 obtained from the fit is given by
0.494(8). No fits using the Ansatz of a2|jc − j |b2 are shown because
the majority of such fits are of poor quality.

from the fits agree nicely with those associated with clean
models. One may wonder if consistent results with those of
pure systems can be reached when β̂ and τ̂ are left as free
parameters in the fits. To examine whether one can arrive
at such conclusions, we have carried out fits with β and ν

being set to 0.5. In addition, the Tc appearing in the Ansätze
are fixed to the ones determined in previous analysis and β̂

and τ̂ are left as free parameters for the fits. The β̂ and τ̂

obtained from these new fits are given by 0.245 and 0.305 in
the average, respectively. The uncertainty for each individual
result used for the average ranges from few percent to around
ten percent. We find that the determined values of β̂ (τ̂ ) are
slightly smaller (larger) than 0.2727 systematically. This result
reflects the fact that the β (ν) obtained from our previous
analysis is a little bit greater (less) than 0.5. Notice β̂ and τ̂ are
associated with the corrections to scaling. As a result, to reach a
good estimate of their numerical values requires high precision
data, and in particular, data close to the critical point may be
needed as well. Indeed, our analysis implies that two percent
deviation from 0.5 in β (ν) leads to around 10% discrepancy
from 0.2727 in β̂ (τ̂ ). Considering the challenge of calculating
these two quantities accurately for disordered systems, the
numerical evidence we have obtained for claiming that the β̂

and τ̂ determined here are in reasonable agreement with their
predicted values of clean systems is acceptable. Interestingly,
the average of the calculated β̂ and τ̂ is 0.2750 which nicely
matches the expected 0.2727 for both β̂ and τ̂ of the related 3D
pure models. In summary, our conclusion that the considered
phase transition of the studied disordered model is governed
by the same critical theory as that of its clean counterpart(s) is
beyond reasonable doubt.

C. The determination of c

The values of spin-wave velocity c are estimated using the
idea of winding numbers squared as suggested in Refs. [52,53].
Specifically, for a given J ′/J and a box size L, one varies
the inverse temperature β so that the spatial and temporal

3.25 3.3 3.35 3.4 3.45 3.5 3.55 3.6

βJ
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3.5

3.6
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 >
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6.6 6.7 6.8 6.9 7 7.1 7.2

βJ

12.5

13

13.5

14
< Ws

2
 >

< Wt
2
>

FIG. 11. The spatial and temporal winding numbers squared, as
functions of βJ at J ′/J = 3.0, for L = 8 (top) and 16 (bottom). J is
1.0 in our simulations.

winding numbers squared (〈W 2
s 〉 = 1

3 (〈W 2
1 〉 + 〈W 2

2 〉 + 〈W 2
3 〉

and 〈W 2
t 〉) take the same values. Assuming one reaches the

condition 〈W 2
s 〉 = 〈W 2

t 〉 at an inverse temperature β	, then
the spin-wave velocity c(J ′/J,L) corresponding to this set of
parameters J ′/J and L is given by c(J ′/J,L) = L/β	. Notice
with our implementation of configurational disorder, the three
spatial winding numbers squared take the same values after
one carries out the disorder average. For the J ′/J of smaller
magnitude, the convergence of c to their infinite volume values
are checked using the data of L = 8 and 16. In addition, the
bulk c for large magnitude J ′/J are obtained from the data of
L = 12 and 24. With the statistics reached here, we find that
for all the considered J ′/J the corresponding bulk spin-wave
velocities c can be correctly given by the results at L = 16
or 24. The convergence of the spin-wave wave velocities to
their bulk values for J ′/J = 3.0 and 3.9 are demonstrated
in Figs. 11 and 12, respectively, and the bulk c we obtained
are presented in Fig. 13. We would like to point out that for
J ′/J � 4.0, our estimated central values of c for L = 12 and
24 differ by only less than 0.34 percent and are within their
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FIG. 12. The spatial and temporal winding numbers squared, as
functions of βJ at J ′/J = 3.9, for L = 12 (top) and 24 (bottom). J

is 1.0 in our simulations.

corresponding error bars. Therefore the results of c shown in
Fig. 13 should be very reliable.

D. The scaling relations TN/c3/2 = AMs and TN/J = A1 Ms

Having obtained Ms , TN , and c, we move to examine
whether the scaling relations TN/c3/2 = AMs and TN/J =
A1Ms , which are confirmed for clean system(s), remain true
for the model with the introduced configurational disorder
studied here. Actually, the validity of these relations for our
model is expected, since our data of TN/J and Ms are fully
compatible with the theoretical predictions for clean systems,
and neither c nor J receives any logarithmic corrections.
Indeed, the obtained results of TN/c3/2, when being treated
as a function of Ms , can be fitted to the Ansatz of AMs using
the data with the corresponding Ms having small magnitude.
Furthermore, the prefactor A determined from the fits has
an average Aavg ∼ 0.858(4). Two outcomes of the fits are
demonstrated in Fig. 14. Notice both the uncertainties of TN/c

and Ms are taken into account in the fits. Similarly, close to the

1 1.5 2 2.5 3 3.5 4 4.5 5

J’/J

2

2.1

2.2

2.3

2.4

2.5

2.6

c

FIG. 13. The estimated values of c for all the considered J ′/J .

quantum phase transition, our data of TN/J and Ms do satisfy
a linear relation as well, see Fig. 15.

