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Numerical simulations of spin glass models with continuous variables set the problem of a reliable but efficient
discretization of such variables. In particular, the main question is how fast physical observables computed in the
discretized model converge toward the ones of the continuous model when the number of states of the discretized
model increases. We answer this question for the XY model and its discretization, the g-state clock model, in
the mean-field setting provided by random graphs. It is found that the convergence of physical observables is
exponentially fast in the number ¢ of states of the clock model, so allowing a very reliable approximation of the
XY model by using a rather small number of states. Furthermore, such an exponential convergence is found to
be independent from the disorder distribution used. Only at 7 = 0, the convergence is slightly slower (stretched
exponential). Thanks to the analytical solution to the g-state clock model, we compute accurate phase diagrams in
the temperature versus disorder strength plane. We find that, at zero temperature, spontaneous replica symmetry
breaking takes place for any amount of disorder, even an infinitesimal one. We also study the one step of replica

symmetry breaking (1RSB) solution in the low-temperature spin glass phase.
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I. INTRODUCTION

The theory of spin glasses, and disordered systems in
general, has been mostly developed using the Ising variables
[1]. And the same is true also in different but related fields of
research, such as discrete combinatorial optimization, where
the Boolean variables play a prominent role [2]. The reason for
this is not surprising: even with simple dichotomous variables,
these models are very complex and show a very rich behavior.
Thus the interest in moving to m-component variables living in
a higher-dimensional space (e.g., the XY or Heisenberg spins),
which would make computations harder, has been limited and
this is witnessed by the scarcer literature available with respect
to the Ising case.

Nonetheless, it is known from the experiments performed
on spin glass materials having different degrees of anisotropy
that the behavior of Ising-like models is different from
Heisenberg-like models [3]. This difference is particularly
evident in some properties, like rejuvenation and memory
effects, that are considered as a trademark of the complex
and hierarchical organization of spin glass long-range order.
Numerical simulations of Ising spin glasses at present have
not found any clear evidence for rejuvenation [4,5] and new
extensive numerical simulations of XY or Heisenberg spin
glasses will be required in the near future.

Up to now, most of the numerical simulations of XY
or Heisenberg spin glasses have been performed on three-
dimensional lattices with the main aim of understanding the
role of the chiral long-range order [6—14], but m-component
variables naturally appear in other interesting problems, like
the synchronization problems [15-18] and the very recent field
of random lasers [19-21], just for citing a few.

From the analytical point of view, models with m-
component variables have been mostly studied on fully con-
nected topologies [22-25], often giving results quite different
with respect to the ones of the Ising case. For example,
the Gabay-Toulose critical line [26] exists only for m > 1.
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A limiting case that has been studied in some detail is the
one where the number of components diverges (m — o).
In this limit, some analytical computations can be performed
[18,27,28], although it is worth stressing that in the m — oo
limit the free energy landscape becomes much less complex
(since the energy function is convex), and thus the phase
diagrams simplify. Also, the way the low-temperature physics
changes by increasing the number of components is a very
interesting problem that deserves specific studies [29,30].
Here, we are interested in models with continuous variables,
but with a small number of components: this is the reason why
we choose to study the XY model (m = 2).

A key difference between Ising (m = 1) models and vector
(m > 1) models is that variables in the latter are continuous.
This may be bothersome both in analytical and numerical
computations: in the former case dealing with probability
distributions on an m-dimensional unit sphere can not be
done exactly and requires strong approximations [18], while
in numerical simulations working with discrete variables often
allows one to better optimize the simulation code (e.g., by
using look-up tables). It is thus natural to ask how good can
be a discrete approximation to a vector model.

It is well known that the discretization of a ferromagnetic
system of vector spins in the low-temperature region works
very badly, e.g., as it happens for SU(3) symmetry in lattice
gauge theories [31]. The main reason for this failure is
the fact small thermal fluctuations around the fully ordered
ground state are not well described by the discretized model.
However, when quenched disorder is introduced in the model,
the situation may dramatically change. Indeed, in this case
the presence of frustration makes low-energy configurations
not fully ordered and much more abundant: the inability of
the discretized model to correctly describe small fluctuations
may be not so relevant as long as it can cope with the many
low-energy configurations.

To understand how good a discretized model can reproduce
the physics of a vector model, in the present work we study
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the g-state clock model, which is a discretized version of the
XY model. We will mainly consider how physical observables
change when increasing the number ¢ of states and check how
fast the XY model is approached in the ¢ — oo limit. A similar
question has been answered in a very recent work [32] for the
XY model with four-spin interactions, while here we only con-
sider models with two-spin interactions, that belong to a differ-
ent universality class with respect to those studied in Ref. [32].

More precisely, we are going to consider the g-state clock
model in both the ferromagnetic and the spin glass versions
with different kinds of disorder. We will focus on models
defined on random regular graphs. We will study phase
diagrams in the temperature versus disorder strength plane at
many values of g. Most of the computations are analytic, within
the replica symmetric (RS) ansatz. Finally, by considering the
ansatz with one step of replica symmetry breaking (IRSB), we
will try to understand whether the universality class changes
by varying q.

A short comment on chiral ordering, which is a very
debated issue in models with continuous variables defined
on regular lattices [12,33-35]. When a model with continuous
spin variables is defined on a random graph the topological
defects play no longer any role. Indeed, typical loops in random
graphs are O(In(N)) long, while short loops are rare, with a
O(1/N) density. Chiral ordering can not take place on random
graphs, so we do not enter at all into the debate on the cou-
pling/decoupling between spin and chiral degrees of freedom.

