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Intrinsic nonadiabatic topological torque in magnetic skyrmions and vortices
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We propose that topological spin currents flowing in topologically nontrivial magnetic textures, such
as magnetic skyrmions and vortices, produce an intrinsic nonadiabatic torque of the form Tt ∼ [(∂xm ×
∂ym)·m]∂ym. We show that this torque, which is absent in one-dimensional domain walls and/or nontopological
textures, is responsible for the enhanced nonadiabaticity parameter observed in magnetic vortices compared to
one-dimensional textures. The impact of this torque on the motion of magnetic skyrmions is expected to be
crucial, especially to determine their robustness against defects and pinning centers.
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I. INTRODUCTION

The search for the efficient electrical manipulation of
magnetic textures has recently received a major boost with
the observation of ultrafast current-driven domain wall motion
in noncentrosymmetric transition metal ferromagnets [1–4]
and very low depinning current threshold of bulk magnetic
skyrmions [5–7]. The latter are topological magnetic de-
fects [8] that present some similarities with the more traditional
magnetic vortices [9–12]. In both cases, the magnetic topology
induces a Lorentz force on the flowing electrons, resulting in
topological Hall effect [8,13] (see also Ref. [14]). Both classes
of magnetic textures also experience a Hall effect when driven
by an electric flow, an effect sometimes referred to as skyrmion
Hall effect [8]. In fact, it is important to emphasize that the
current-driven characteristics of skyrmions are mostly similar
to that of magnetic vortices. For instance, the universal current-
velocity relation [15,16], as well as the colossal spin transfer
torque effect at the edge [17] have already been predicted in
the case of magnetic vortices [9]. Notwithstanding, skyrmions
display some striking differences with respect to magnetic
vortices. As a matter of fact, vortex walls are nonlocal objects
composed of a vortex core and two transverse walls [9–12],
expanding over several exchange lengths in the wire. Because
of their spatial extension magnetic vortices are very sensitive to
defects and get easily pinned [18–21]. In contrast, skyrmions
are localized objects with a limited expansion from a few tens
to one hundred nanometers [8]. As a result, they can deform
their texture close to local defects and notches, and thereby
avoid pinning [15–17,22–25].

Since the robustness of skyrmions with respect to defects
might hold the key for efficient ultradense data storage [22], it
is crucial to develop a precise understanding of the nature of the
torque exerted on these objects. Recently, Iwasaki et. al. have
shown that such a robustness is partly due to the presence of
a large nonadiabatic torque [15]. Indeed, in magnetic textures
the spin transfer torque can be generally expressed as

T = bJ(u · ∇)M − βbJ

Ms

M × (u · ∇)M, (1)

*collins.akosa@gmail.com
†aurelien.manchon@kaust.edu.sa

where u is the direction of current injection, m = M/Ms is
a unit vector in the direction of the magnetization M and Ms

is the saturation magnetization. The first term in Eq. (1) is
the adiabatic torque while the second term is the nonadiabatic
torque [26,27]. It is well known that while the nonadiabatic
parameter in transverse walls is quite small β ≈ α (α being the
magnetic damping of the homogeneous magnet), it is much
larger in magnetic vortices and reaches 8α to 10α [10–12,28].
To the best of our knowledge, there is currently no available
estimation of the nonadiabaticity parameter in skyrmions,
but one can reasonably speculate that it should be of the
same order of magnitude as that of magnetic vortices. The
recent avalanche of experimental observations of magnetic
skyrmions in transition metal multilayers might soon shed
light on this question [29–34].