One may wonder whether the data of TN/c3/2 can be fitted
to the Ansätz of the form AMs + B with B being consistent
with zero. We have applied such analyses to the data obtained
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N
/c

1.
5
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N
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5

FIG. 14. Fits of TN/c3/2 as linear functions of Ms passing through
the origin. The TN of the top and bottom panels are obtained from Q1

and Q2, respectively.
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FIG. 15. Fit of TN/J as a linear function of Ms passing through
the origin. The used values of TN are obtained from Q1. The average
of the slopes for all the good fits including those resulting from Q2

and ρsL is given by 2.22(1).

close to (J ′/J )c. In particular, we arrive at the result that the
constants B determined from the fits satisfy |B| � 0.005 and
the magnitude of corresponding uncertainties are comparable
with |B|. We consider these outcomes as a strong indication
that our data of TN/c3/2, as a function of Ms , can be described
well by a linear function of Ms passing through the origin.

IV. DISCUSSIONS AND CONCLUSIONS

For clean 3D dimerized quantum Heisenberg models, it is
established that the physical quantities TN/c3/2 and TN/J , as
functions of Ms , scale linearly with Ms . Notice since three
spatial dimensions is the upper critical dimensions associated
with the related quantum phase transition, one expects there
are logarithmic corrections to TN and Ms close to the critical
point. The linear scaling relations between TN and Ms indicate
that the exponents associated with the logarithmic corrections
to TN and Ms take the same values. This result is obtained
theoretically in Refs. [39,40] and is confirmed in Ref. [41].

Motivated by these universal scaling relations between TN

and Ms for the clean 3D dimerized systems, here we study
these relations for a 3D quantum Heisenberg model with
configurational disorder. A remarkable result observed in our
investigation is that close to the considered critical point, the
relations TN/c3/2 = AMs and TNJ = A1Ms remain valid for
the studied model with the introduced disorder. In addition,
both the obtained data of TN and Ms in this study do receive
multiplicative logarithmic corrections and are fully compatible
with the expected critical behavior for clean dimerized models.
This indicates that the related quantum phase transition of the
studied system may be described by the same critical theory
as that of its clean analogues.

According to the Harris criterion and its generalization
[54–56], if the correlation length exponent ν for a critical
point of a clean quantum system satisfies the inequality νD

> 2 (D is the spatial dimensionality), then with the presence
of (quenched) disorder the resulting critical behavior remains
the same. On the other hand, if the inequality νD > 2 is

violated, then the associated phase transition of the model
with (weak) spatial disorder must be governed by a new
universality class so that the inequality νD > 2 is fulfilled,
assuming that the new critical point is still well-defined. In
addition to these two scenarios, there also exists a so-called
infinite-randomness category for which the disordered systems
usually show unconventional dynamical scaling [44].

With the Harris criterion, one may intuitively expect that
the considered configurational disorder is relevant. This is
because the related quantities of the clean analogues of the
studied disordered model do not satisfy the inequality νD >

2. However, the results obtained here suggest that the Harris
criterion is not valid for the 3D spin-1/2 dimerized Heisenberg
model with configurational disorder.

While many studies of classical disordered systems are
consistent with the scenarios given by the Harris criterion,
the applicability of Harris criterion for dimerized quantum
spin and Boson systems with the presence of disorder is
less satisfactory. For example, studies of two-dimensional
(2D) dimerized spin-1/2 Heisenberg model (on the square
lattice) with certain kinds of bond disorder, including the
close-packed and configurational disorder introduced in [45]
and the dimer-type disorder employed in [57], indicate that
the corresponding phase transitions are still governed by
the critical theory for their clean counterparts, i.e., O(3)
universality class [45,57]. This demonstrates that besides the
configurational disorder, the Harris criterion is not applicable
for other kinds of disorder as well. Moreover, it is likely that
when these mentioned types of disorder are present in the
3D systems, the resulting zero temperature phase transitions
associated with dimerization will still belong to the mean-field
universality class with multiplicative logarithmic corrections.
In summary, although there are numerous studies regarding the
Harris criterion, under which circumstances will it be valid is
still not firmly established yet. Finally, we want to highlight the
fact that the known dimerized quantum spin systems for which
the Harris criterion is valid are the 2D Heisenberg models with
random dimer-dilution [58–61]. As a result, it will be exciting
to carry out studies of 3D spin-1/2 systems with random dimer
dilution to examine whether the results obtained here remain
true for these 3D bond-diluted models.