The structure of this paper is the following. In Sec. II, we
introduce the models we are going to study, the XY model
and its discretized version, the g-state clock model. Then in
Sec. III, we recall the basic features of cavity method in the
replica symmetric framework and discuss about its validity. In
Sec. IV, we solve the XY model and the g-state clock model on
random regular graphs within the replica symmetric ansatz, by
exploiting the cavity method both analytically and numerically.
Then, in Sec. V, we actually study the convergence of physical
observables for the g-state clock model when ¢ is increased,
reaching the limiting values given by the XY model. In the
end, in Sec. VI, we extend the cavity method to one step of
replica symmetry breaking and we apply it to the g-state clock
model, in order to give an insight of the exact solution (which
should be full replica symmetry breaking) and to see if and
when the universality class changes when g increases.

II. THE MODELS
A. XY model

The simplest case of continuous variables models—or
vector spin models—is the XY model whose Hamiltonian can
be written either as

HIG) == JijGi - 5, )
(ij)

where spins have m = 2 components (5; € R?) and unit norm

(|o;| = 1), either as
MO = — Y Jyj cos(®; — ;). )

(i)

with 6; € [0,2r). The sums run over the pairs of nearest-
neighbor vertices on a generic graph. Couplings J;; can be
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all positive in ferromagnetic models or can be extracted from
a distribution IP;(J;;) having support on both positive and
negative regions in the spin glass case.

Despite of its simplicity, the XY model shows a lot of
interesting features and allows new phenomena to rise up
with respect to the Ising case: for example, thanks to the
continuous nature of its variables, at very low-temperatures
small fluctuations are allowed in the XY model. In turn, this
may produce null or very small eigenvalues in the spectral
density of the Hessian matrix of the model. Other interesting
features of the XY model—and of vector spin models in
general—regard its behavior in an external field,! where,
e.g., one can observe different kinds of transitions: the de
Almeida-Thouless transition [36]—which is present also in
the Ising case—and the Gabay-Toulouse transition [26,37],
which does not show up in Ising models.

B. g-state clock model

The problem of discretizing the continuous variables of the
XY model may naturally arise when one wishes to simulate
very efficiently the model (e.g., by the use of look-up tables)
or even when a reduction in the variables domain is required
in the search for an analytically treatable solution [18]. The
simplest way to discretize the XY model is to allow each spin
0; to take only a finite number g of directions along the unit
circle, equally spaced by the elementary angle 2 /q. Taking g
large enough the error committed by the discretization should
be negligible. The Hamiltonian of the g-state clock model has
formally the same expression in (2), but with angles taking
value in a finite set 6; € {0,2n/q,47/q, ... 2n(q — 1)/q}.

While the XY model is recovered in the ¢ — oo limit, very
small values of g are expected to produce a rather different
behavior: in particular, g = 2 corresponds to the Ising model,
the ¢ = 3 clock model can be mapped to a 3-state Potts model
and the four-state clock model is nothing but a double Ising
model, apart from a rescaling of couplings J;; by a factor 1/2
[38].

For larger g values, the XY model is approached and we
will try to understand how fast is this process in the different
parts of the phase diagram. In particular we are interested in the
role played by the disorder. Indeed, the slowest convergence
is expected at very low temperatures, and in this region, the
different kinds of long range order (ferromagnetic or spin
glass) may vary sensibly the convergence to the XY model.
Our naive expectation is that the strong frustration present in
a spin glass phase may produce low-energy configurations
in the clock model which are less rigid (with respect to
the ferromagnetic case) and thus may have small energy
fluctuations, so making the disordered g-state clock model
more similar to the disordered XY model, with respect to the
corresponding ferromagnetic versions.

C. Random graphs

Mean-field approximations are correct for models defined
on fully connected graphs and on sparse random graphs; the

IC. Lupo, G. Parisi, and F. Ricci-Tersenghi (work in progress).

054433-2



APPROXIMATING THE XY MODEL ON A RANDOM GRAPH ...

latter case, apart from being more general (the fully connected
topology can be recovered in the limit of large mean degree),
is much more interesting, because the variables have a number
of neighbors O(1) and this produces fluctuations in the local
environment of each variable, that closely resembles what
happens in systems defined in a finite dimensional space.
In this work for simplicity, we focus on models defined
on random c-regular graphs (RRG), where each vertex has
exactly ¢ neighbors. Given that we are going to solve the
cavity equations via the population dynamics algorithm, we
do not need to specify the algorithm to generate any specific
realization of the RRG (e.g., the configurational model).

III. REPLICA SYMMETRIC CAVITY METHOD

Exact solutions of spin glass models on random graphs
is highly nontrivial, due to the spatial fluctuations naturally
induced by the topology of such graphs. Furthermore, as in
the Sherrington-Kirkpatrick model, we expect the XY model
to require a full replica symmetry breaking (fRSB) scheme to
be exactly solved [1]. Anyway, a large class of models defined
on random graphs can be solved just by exploiting a single
step of replica symmetry breaking (1RSB), as, e.g., the diluted
p-spin [39], the coloring problem, and the Potts model [40,41].
In some cases, it can be demonstrated that such solutions are
stable towards further steps of replica symmetry breaking [42].

Here we start from the simplest replica symmetric (RS)
ansatz, which actually corresponds to the well known Bethe
approximation [43]. The RS ansatz is always correct for
models defined on a tree and for models defined on a random
graph if model correlations decay fast enough [2]. The locally
treelike structure of random graphs allows one to use the cavity
method, either at the RS level [44] or at the RSB level [45,46].

The belief propagation (BP) algorithm [47,48] is a con-
venient recursive algorithm to solve the RS self-consistency
equations on a given graph. However, here we are interested
in understanding the physical properties of typical random
graphs, and this can be better achieved by the use of the
population dynamics algorithm [2].