That being said, the nature of nonadiabaticity in skyrmions
and vortex walls has been scarcely addressed. In transverse
domain walls, two major physical mechanisms have been
uncovered: spin relaxation [26] and spin mistracking [35].
Spin relaxation produces a nonadiabatic torque β ∼ τex/τsf ,
where τex is the precession time of the spin about the local
magnetization, while τsf is the spin relaxation time. Spin mis-
tracking is the quantum misalignment of the flowing electron
spin with respect to the local magnetic texture and provides
a nonadiabaticity parameter β ∼ e−ξλdw that exponentially
decreases with the domain wall width λdw (ξ is a parameter
inversely proportional to the spin precession length [36]). It
is therefore limited to extremely (atomically) sharp domain
walls [36,37]. We also recently showed that spin diffusion
enhances the nonadiabatic torque when the domain wall width
is of the order of the spin relaxation length [38]. However, none
of these effects explains the large difference in nonadiabaticity
between transverse walls on the one hand and skyrmions and
vortices on the other hand. In a recent work, we proposed
that the topological currents induced by the topological Hall
effect can enhance the nonadiabatic parameter in magnetic
vortices [28]. Such an intimate connection between topological
Hall effect and nonadiabaticity has also been pointed out
by Jonietz et al. [5,24], but to the best of our knowledge,
no theoretical work addresses this issue thoroughly, and all
micromagnetic simulations on skyrmion dynamics so far
assume a constant β parameter [15–17,23].
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As an in-depth follow-up of Ref. [28], the present work
investigates the nature of the nonadiabaticity in skyrmions an-
alytically and numerically, and demonstrates that the texture-
induced emergent magnetic field inherent in these structures
induces a nonlocal nonadiabatic torque on the magnetic
texture. We provide an explicit expression of the torque and
highlight its connection with the spin and charge topological
Hall effect.

II. EMERGENT ELECTRODYNAMICS

A. Premises

It is well known that when conduction electrons flow in
a smooth and slow magnetic texture, m(r,t), their spin adia-
batically changes orientation so that these electrons acquire a
Berry phase [39–42]. This geometrical phase is attributed to
an emergent electromagnetic field (Eem,Bem) determined by
the magnetic texture gradients [37,43–48]. Indeed, a time-
dependent magnetic texture induces local charge and spin
currents through the action of the so-called spin electromotive
force [43,45,49–53]. For the sake of completeness, we derive
below this emergent electromagnetic field. Let us consider the
simplest Hamiltonian of an s-d metal in the presence of a
smooth magnetic texture given as

Ĥ = p̂2

2m
+ Jsdσ̂ · m(r,t). (2)

The Schrödinger equation corresponding to Eq. (2) can be
re-written in the rotating frame of the magnetization, using the
unitary transformation U = e−i θ

2 σ̂ ·n where n = z × m/|z ×
m| to obtain

H̃ = (p̂ − eA)2

2m
+ Jsdσ̂z + eV̂, (3)

where the vector and scalar potentials are given respectively
as A = − h̄

2e
σ̂ · (m × ∂im)ei and V̂ = h̄

2e
σ̂ · (m × ∂tm). As

a consequence, the spin-polarized carriers feel an emerging
electromagnetic field on the form [37,44–53]

Es
em = sh̄

2e
[m · (∂tm × ∂im)]ei , (4a)

Bs
em = − sh̄

2e
[m · (∂xm × ∂ym)]z. (4b)

In our convention, particles with opposite spins possess the
same electric charge but experience an emergent electromag-
netic field of opposite sign. Another equivalent convention is to
consider emergent fields that are spin-independent, while parti-
cles with opposite spins display opposite emergent charges [6].
The electric field is proportional to the first derivative in time
and space and therefore a moving magnetic texture induces
a charge current [37,45–48] and a self-damping [49,52]. The
effect of the magnetic field has been so far overlooked as it
requires a second order derivative in space, and is generally
considered small. Interestingly, this emergent magnetic field
turns out to be crucial to understand the spin transport involved
in these textures. Indeed, it creates a spin-dependent local Hall
current such that the charge current for spin s reads [28]

jse = σ s
0 E + σ s

0 Es
em + σ s

H

BH
E × Bs

em + σ s
H

BH
Es

em × Bs
em, (5)

where σ s
0 and σ s

H are, respectively, the longitudinal and
ordinary Hall conductivities for spin s, E is the external electric
field, and BH = |Bs

em|. Inspecting Eq. (5), we note that there
are two sources of charge or spin currents: (i) through the
external electric field E and (ii) through the emergent electric
field driven by the time-variation of the magnetic texture,
Es

em. Therefore, our calculation is able to capture the physics
of the motion of the itinerant electrons [Topological (spin)
Hall effect] or the magnetic texture itself [skyrmion (vortex)
Hall effect.] Let us now assume a rigid magnetic structure
for which the time derivative of the magnetization is such
that ∂tM = −(v · ∇)M, where v = vxx + vyy is the velocity
of the magnetic structure, and, without loss of generality,
an electric field applied along x such that E = Ex. We
can obtain the expressions for the local spin current tensor,
Js = M ⊗ (j↑e − j↓e ), and charge current vector, je = j↑e + j↓e ,
from Eq. (5). Explicitly, we obtain