It is also interesting to understand the effects of disorder
on the upper critical dimension Dc related to the considered
phase transition, namely quantum phase transition triggered by
dimerization for spin-1/2 Heisenberg models. For a disordered
quantum spin system which has spatial dimensions equal to
the Dc of clean dimerized spin-1/2 models (here Dc = 3), if
the Harris criterion is valid, then the disorder increases the Dc

of the system when it is compared to that of clean models.
This conclusion is based on the facts that the condition νD

>2 must be fulfilled and the critical exponents are the ones
of mean-field when D is above Dc. On the other hand, if
the Harris criterion is violated, then the effects of disorder on
the Dc of the studied system need further examination. For
example, for the investigated model in our study, the Dc of
the considered disordered system remains the same as the one
of clean dimerized quantum spin models. This is because the
obtained data can be fitted quantitatively to Ansätze of mean-
field exponents with multiplicative logarithmic corrections.
On the other hand, assuming that no logarithmic corrections
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FIG. 16. TN/c3/2 as functions of M for both the considered
disordered model in this investigation and the clean model studied
in Ref. [35]. The TN used in the figure for the disordered model are
determined from the observable Q1.

are observed for a 3D dimerized spin-1/2 system with the
presence of certain kind of disorder, and that its data can be
understood well by the mean-field exponents, then clearly the
Dc of this disordered system is below that of clean dimerized
quantum spin models.

In Ref. [41], it is found that for the clean 3D double
cubic quantum Heisenberg model the numerical value of
the coefficient A in TN/c3/2 = AMs is given by A ∼ 1.084.
For the disordered model considered here, the corresponding
coefficient is given by A ∼ 0.86, which is different from
A ∼ 1.084 associated with the double cubic model studied
in Ref. [41]. Consequently, this coefficient A is likely not
universal and depends on the microscopic details of the
investigated systems. Interestingly, using the data determined
here and that of a clean system calculated in Ref. [35],
smooth universal curves associated with the studied scaling
relations do show up (see Figs. 16 and 17). This implies

0 0.1 0.2 0.3 0.4 0.5

Ms

0

0.2

0.4

0.6

0.8

1

1.2

T
N
/J

disorder
clean

FIG. 17. TN/J as functions of M for both the considered
disordered model in this investigation and the clean model studied
in Ref. [35]. The TN used in the figure for the disordered model are
determined from the observable Q1.

that while not being generally true, universal coefficients
may still exist within models sharing some similar characters.
It will be interesting to investigate, in a more quantitative
manner, that under what conditions will the coefficients A

and A1 of different models take the same numerical values.
In particular, conducting similar investigation as the one
presented here for the 3D dimerized quantum spin models with
random dimer-dilution will be extremely compelling, since
such studies not only serve as checks for the universal scaling
shown in Figs. 16 and 17, the obtained results will also be
useful in better understanding the Harris criterion.

Although based on our investigation we conclude that the
coefficient A is likely not universal, we find the quantity
A/(J ′/J )3/2

c determined in this investigation matching very
well with the corresponding result in Ref. [41]. Specifically,
using the data available in Ref. [41] and here, we reach
A/(J ′/J )3/2

c ∼ 0.1019 and A/(J ′/J )3/2
c ∼ 0.1011 for the

double cubic model and the disordered model studied here,
respectively. Notice the numerical values of A/(J ′/J )3/2

c

obtained from two different models are in very good agreement
with each other. While our preliminary result of A/(J ′/J )3/2

c

of other dimerized model does not seem to support the scenario
that the quantity A/(J ′/J )3/2

c takes a universal value, the inves-
tigation carried out in this study suggests true universal quan-
tities may still emerge for both the clean and disordered 3D
antiferromagnets (which share some similar properties). Un-
covering the possible hidden universal relations of 3D antifer-
romagnets will be an interesting topic to conduct in the future.

Besides being important and interesting from a theoretical
perspective, the results obtained in this study are relevant
to the experimental data of TlCuCl3 as well. For example,
the linear relations between TN and Ms close to the critical
point shown here are analogues to the one demonstrated in
Ref. [36]. Furthermore, similar to the findings in Ref. [36] that
no logarithmic corrections are observed, the Ms data calculated
here show the same behavior, although with a different value
for the exponent. We would like to point out that while the
obtained data of Ms can be fitted to an Ansatz of the form
a1|jc − j |b1 , these data can also be understood well using the
same Ansatz with a multiplicative logarithmic correction. It
should also be highlighted that the TN/J data determined here
can only be described quantitatively and systematically by the
second Ansatz in Eq. (11). Finally, it is argued in Ref. [36]
that while the quantum critical scaling relations are solely
determined by the macroscopic properties of the underlying
system, to compare these theoretical scaling predictions with
the relevant experimental data requires the knowledge of
nonuniversal prefactors. Indeed, without appropriate normal-
ization, the prefactor A in the scaling relation TN/c3/2 = AM

determined here differs from the one obtained in Ref. [41]. In
conclusion, studies of other 3D disordered and clean models
may shed some light on clarifying whether true universal
scaling relations do exist for 3D quantum antiferromagnets.
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