A. Cavity equations at finite temperature

The basic idea of cavity method is that on a tree the local
marginals

1 _
ni(6;) = ZM(Q)y w®) = ¢ BH(®)
0\0;

can be written in term of cavity marginals n;_, ;(6;), namely
the marginal probability of variable 6; in the graph where the
coupling J;; has been removed (hence the name cavity),

1 _ o
wo) =5 [ [aver om0, @
! okedi
where Z; is a normalization constant
zi= [ao ] [aners=coom o @
kedi

and di is the set of neighbors of spin i.
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FIG. 1. Due to the Bethe approximation, when all edges around
site i are removed from the graph, then its neighbors become
uncorrelated. So marginal probability distribution 7;_, ;(6;) of site
i when edge (ij) has been removed from the graph can be computed
iteratively from marginals n;_.;(6x)’s, k € 3i \ j. Alternatively, the

belief coming out from site i to site j is given by all other beliefs
entering site 7 from sites k’s belonging to i \ j.

Referring to the notation in Fig. 1, it is not difficult to write
down self-consistency equations among the cavity marginals
[2,48]:

Ni-j(0) = F({m—i, Jik})
1
[T [anmi@ers=o-o.

z .
=) kedi\j

where Z;_, ; is just the normalization constant

Zi; :/dgi 1_[ /de nkﬁi(ek)eﬁlfkcos(ei—é?k)' (6)

kedi\j

We call the above BP equations, where BP stands both for
Bethe-Peierls and Belief Propagation.

The addition of site i and couplings J;; with k € di \ j,
causes a free energy shift AF;_,; in the system, which is
directly related to the normalization constant Z;_, ; via

Baac? )
Once the cavity marginals satisfying Eq. (5) have been
computed, the free energy density in a graph of N vertices
is given by

Zl‘_”‘ =e

1
fN('B)Z_IB_N Zj:ani—(lzj;anij s (8)

where Z;; is given by

Zij =/deidejeﬂfff“’s(ef*@f)nm,(ei)n,ﬁ,-(e,»). )
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As usual, the true free energy density f () is obtained in the
thermodynamic limit, f(8) = limy_. fn(B).

From previous expressions of free energy density f(8) a
crucial consequence of the Bethe approximation on sparse
graphs rises up: extensive quantities can be computed as a
sum of local terms involving sites and edges of the graphs
[2]. Indeed, the same holds for internal energy density e(8) =
dg(Bf(B)), while magnetizations can be easily computed from
the marginal probability distributions 7;(6;). So in the end it is
enough to solve self-consistency equations (5) in order to be
able to compute all the physical observables of the system.

So far, we have considered a given instance for the
underlying RRG, and hence for the set of couplings {J;;}. But
when dealing with random topologies, in general, physical
observables have to be computed by averaging over all the
possible realizations of the graph and the disorder. This task
can be accomplished by noting that cavity messages n;_ ;’s
arriving from a branch of the tree are distributed according to
a probability distribution P[#;_, ;], and so BP equations (5)
can be reinterpreted as a single distributional equation:

Pni- ;] EGJ/ l_[ Dnisi Plnisi]

— Flink—i, Jix 1, (10)

where E¢ ; stands for the expectation value over the real-
ization of the graph and of the disorder, and F is defined in
Eq. (5). In particular, for the RRG ensemble, all the degrees
{d;} are equal to ¢ and so the corresponding average can be
ignored. Accordingly, the free energy density averaged over
the RRG ensemble is given by

X 8[’71—)]

1
J(B) == Eyslin Zi] + %

where the average over 7 is made according to P[n] satisfying
Eq. (10).

E,snZ;], (1D

B. Cavity equations at zero temperature

When temperature T goes to zero, the inverse temperature
B diverges and the integrals in Eq. (5) can be solved by the
saddle point method. We rewrite the cavity marginals 7;_, ; as
large deviation functions in B:

Nies j(0;) = €71, (12)

with cavity fields h;_, ;(6;) being nonpositive functions. The
normalization on 7;_,; requires to appropriately shift £;_, ;
such that its maximum has zero height:

maxg, hi_, j(6;) = 0. (13)
In the T — O limit, the BP equations become
hi j(0;) = Follhisi, Jir}]
Z max [hi—i(0c) + Jikcos (6; — 6], (14)
kedi\ j

up to an additive constant due to the normalization condition
in Eq. (13).

Taking the average over the disorder (couplings and RRGs
of fixed degree c), we get again a self-consistency equation for
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functional probability distribution P[/] of cavity fields &:

Plh] =E1fl_[DhiP[hi]5[h—fo[{hi,Ji}]]- 15)

The zero-temperature expression for the free energy density f
can be written in terms of the P[h] satisfying Eq. (15),

S En Lfif), (16)

f==En,[fil+ 5

where

fi = max [,; max [ (0) + Ji cos (6; — ek)]},
€ot

fij = max [hie. 0 + hji(0;) + Jij cos (6; = 6,)]-

C. Validity of the RS cavity method

So far, we have implicitly assumed that the set of BP
equations always admit a (unique) solution. However, in
general, it is not always true, and so it is not obvious to get
at a solution to Eq. (5). This fact is very intimately related to
the presence of loops of finite size or strong correlations in the
model. Indeed, if the graph is a tree or locally treelike, in the
cavity graph where vertex i has been removed the following
factorization holds:

= [ [ m—it60). (17)

kedi

wai ({Ok ke )

which in turn allows one to derive Eq. (5). But when the
graph is not locally treelike, i. e., it has short loops, or when
correlations in the model are so strong that even in the cavity
graphs without vertex i the marginals n;_,;(6;) are correlated,
then factorization in Eq. (17) does not hold anymore, and the
error committed in assuming it can be non negligible, even in
the case of very large graphs.

From the formal point of view, a rigorous proof of the
conditions under which the replica symmetric cavity method
is correct does not yet exist. A possible condition that has to
be fulfilled regards the uniqueness of the Gibbs measure,

n({e)) = %e*ﬁ*"{?’“, (18)

meaning that the clustering property holds and that each spin
0; in the bulk of the system is independent from any choice of
boundary conditions. However, this is a very strict condition,
and often it is observed that RS cavity method still provides a
correct result even when Gibbs measure (18) ceases to be
unique. So a weaker condition to be fulfilled regards the
extremality of the Gibbs measure (18), so that even when it is
no longer unique but extremal, then in the thermodynamic limit
the unique relevant solution is still the RS one [49]. Roughly
speaking, the extremality of the Gibbs measure means that the
behavior of a spin 0; in the bulk of the system depends only
on a set of boundary conditions with null measure.