J s = [
bJ + λ2

E

(
vy + vxλ

2
HNxy

)
Nxy

]
M ⊗ x

−
[PH

P0
λ2

HbJ + λ2
E

(
vx − vyλ

2
HNxy

)]
NxyM ⊗ y, (6a)

je = σ0

[
E + h̄

2e

(
P0vy + PHvxλ

2
HNxy

)
Nxy

]
x

− σ0

[
λ2

HE + h̄

2e

(
P0vx − PHvyλ

2
HNxy

)]
Nxyy, (6b)

where bJ = h̄P0σ0E/2eMs , σa = σ
↑
a +σ

↓
a , Pa = (σ ↑

a −
σ

↓
a )/σa , (a = 0,H), λ2

E = h̄2σ0/4e2Ms , λ2
H = h̄σH /2eσ0BH,

and Nμν(r) = m · (∂μm × ∂νm) where ν,μ ∈ (x,y). Finally,
⊗ is the direct product between spin space and real space.
Equations (6a) and (6b) constitute a central result in this
work. They contain information about the motion of itinerant
electrons as they traverse a smooth magnetic texture. Indeed, in
its explicit form, one is able to explain the subtle difference be-
tween nonadiabatic transport in one- and two-dimensional tex-
tures. In particular, in addition to the usual constant adiabatic
spin current moving along the direction of the applied current
(∼x) common in one-dimensional textures, the presence of a
nonzero topological charge, Nxy 	= 0 (as it is the case for mag-
netic skyrmions and vortices), leads to a texture-induced emer-
gent magnetic field that induces an additional spatially varying
spin current along both the longitudinal (∼x) and transverse
(∼y) directions to the electric field E. This longitudinal spin
current is responsible for (i) topological spin and charge
Hall effects already observed in topological textures such as
skyrmions [8,13,44] (see also Ref. [14]) and as we propose, (ii)
enhanced nonadiabaticity already observed in vortices [28]. To
clarify a potential misconception, we note here that magneti-
zation variation in more than one direction is a necessary but
not sufficient condition to observe these effects. The sufficient
condition is a nonzero topological charge (Nxy 	= 0), which is
the case for magnetic textures such as vortices and skyrmions.

The topological charge and spin Hall effects arising
from the magnetic texture induced-emergent electromagnetic
field given by Eq. (4) can be quantified by the charge
and spin Hall angles defined, respectively, as θTH =
tan−1(

∫
j

y
e d2r/

∫
jx
e d2r) and θTSH = tan−1( 2e

h̄

∫
J y

s d2r/
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∫
jx
e d2r) to obtain

θTH ∼ −Qλ2
H and θTSH ∼ QPHλ2

H, (7)

where Q is the topological number defined as Q =
1

4π

∫
Nxyd

2r. From Eq. (7), one can straightforwardly deduce
that θTSH ≈ −PHθTH which, although very simple, turns out
to be far reaching as it captures most of the important physics
in static magnetic textures as confirmed by our numerical
calculations in the following section.

B. Topological spin torque

In the previous section, we reminded the basics of the
topologically-driven spin and charge currents in magnetic
textures. Let us now investigate the impact of this spin current
on the dynamics of the magnetic texture itself. By virtue of
the spin transfer mechanism, this spin current exerts a torque
on the local magnetization, Tt = −∇ · J s , which explicitly
reads

Tt = −[
bJ + λ2

E

(
vy + vxλ

2
HNxy

)
Nxy

]
∂xM

+
[PH

P0
λ2

HbJ + λ2
E

(
vx − vyλ

2
HNxy

)]
Nxy∂yM. (8)

A remarkable consequence of Eq. (8) is that, since ∂ym ∼
m × ∂xm in magnetic vortices and skyrmions, the finite
topological charge (Nxy 	= 0) induces an intrinsic topological
nonadiabatic spin transfer torque. This nonadiabatic torque
is intrinsic as it does not rely on impurities or defects (in
contrast with the nonadiabaticity studied in Refs. [26,38]),
and topological since its origin is associated to the topology
of the magnetic texture. Before we continue, we emphasize
that Everschor et. al. [24] phenomenologically included the
topological contribution in Eq. (8) to the Landau-Lifshitz-
Gilbert equation. Our analysis and microscopic description
provides a transparent justification for the origin of this
contribution to the torque.