From the analytical and numerical point of view, instead,
there are several and equivalent approaches for the study of
the stability of the RS solution of a given model. For example,
one can apply the 1RSB cavity method (Sec. VI) and check if
it reduces to the RS solution, which is then exact in this case.
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From a more physical point of view, one can compute the

spin glass susceptibility xsg,
1
xs6 = Z (0 '3_;')?, (19)
ij

and see where it diverges, signaling a phase transition. The
computation of xsg can be done in an iterative way via the so-
called susceptibility propagation algorithm, which in practice
corresponds to check the growth rate of small perturbations
around the fixed-point cavity messages: if these perturbations
tend to grow, then the RS fixed point is no longer stable
and the RS ansatz is only approximate. In Appendix A, we
deal with this topic in a deeper way, explicitly linearizing the
BP equations—both at finite and zero temperature—and so
obtaining the analytical expression of the growth rate of such
perturbations.

The study of the growth rate of perturbations can be
done either on given instances either in population dynamics
taking the average over the ensemble of graphs and coupling
realizations. We exploit the second approach, redirecting the
reader to Ref. [50] for the demonstration of the equivalence
between them.

IV. RS SOLUTION OF THE XY MODEL AND
THE ¢-STATE CLOCK MODEL

Let us now apply the cavity method to the XY model and
to the g-state clock model, in order to find their RS solution.
We use first the bimodal distribution J;; = %1, with different
weights p and 1 — p, and we derive analytical phase diagrams
in the p versus T plane.

We move then to the low-temperature region and numeri-
cally identify, when varying p, three phases: the ferromagnetic
(RS) one, the spin glass (RSB) one and also a mixed
phase between them, characterized by both a nonvanishing
magnetization and a breaking of the replica symmetry [51].

Finally, we use a different disorder distribution, usually
called gauge glass, such that each interaction J;; acts through

J

ni—j(0;) =
Zims) kedi\ j

where Z;_, ; now reads

Zi, = /d@ I1 /d@ ePIncos@i=60 _—

kedi\j

1 /d9 ¢ P ik cos (6;=6i) {
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a rotation of a random angle w;;, still belonging to one of
the allowed directions of the g-state clock model. This further
choice of disorder allows us to study the behavior of the clock
model also for odd values of g, since now there is no reflection
symmetry to take care of. Furthermore, it should be more
“physical” for the XY model, where in principle disorder can
not only cause a complete inversion of a spin with respect to
the direction it had in the ferromagnetic case, but also a small
rotation.

A. Analytical solution with the bimodal distribution
of couplings

Let us consider the following disorder distribution:

Py(Jy) = p8(Ji; — D+ = p)8(Ji; + 1), (0)
with p € [1/2,1], such that p =1 corresponds to a pure
ferromagnet and p = 1/2 to an unbiased spin glass.

Let us start our analytical computation from the XY model.
In order to find a solution to BP equations (5) for the XY
model, it is useful to expand cavity marginals 7,_,; in Fourier
series:

Mii (B1) = {1 +Z P77 cos (16) + b sin (6]
where Fourier coefficients are defined as usual:

o= =2 [ om0 cos 6

b7 = 2/d9,~ Mis ;(6;) sin(16;). Q1

Note that, in general, Fourier coefficients are different for each
cavity marginal.

Substituting this expansion in the right-hand side of BP
equations (5), we get

Z ~D cos (16,) + b sin (16,)] } (22)
!1 + Z *70 cos (16) + b7 sin (16))] } (23)

Then, integrals in d6; can be performed by introducing modified Bessel functions of the first kind [52]:

/ dOy ePIreos =00 cos (10,) = 27 (B i) cos (16;),

/ dOy ePIrcos =09 sin (16,) = 2t (B ;1) sin (16;),

where
T

1 2 .
I(x)=— / do <% cos (nh).
2 Jo
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BP equations thus become

ni—j(0;) =

=7 kevivj =1

PHYSICAL REVIEW B 95, 054433 (2017)

I1 ilo(ﬂfimle(ﬂf,-u[a,“””cos(wi)+b}"*i)sin<zei>] :

where also the normalization constant Z;_, ; has to be rewritten in terms of Bessel functions by following the same steps. At this
point, if we substitute this expression for n;_, ; into (21), we get a set of self-consistency equations for the Fourier coefficients:

. 2 ad . .
af 7= =— / do cos10) [ {1o(BJ)+ Y I,(BJi)[al ™" cos (p ) + b~ sin(p0)] ¢,
i kedi\j =1
pi7P = e /d@ sin(0) [[ 3 1o(BIw) + Y 1,(BIi)[al™" cos (p ) + 6%~ sin(p0)] ¢ .
i—] kedi\j =1
o0
Zi;= / do [T {10BJ)+ Y 1,(BI)[al ™" cos (p ) + b~ sin(p6)] ¢. (24)
kedi\ j p=1

Itis straightforward to verify that, in absence of any external
field, the uniform distribution over the [0,27] interval is a
solution of Eq. (5) at any temperature:

1
ni-;(0;) = 7 Vi — J, (25)

and obviously it corresponds to a vanishing solution for the
self-consistency equations (24):

a7 =p"7 =0, Vi j,Vi (26)

This solution is nothing but the paramagnetic one, character-
ized by a set of null local magnetizations. Furthermore, it is
very easy to compute the expression for the free energy density,

1 c
= ——In2mr — — In [H(B), 27
fpara(B) g2 =5z o(B) 27)
as well as the expression for the internal energy density:
c Li(B)
=—— ) 28
epara(ﬁ) 2 To(B) (28)

Assuming that, lowering the temperatures, a second-order
phase transition takes place, we expect some of the Fourier
coefficients to become nonzero in a continuous way. To iden-
tify the critical line T.(p) we expand Eq. (24) to linear order
in the Fourier coefficients. At linear order, the normalization
constant is just

Ziny=2m [] B

kedi\j

Expanding also numerators in Eq. (24) and restricting to a’s
coefficients (since expressions for b’s coefficients are similar),
we get

a[(i—>j): Z Il(ﬁJik)al(k—n‘) 29)
Byl Io(BJix)

and, taking the average over the disorder distribution and the
graph realization, one gets a self-consistency equation for the

(

mean values of Fourier coefficients,
@ =Eg[a "], (30)

that depends on the parity of the coefficient, namely,

@ =(c—D2p-— 1)51((’2))51 forlodd,  (31)
0
a=(c— 1)—2((/; ))a—, for [ even. (32)

For B > 0, the ratios I;(8)/Iy(B) are increasing functions
of B. Moreover, the inequality 7;41(8) < [;(8) implies that
the first Fourier coefficients to become nonzero lowering the
temperature are a; (for p close to 1) and a, (for p close to
1/2).

Howeyver, we have to consider that Fourier coefficients are
random variables fluctuating from edge to edge. In strongly
disordered models (p close to 1/2), the mean value of a,
may stay zero, while fluctuations may become relevant and
eventually diverge. To check for this, we compute the self-
consistency equation for the second moments:

IF(B) —
13(/3) aj. (33)

The comparison of Eqgs. (32) and (33), together with the
inequality

a? =Eg s [(a )] = -1

L(x) _ I} x)
Io(x) ~ I2(x)’

(34)

lead to the conclusion that the instability of paramagnetic
phase, lowering the temperature, is always driven by the
instability in the first order Fourier coefficients {a(ll_” )}. The
low-temperature phase will be ferromagnetic in case the
stability produces a nonzero mean value aj, which in turn leads
to a nonzero magnetization. While a spin glass order prevails

if the transition is such that a? becomes nonzero, while a;
stays null. Which phase transition takes actually place depends
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on the highest critical temperature between 7F = 1/8F and
Tsg = 1/Bsa, with

Li(Br)
—DRp—-1H)—= =1, 35
(c—=D@p )IO(,BF) (35)
13(Bsc)
— 1) = 36
(c )102(/350) 0

These results completely agree with those obtained for the
XY model on Erdds-Rényi graphs in Refs. [53,54] through
a slightly different approach, namely a functional moment
expansion around paramagnetic solution.

Notice that 7 does depend on density of ferromagnetic
couplings p, while Tsg does not. The multicritical point
(Pme»> Tme) 1s located where Tr(p) and Tsg meet, i.e.,

_1+(c— -2
Pmec = ) )
Just below the critical temperature

T, = max(Tr(p),Tsc)

Tine = TsG. (37)

the nonlinear terms in Eq. (24) that couple different Fourier
coefficients lead to the following scaling:

af "ol (38)

with t = |T — T.|/T.. Equation (38) can be obtained noticing
the following two aspects of Eq. (24): (i) for [ > 1, the first

nonlinear term is
(1%/) o 1_[ a(k*)l)
kedi\j

with py algebraically summing to [, implying a; o (a;); (ii)
the first nonlinear term in the equation for a; is cubic and thus,
close to the critical point, we have

a=0+71)a +Ada}

implying a; o /7.

The above Fourier expansion can be used only for identi-
fying the instability of the paramagnetic phase in absence of
an external field. Unfortunately, in presence of a field or in
the low-temperature phases, all Fourier coefficients become
O(1) and the above expansion becomes useless, since keeping
few coefficients is a too drastic approximation. So, in order
to complete the phase diagram and locate the critical line
between the spin glass and the ferromagnetic phases that runs
from (pme, Time) to (psg,T = 0), we will move to a numerical
approach based on the RS cavity method (see Sec. IV B).

Before moving to the low-temperature phase, let us con-
clude the analysis of the critical lines of the paramagnetic phase
in the g-state clock model, following exactly the same Fourier
expansion above. Since our aim is to understand how fast
the clock model converges to the XY model increasing g, we
would like to study a model where the g dependence is smooth.
Using the bimodal distribution for couplings, J;; = %1, we
are forced to work only with even values of ¢. Indeed, for
odd values of ¢, couplings with J;; = 1 can be fully satisfied,
while coupling with J;; = —1 can not (there are no two states
differing by a m angle for ¢ odd). Although for large g the
differences between even and odd ¢ models vanish, for small
q values they lead to strong oscillations in most physical
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observables. For this reason we focus only on even values
for g as long as we use bimodal couplings.

First of all, let us rewrite BP equations for the g-state
clock model. They are still given by Eq. (5), with a slight
modification due to the discrete nature of the model:

I1 Z Mi—i (Ok.b,)

Zivj kedi\j b=

r)i—)j(ei,a)

X eﬁJ;k cos (ei.a_ekebk), (39)

where indices a and by ’s label the g possible values for angles
0’s,and Z;_, ; is given by

Z 1_[ Z Ni—si Ok, bk)eﬂf,kcos(G,[,—Gk,,k)

a=0 kedi\j b=

Since we are now dealing with a discrete model, in order
to find a solution to BP equations (39) it is useful to expand
cavity marginals 7;_, ; in discrete Fourier series,

1‘171 i—j ia
nm,-((?,-,a)=gzc§, Neriably (40)
b=0

(i—

where the complex coefficients ¢, ) are given by

g—1

an_)](g )6727” ab/q (41)

a=0

(lej)

The zero-order coefficient cg REAE nothing but the sum of the
values taken by cavity marginal n;_, ; over the g values of the

angle 6;:

(!HJ)

Z N j(Ora)- (42)

If we choose to put the norm of probability distributions for the
g-state clock model equal to ¢ /27, so that in the limitg — oo,
we can exactly recover the marginal probability distributions

for the XY model, then we have cg == q/2m and we can

write

1 27 SN ey amiab
771—>j(91c1)— 7'[|:1+7 Zch Dermiablq | 43)

b=1

A different choice is to put the norm equal to 1, so obtaining
co = 1. This choice gives the correct value for physical
observables for a discrete model (e.g., an entropy which
is always positive defined), but it will be less useful when
studying the convergence of the g-state clock model toward
the XY model. So from now on, we will always use the g /27
normalization.
It is worth noticing that
Cfrll_”) ( (l_)/)) , (44)

—m

given that cavity messages 7, ; are real quantities. In
particular ¢, is real, since we are using g even.