To quantify these effects, we study the dynamics of an
isolated magnetic skyrmion and vortex under the action of the
torque given in Eq. (8) in the context of Thiele formalism of
generalized forces acting on a rigid magnetic structure [54].
The equation of motion governing the dynamics of these
structures is given by the extended LLG equation

∂tM = −γ M × Heff + α

Ms

M × ∂tM − T (9)

where the torque T is given as

T = Tt + βbJ

Ms

M × ∂xM (10)

with β being a spatially constant nonadiabatic parameter aris-
ing from, e.g., spin relaxation [26]. To make our analysis sim-
ple without missing any interesting physics, we adopt the mag-
netization profile of an isolated skyrmion and vortex core in
spherical coordinates as m = (sin θ cos , sin θ sin , cos θ ),
where the polar angle θ is defined for an isolated skyrmion
as cos θ = p(r2

0 − r2)/(r2
0 + r2), and for an isolated vortex

as cos θ = p(r2
0 − r2)/(r2

0 + r2) for r � r0, and θ = π/2 for
r > r0. p = ±1 defines the skyrmion (vortex core) polarity,
r0 defines the radius of the skyrmion (vortex) core. For both
textures, the azimuthal angle is defined as  = qArg(x +

iy) + cπ/2, where q = ±1 is the vorticity and the c = ±1
defines the in-plane curling direction otherwise called the
chirality. For these magnetic profiles, the topological charge
Q = 1

4π

∫
Nxyd

2r is such that Q = 1
2pq for an isolated vortex

core and Q = (1 − S)pq for an isolated skyrmion, where
S = r2

0 /(r2
0 + R2) → 0 for R � r0, R being the outer radius.

Using these profiles, we obtain the analytical expressions of
the velocity components as

vx = −ηeff + αeffβeff

η2
eff + α2

eff

bJ , (11a)

vy = pq
ηeffβeff − αeff

η2
eff + α2

eff

bJ , (11b)

where the effective paremeters ηeff , βeff and αeff depend on
the magnetic texture. For the sake of completeness only, we
consider the effect of the renormalization of the gyromagnetic
ratio represented by ηeff which is of order of unity and equals

1 + 16S4
5

λ2
E

r2
0

λ2
H

r2
0

and 1 + 31
5

λ2
E

r2
0

λ2
H

r2
0

for an isolated skyrmion and

vortex respectively, where Sk = ∑i=k
i=0(S)i . However, this is

not the focus of this study as this effect is very small and can
be neglected.

C. Nonadiabaticity parameter

The dynamics given by Eqs. (11a) and (11b) correctly
describes the motion of both an isolated skyrmion and a
vortex core. The dynamics of these two structures is very
similar, the major difference being contained in the effective
parameters ηeff , βeff and αeff . The first effective parameter
of interest in this study is βeff , which provides a direct
connection between emergent field-induced topological Hall
effect and nonadiabaticity. Indeed, while there has been much
discussion about the mechanisms responsible for nonadiabatic
spin transfer in the literature [26,35], the proposed mechanisms
although very successful in describing nonadiabatic effects
in one-dimensional domain walls, have failed to address the
large nonadiabaticity measured in vortex walls. Here, we show
that emergent-field induced topological torque gives rise to
an additional nonadiabatic torque and a resulting effective
nonadiabaticity parameter given as

βeff =
⎧⎨
⎩

β + 4S2
3

PH
P0

λ2
H

r2
0
, for skyrmion

βC + 7
3
PH
P0

λ2
H

r2
0
, for vortex core,

(12)

where the geometric factor C = 1 + ln
√

R/r0. Equation (12)
reveals that associated with these textures is an intrinsic nona-
diabaticity parameter which results in an overall enhancement
of their one-dimensional and/or nontopological counterpart, β.
This enhancement of the nonadiabaticity parameter is a direct
consequence of the topology-induced transverse spin current
J y

s , as shown in Eq. (6a). Using realistic material parameters
r0 = 30 nm, θTH = σH/σ0 = 0.01[14], and BH = 2.5 T [6],
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we obtain λ2
H = 1.32 nm2 and the corresponding topological

contribution to the nonadiabaticity parameter βt = 0.08.