Expanding in discrete Fourier series both sides of BP
equations (39), we get the following self-consistency equations

054433-7



COSIMO LUPO AND FEDERICO RICCI-TERSENGHI

for the Fourier coefficients:

C’(;;_’-i)— Ze—Zman/l{ 1_[ Z (k=) I(q)(ﬂ-]ik)

Zivs) kedi\j b=

XeZniah/‘/q, (45)

where also Z;_,; has to be expressed in terms of discrete
Fourier coefficients. In order to keep a compact notation we
have introduced the discrete analogous of modified Bessel
functions of the first kind,

q-
I,E")(x) = l Z X cos2ralq) oog <2nna)7 nerZ, (46)
9= q

which converge to usual Bessel functions in the large ¢ limit:

lim I'9(x) = I,(x).
g—00

In analogy with the XY model, also BP equations (39) admit
the paramagnetic solution, given by the uniform distribution
over the g values (note the g /2w normalization)

Vi— j, Vaefl,...

1
Nisj(0ia) = 7, q—1}y @47

2

that corresponds to a vanishing solution for the self-
consistency equations (45):

Vmell,....q—1}.  (48)

The corresponding expressions for free energy density £ (8)
and internal energy density e'?(8) are

cf,iﬁj) =0, Vi—j,

f9.8) = —é In27 — é In I2(B), (49)
(q)

@ c ;7 (B) 50

para(lB) 2 Ié")(ﬂ)' (50)

As expected, thank to the choice of the g/27 normalization,
these expressions converge to those for the XY model in the
g — oo limit.

The next step is to study the stability of paramagnetic
solution. An analysis analogous to the one made for the XY
model tells us that most unstable coefficient are first order
ones, satisfying at linear order the following equations:

[— ] I Jl —i
C(lz h_ Z (q)(ﬂ x) (lk ) 1)
kedi\j I (,BJzk)

By averaging over the disorder distribution IP;(J;;), we get
self-consistency equations for the first two momenta,

(q)
_ B __
cr=(—D2p ) ,
1 ¢ (‘1)(5) €l
(52)
= L)
C% = (C 1) |:](q)(ﬂ) 1’

that identify critical temperatures for the phase transitions
towards a ferromagnet, T;q)(p) =1/ ﬂj(,q)(p), and towards a
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spin glass, T(q) = 1/,3((1):

(q)(ﬂ(q)( )) ~

(c—=D2p - )— =1,
17 (B2 (p)
1 (60)
(c—1) [W =1. (53)

The paramagnetic phase is stable for temperatures larger than
the critical one:

79 = max (T, (p), Ts).

In analogy with the XY model, for p close to 1, the clock
model has a transition towards a ferromagnetic phase, while
for p close to 1/2 the transition is towards a spin glass phase.
Surprisingly, the abscissa pp, of the multicritical point in the
q-state clock model has exactly the same expression in Eq. (37)
found for the XY model.

The only dependence of these critical lines on the number
q of states is through the discrete Bessel function 1I\?. So in
order to understand how fast the clock model phase diagram
converges to the one of the XY model, we need to study the rate
of convergence of the functions 1,5‘”(x) to the Bessel functions
I,(x) in the large g limit. We show in Fig. 2 a numerical
evidence that this convergence is exponentially fast in ¢, i.e.,
like exp(—¢q /q™), with a characteristic scale ¢* increasing with

8 10 12 14 16
‘3 T T T T T T

log [IY(L(I) (z) — In(:c)}

FIG. 2. Convergence of the discretized modified Bessel functions
I9(x) toward their limiting values when ¢ — 0o, computed at x = 5
(upper data set) and x = 2 (lower data set). For each value of n, we
plot the logarithm of [{¥(x) — I,(x) together with a linear fit, to
highlight the exponential convergence in q.
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the argument x:
g'(x =2)~2.0,
g (x =5)~2.5.

Numerical evidence shows that g* is finite for any finite value
x, but it seems to diverge in the x — oo limit. In that limit, the
convergence may follow a stretched exponential.

Unfortunately, we have not been able to find a fully
analytical proof of this statement. The following argument
should, however, convince the reader that a power law decay
in g is not expected to take place every time one approximates
the integral of a periodic function with a finite sum of ¢ terms.
Let us suppose f(x) is an infinitely differentiable function,
2m-periodic, i.e., f(x 4+ 27) = f(x), and we are interested in
approximating the integral

1 2w
1) = 5 /O dx f(x)

with the finite sum
g—1

1
19(f) = . > f@ra/g).
a=0

Rewriting 1@ as the integral of a stepwise function, the
error A = @ — [ can be written as the sum of ¢ local
terms, each one computed in a small interval Iy = [27a/q —
w/q,2mwa/q + 7w /q] of size 27 /q around 2mwa/q:

1
2= - % [ artsw - femajo)
a=0 a

For large g, we can Taylor expand the integrand around the
central point of each interval T,
oo
(x —2ma/q)*
f@) = f@rajg) =) fPCrajq)————,

k=1
where f®) is the kth derivative of f. Thus the error is given
by the following series:

k g-1

AD(f) = Z m Z fP@ra/q).