D. Damping parameter

In the context of magnetic textures dynamics, it is prac-
tically impossible to discuss the nonadiabaticity parameter
βeff without a mention of the damping parameter αeff as
both parameters govern the motion of these structures, see
Eq. (11b). Different mechanisms for magnetic dissipation
have been proposed [49,52,55–59]. Our calculation reveals
that a nonsteady state magnetization induces an emergent
electric field that results in an intrinsic damping solely due
to the topological nature of these textures and thus an overall
enhancement of the damping given as

αeff =
⎧⎨
⎩

α + 4S2
3

λ2
E

r2
0
, for skyrmion

αC + 7
3

λ2
E

r2
0
, for vortex,

(13)

which is consistent with Ref. [52]. Again, using realistic ma-
terial parameters r0 = 30 nm, σ0 = (4 μ� cm)−1, and Ms =
800 emu/cc, we obtain λ2

E = 0.4 nm2 and the corresponding
topological contribution to the damping parameter αt = 0.02.
These result are far reaching as they provide a very transparent
mechanism that explains the subtle difference in the measured
nonadiabaticity in vortices compared to one-dimensional
domain walls [28].

III. NUMERICAL RESULTS

A. Tight-binding model

The derivation proposed in the previous section relied on
the adiabatic transport of conduction electrons in smooth
and slowly varying magnetic textures. In other words, the
spin of the conduction electrons remains aligned on the
local magnetization direction and no spin mistracking is
considered [35]. In principle, these formulas do not hold when
the magnetic texture becomes sharp (i.e., when the skyrmion
size is of the order of the spin precession length). In this
section, we verify our analytical results numerically using a
tight-binding model to test the validity of the adiabatic model
discussed in the previous section.

Since our goal is to propose a nonadiabaticity mechanism
present only in topologically nontrivial magnetic textures, we
limit our considerations to the ballistic limit by disregarding
both impurity scattering and spin-orbit coupling. This way,
we obtain without ambiguity the intrinsic contributions due
solely to the topology of the magnetic texture. That being said,
most of the skyrmions realized to date possess a size of the
order of or larger than the mean free path [29–34]. Hence, the
impact of disorder on spin transport should be accounted for,
as it is expected to quantitatively modify the nonadiabaticity
parameter [38,60], as well as the topological spin currents
flowing in the texture [14]. Finally, we stress out that in the
tight-binding calculations the transport is driven by the spin-
dependent scattering against the skyrmionic texture, not by
scattering against disorder. Hence, the magnitude of the torque
obtained here does not readily compare with the magnitude of
the torque obtained in the phenomenological model given in
Sec. II. Nevertheless, the nonadiabaticity (the ratio between the

FIG. 1. Schematic diagram of tight-binding system made up
of a central scattering region (isolated magnetic skyrmion/vortex)
attached to two ferromagnetic leads (red boxed) L and R at chemical
potentials μL and μR respectively. To ensure smooth magnetization
variation from the leads to the scattering region, we consider an
optimal system size compared to the radius (R � r0).

nonadiabatic and adiabatic torques), solely determined by the
magnetic texture, is expected to be comparable in both models.
Hence, in the weak disorder limit, we expect our analytical and
numerical calculations to be consistent with each other.

The local spin/charge densities and currents as well as the
corresponding spin transfer torque are computed numerically
using the nonequilibrium wave function formalism [61]. The
system is composed of a scattering region containing an iso-
lated skyrmion or vortex core, attached to two ferromagnetic
leads as shown in Fig. 1. We model this system as a two
dimensional square lattice with lattice constant a0, described
by the Hamiltonian

H =
∑

i

εi ĉ
+
i ĉi − t

∑
〈ij〉

ĉ+
i ĉj − Jsd

∑
i

ĉ+
i mi · σ̂ ĉi ,

where εi is the onsite energy, t is the hopping parameter,
the sum 〈ij 〉 is restricted to nearest neighbors, and mi is
a unit vector along the local moment at site i coupled by
exchange energy of strength Jsd to the itinerant electrons with
spin represented by the Pauli matrices σ̂ . The labels i and
j represent the lattice site and ĉ+

i = (c↑
i ,c

↓
i )+ is the usual

fermionic creation operator in the spinor form.
The z axis is chosen as the quantization axis while the x

axis is the direction of current flow. For all our numerical
calculations except stated otherwise, we used the parameters:
hopping constant t = 1, exchange energy Jsd = 2t/3, onsite
energy εi = 0, transport energy εF = −4.8Jsd, bias eV =
0.1Jsd, and a large system size of 401 × 401a2

0 to ensure
smooth magnetization variation from system to leads to avoid
unphysical oscillations of torques close to the leads. The local
spin density Sα

n at site n and local spin current density Jα
n−1

between site n − 1 and n at a particular transport energy
for electrons from the α lead can be calculated from their
respective operators

Sα
n = h̄

2

∑
ν

(
�α↑∗

nν

�α↓∗
nν

)T

σ̂

(
�

α↑
nν

�
α↓
nν

)
(14)
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and

Jα
n−1 = 1

2i

∑
ν

tnν,n−1ν

(
�α↑∗

nν

�α↓∗
nν

)T

σ̂

(
�

α↑
n−1ν

�
α↓
n−1ν

)
+ c.c., (15)

where �αs
nν are ν propagating mode of the spin-σ wave

functions from the α lead at site n. The quantum mechanical
average is calculated by integrating over the small energy
window εF − eV

2 and εF + eV
2 as

〈Sn〉 =
∑

α

∫
dε

2π
fαSα

n, (16)

where fα is the Fermi-Dirac function for lead α. A similar
formula applies for 〈Jn−1〉. The corresponding charge density
and current density can be obtained from Eqs. (14) and (15)
by replacing h̄

2 σ̂ by eÎ where Î is the 2 × 2 identity matrix.

B. Results and discussion

Our objective in this section is to ascertain the source of
the different contributions to the adiabatic and nonadiabatic
torques to uncover their respective microscopic origin and es-
tablish a direct correspondence with our theoretical predictions
in Sec. II. The most natural and reliable method for calculating
the torque Tn at site n on the local moment mn is by using the
local spin densities as

Tn = 2Jsd

h̄
〈Sn〉 × mn, (17)

since this is a conserved quantity and therefore well defined.
However, this method gives little or no information about the
microscopic origin of the torque. Therefore, we also calculate
the torque from the local spin current as

Tn = 〈Jn〉 − 〈Jn−1〉. (18)

This way, we are able to unambiguously separate the different
contributions to the torque arising from the spin current along
y and x, quantify its origin, and compare our numerical
results with our analytical predictions. A caveat to this
method however is that the spin current is a nonconserved
quantity especially in systems with spin-orbit coupling or
sharp magnetic textures (i.e., sizable spin mistracking). This
notwithstanding, since our considerations are based on smooth
magnetic textures we can argue that the spin current is well
defined and to make sure of this, we used both definitions
of the local torque and ensured that the calculated torque
using both methods are the same. We deduce the local
adiabatic T ad

n and nonadiabatic T na
n torque contributions from

the calculated local torque Tn by recasting the local torque in
the form Tn = T ad

n ∂xmn − T na
n mn × ∂xmn. Throughout this

study except otherwise stated, the torques are reported in units
of 2Jsd/h̄.

Our numerical results for the two-dimensional profile of
spin transfer torque components [calculated using the spin
current definition in Eq. (18)] for an isolated skyrmion of
core radius 10a0 is shown in Fig. 2. As shown in Figs. 2(a)
and 2(b), the adiabatic torque is dominated by the contribution
of the longitudinal spin current (J x

s ), which is at least an order
of magnitude larger than the contribution from the transverse
spin current (J y

s ). The nonadiabatic torque [Figs. 2(c) and 2(d)]

FIG. 2. Two-dimensional profile of torque components showing
contributions from different spin current sources. The adiabatic torque
is dominated by the contribution from the longitudinal spin current
(a) compared to the transverse spin current (b). The converse is true
for the nonadiabatic torque which is dominated by contribution from
the transverse spin current (d) compared to the longitudinal spin
current (c).

is largely dominated by contribution of the transverse spin
current (J y

s ). These results confirm the analysis based on the
analytical derivations of the previous section, Eqs. (6a) and (8).

Figure 3 displays the one-dimensional profile of the torque
components obtained by summing over the transverse direc-
tion for a skyrmion radius r0 = 10a0. Consistent with Fig. 2,
these results show that the nonadiabatic torque is dominated by
the texture-induced transverse spin current while its adiabatic
counterpart is dominated by the longitudinal spin current. In
addition, we also performed these calculations using Eq. (17)
(open circles). The results obtained by this method overlap
with the results obtained using Eq. (18). This indicates that
for skyrmions with radius r0 � 10a0 the spin mistracking is
negligible.