k even a=0
k>0

For g large, the internal sum can be approximated by the
q — oo limit, plus the error term,

Q| =

q—1
Y fPaera/q)
a=0

2
— i/ dx f(k)(x)+ A(q)(f(k))
2 0

@) — 400
o 27

where the last inequality follows from the 27 periodicity. So,
the equation for the error term is given by

+ A(q)(f(k)) — A(q)(f(k)),

k
@¢ £y — T @ ¢ £0
A"(f)—kgevenqk(k+1)!A ). (54
k>0
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For a function f smooth enough—Iike the one in the
definition of the modified Bessel functions of first kind,
f (@) = exp[x cos(0)] cos(nf)—we expect the error on the
derivatives, A@( f ®), to decay with ¢ in the same way as
the error on the function itself, A“)(f). This expectation is
further confirmed by the data in Fig. 2, where we see that the
error on the function [y decays as the error on its derivative I;.

Noticing that the power-law ansatz A@(f®) oc g~ is
incompatible with Eq. (54) for any value of the power «,
we conclude that the error AP(f) decays faster that any
power law. Apart from excluding a power law decay, the above
argument is not able to provide the final answer: e.g., whether
the decay is a simple exponential decay or a stretched one.
The evidence presented in Sec. V will suggest the decay is
exponential for any positive temperature and changes to a
stretched exponential at 7 = 0.

B. Numerical solution with the bimodal distribution
of couplings

As already explained above, the analytical expansion in
Fourier series can be used only in the high temperature
phase. The low-temperature region can be fully explored and
understood only by using numerical tools. In particular, we
will implement the cavity method at the RS stage, both at finite
and zero temperature, by exploiting the population dynamics
algorithm. This method, firstly introduced in Ref. [55] and then
revisited and refined in Refs. [45,46], allows one to compute
physical observables averaged over the disorder distribution
and the graph realizations.

To this purpose, we consider a population of A cavity
marginals 1(8), randomly initialized, that evolve according
to the iterative BP equations: at each step of the algorithm,
each marginal in the population is updated according to the
following equation:

=1,...,

where F is defined in Eq. (5), Ji’s are random variables
generated according to the coupling distribution P, and i;’s
are random indices uniformly drawn in [1,\/], so as to choose
¢ — 1 random marginals in the population.

Physical observables, which are functionals of the
marginals in the population, usually change during the first
part of the evolution, and then converge to an asymptotic
value, corresponding to the thermodynamical expectation of
that observable (within the replica symmetric ansatz). Being
the algorithm of a stochastic nature and the population of finite
size, we expect fluctuations of O(1/ VN ). In what follows, if
not stated otherwise, we use a population of A/ = 10° cavity
marginals and a fixed degree ¢ = 3 for the underlying RRG.
We have also checked that estimates of physical observables
are compatible with what can be measured on a given samples
of large size; however, the population dynamics algorithm is
more efficient in computing physical observables averaged
over the RRG ensemble and coupling distribution.

At variance with the BP equations (5) that may not have a
solution, the population dynamics algorithm always converges
to a fixed-point probability distribution of marginals P*[n],
independently from the initial conditions. Furthermore, this is
true even when the RS assumption is no longer correct: when
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FIG. 3. The first momenta of the lowest-order Fourier coefficients just below the critical temperature in the ¢ = 64 clock model (a very
good approximation to the XY model), measured via population dynamics (N = 10°). In the left panel, we use p = 0.95 (para-ferro transition)
and plot first moment. In the right panel, p = 0.5 (para-spin glass transition) and we plot second moment (the first one being null). The slope

of each line, m, is reported. Data follow the analytical expectation ¢; «x T

this happens, the distribution P*[n] we get is no longer the
exact one, and so we have to use (at least) the 1RSB ansatz.
This will be done in Sec. VI.

Before searching for the transition lines between the
different low-temperature phases in the g-state clock model
and the XY model, we would like to verify the scaling of
Fourier coefficients just below the critical temperature. In
Fig. 3, we report the results of this check both for the para-ferro
phase transition (p = 0.95, left panel) and for the para-spin

glass phase transition (p = 0.5, right panel). In the former

case we have @ o< t//2, while in the latter @ = 0 and a} o 7/,

as expected from the computation in Sec. IV A.
In the low-temperature phases, each spin variable has a
nonzero average:
m; = (m;x,miy) = ((cos (6;), sin (6,))), (535
where the angular brackets represent the average over a
full marginal 7;(6;) defined in Eq. (3). From the local

magnetizations 71;’s we can build two order parameters: the
norm of global magnetization vector,

I72_ with statistical errors smaller than the symbol size.

and the overlap,

= %Z | |

i

(57)

which satisfy the inequality M? < Q. From the analysis of
Fourier coefficients shown before, we expect both Q and M 2
to grow linearly below the critical temperature 7, (see Fig. 4,
left panel).

In the paramagnetic phase, all local magnetizations are null
(M = Q = 0), while in a pure ferromagnetic phase, all spins
are perfectly aligned and so M? = Q > 0. In the more general
case (p < 1 and T < T,), local magnetizations exist, but do
not align perfectly and so we have Q > 0 and M? < Q: the
unbiased spin glass phase (M =0, Q > 0) belongs to this
class, but also two other phases—the disordered ferromagnet
and the magnetized spin glass, the so-called mixed phase—
have 0 < M? < Q and can not be distinguished by just looking
at these two order parameters. In order to distinguish this
two phases we will need to check for the stability of the RS
solution with respect to a breaking of the replica symmetry.
This scenario is very similar to the one taking place in the Ising