FIG. 3. One-dimensional profile of torque components showing
contribution from different spin current sources and the spin density.
The adiabatic torque (a) is dominated by the contribution from J x

s

while the nonadiabatic torque (b) is dominated by contribution from
J y

s . Results show a very good match between the torque calculated
from the spin density (S) and that calculated from the spin current
Js = J x

s + J y
s .
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FIG. 4. Effective adiabatic and nonadiabatic torque dependence
on the skyrmion radius. The adiabatic torque (a) is almost nondepen-
dent on the radius of the skyrmion while the nonadiabatic torque
(b) shows substantial dependence on the skyrmion radius r0. Sfit

represents the fit of our numerical data to analytical result.

Finally, we investigated the scaling laws governing the dif-
ferent contributions of the topological torque components with
respect to the skyrmion radius. To achieve this, we calculated
the normalized adiabatic and nonadiabatic torque components
by integrating the projections of the local torque on m × ∂ym
and m × ∂xm, respectively, and normalize accordingly, i.e.,

T̃ad =
[∫

T · (m × ∂ym)d2r
]/∫

MsNxyd
2r (19a)

T̃na =
[∫

T · (m × ∂xm)d2r
]/∫

pqMsNxyd
2r. (19b)

As shown in Figs. 4(a) and 4(b), while the adiabatic
torque is almost independent on the skyrmion radius, the
nonadiabatic torque shows a substantial dependence on the
skyrmion radius r0 which is in accordance with our analytical
results. As a matter of fact, a simple fit of our numerical data
to our analytical result given by Eq. (8) yields an effective
nonadiabatic parameter βeff = 3.5β for a skyrmion radius
of 10a0, where β is the constant nonadiabaticity parameter
obtained in the limit of very large skyrmion radius. For
all the range of skyrmion sizes investigated, we also find
that the adiabatic assumption exploited to derive the torque
expression, Eq. (8), is valid. In other words, it confirms that the

large nonadiabatic torque in topologically nontrivial magnetic
textures cannot be explained by spin mistracking.

IV. CONCLUSION

We investigated the nature of adiabatic and nonadiabatic
spin transfer torque in topologically nontrivial magnetic
textures, such as skyrmions and magnetic vortex cores. We
showed that the topological spin current flowing through such
textures induce an intrinsic topological nonadiabatic torque,
Tt ∼ [(∂xm × ∂ym) · m]∂ym. Our numerical calculations con-
firm the physics highlighted by our analytical derivations
and confirm that spin transport is mostly adiabatic up to a
very good accuracy in these structures, thereby ruling out
spin mistracking. Besides providing a reasonable explanation
for the enhanced nonadiabaticity in skyrmions and magnetic
vortices, our theory opens interesting perspectives for the
investigation of current-driven skyrmion dynamics. As a
matter of fact, it has been recently proposed that the peculiar
robustness of magnetic skyrmions against local defects is
related to the presence of nonadiabaticity [15]. Therefore,
understanding the role of this topological nonadiabatic torque
when magnetic skyrmions interact with defects is of crucial
importance to control current-driven skyrmion motion and
achieve fast velocities [5–7,29,33].

Since the topological torque is an intrinsic property of
the magnetic texture, one could continuously deform this
structure by applying, e.g., a perpendicular external magnetic
field [62,63] and therefore influence the nonadiabaticity
parameter. For instance, Moreau-Luchaire et al. [32] demon-
strated a reduction of the skyrmion diameter from 80 nm at
12 mT to 30 nm at 70 mT. Following our predictions, the
topological nonadiabaticity parameter should increase by a
factor ∼7 in this specific case.
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Pfleiderer, and A. Rosch, Phys. Rev. B 86, 054432 (2012).
[25] S.-Z. Lin, C. Reichhardt, and A. Saxena, Appl. Phys. Lett. 102,

222405 (2013).
[26] S. Zhang and Z. Li, Phys. Rev. Lett. 93, 127204 (2004).
[27] A. Thiaville, Y. Nakatani, J. Miltat, and Y. Suzuki, Europhys.

Lett. 69, 990 (2005).
[28] A. Bisig, C. A. Akosa, J.-H. Moon, J. Rhensius, C. Moutafis,

V. Bieren, J. Hidler, G. Killiani, M. Kamerer, M. Curcic, N.
Weigand, T. Tyliszczak, B. V. Waeyenberge, H. Stoll, G. Schütz,
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