! model [51].
M=|— Z m;l, (56) As long as we keep track only of the order parameters Q
N ; and M, in the low-temperature phase (7T < T.), we have that
0.05 ‘ 0.12 — 0.1 ‘
. a b c) 1
0.04 s, @ 01 ,‘( ). o L s e b (),
e L o i =
o3 |, | 0.08 . , "
N ., -0.1 + N —
\ 0.06 - x i =
Q002 ¢ . 15 p ~< ,
. 0.04 - 7 0.2 - = b
001 - " i 0.02 | « 1 i LN
1Y S RROE PSP P S | 03 - N
-0.01 ‘ ! -0.02 R ‘ : 0.4 : ‘ : ‘
0.47 0.48 0.49 0.5 0.85 0.86 0.87 0.88 0.96 0.97 0.98 0.99
T P P

FIG. 4. Computation of the different critical lines in the p vs T phase diagram for the 8-state clock model. (a) The overlap Q(T) with

p = 0.5 signals the paramagnetic to spin glass phase transition at 7.(p = 0.5) = 0.4862(1). (b) The square of total magnetization M?(p) with
T = 0.2 marks the transition between mixed and spin glass phases at p.(T = 0.2) = 0.8611(1). (c) The growing rate of perturbations A(p)
with 7 = (.2 becomes positive at the phase transition between ferromagnetic and mixed phases at p,(T = 0.2) = 0.9748(2).
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Q > 0anywhere, while M is nonzero only for p large enough.
In central panel of Fig. 4, we show the typical behavior of
M? as a function of p at T = 0.2 < T, for the ¢ = 8 clock
model. The critical p. estimated this way is an approximation
to the true critical line separating the unbiased spin glass
phase and the mixed phase; the right computation should be
done within a full replica symmetry breaking ansatz, which
is unfortunately unavailable for the diluted models we are
studying here. We expect, however, the RS ansatz to provide a
very good approximation. The critical line separating the RSB
mixed phase from the RS disordered ferromagnet can be
computed by studying the stability of the RS fixed point via
the susceptibility propagation (SuscP) algorithm, that we run
in population dynamics.

As explained in Sec. IIIC and in Appendix A, the SuscP
algorithm amounts at studying the stability of the linearized BP
equations around the RS solution. At any finite temperature,
the perturbations around the fixed-point cavity marginals ;" j
evolve via the following linearized equations:

s§F
577in - Z ﬂ

5 (58)
keanj | O Mk—i

Bnk»i,

s

Mi—i

where F is defined in Eq. (5). We check for the growth of these
perturbations by measuring the following norm:

qg—1
Bnl= Y > 18mij(Bra)l-

(59
(i—j) a=0
We define the growing rate as
In |8
5 = lim onl (60)
t— 00 t

In the right panel of Fig. 4, we report the values of A
as a function of p, for T =0.2 < T, in the ¢ = 8 clock
model. The p, value where A = 0 corresponds to the phase
transition between a mixed RSB phase and an RS disordered
ferromagnet: it is the point where the spin glass susceptibility
diverges [56]. In the RSB phase the perturbations growing rate
A is strictly positive, because the RS solution is unstable there.

Having explained the way we compute the different critical
lines, we can now draw in Fig. 5 the full phase diagram for the
g-state clock model, with several values of g. We notice that
the convergence to the XY model in the ¢ — oo limit is very
fast: in practice, critical lines with ¢ > 8 are superimposed and
coincide with those in the XY model. The only region where
a g dependence is still visible is that with p close to 1 and T
close to 0. In this region we have a strong dependence on the
discretization, such that for small ¢ values the RS disordered
ferromagnet (p is close to 1, but strictly smaller) is stable
down to T = 0, while in the XY model (g — oo limit) there
is always a phase transition to an RSB phase lowering the
temperature with p < 1.

This is an important new finding (to the best of our
knowledge it was not known before). It suggests the XY model
may show RSB effects much more easily than the Ising model,
when the disorder is weak. The reason for this behavior is
maybe due to the fact that, in presence of a weak disorder,
which is not strong enough to force discrete variables in
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FIG. 5. Phase diagram p vs T of the g-state clock model with
bimodal coupling and different values of g. Full critical lines are
exact, while dashed ones are approximated. The convergence to the
XY model in the ¢ — oo limit is very fast and critical lines with
q > 8 are practically superimposed, but for the region in the lower
right corner.

different directions, the continuous variables in the XY model
can adapt more easily to several different orientations (states).

An analogous behavior when increasing ¢ is also found in
the study of the g-state clock model in the d = 3 cubic lattice
by means of Migdal-Kadanoff approximate renormalization
group [57]. Again, paramagnetic-ferromagnetic critical line
converges very fast in g, while a stronger dependence in ¢ is
found for the ferromagnetic-spin glass critical line (moving
toward larger fractions of ferromagnetic couplings, as in our
case) and the paramagnetic-spin glass critical line (moving
toward the zero-temperature axis, unlike our case).

C. Numerical solution of the gauge glass model

In order to discuss the gauge glass model, it is convenient
to rewrite the Hamiltonian in a different form:

H[{6}] = — ZCOS O —0; — wij),

(ij)

(61)

where w;; are the preferred relative orientation between
neighboring spins.

The model with bimodal couplings studied above corre-
sponds to w;; € {0,7}. In the gauge glass model, instead, the
random rotations w;; take values uniformly in [0,27). The
latter choice seems more in line with the continuous nature of
the variables.

The straightforward extension to the g-state clock model
suggests to take w;; € {0,27/q,...,2n (g — 1)/q}. Willing
to interpolate with a single parameter between the pure
ferromagnetic model (w;; = 0) and the unbiased spin glass
model (w;; uniformly distributed), we choose the following
coupling distribution:

qg—1
PO (i) = (1 — A) 8wr;) + 3 Zs<w,-,- — 2’;“) (62)

a=0
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1.4

SG

0.4 0.5

FIG. 6. Phase diagram A vs T of the g-state clock model with
the gauge glass couplings and different values of ¢. Full critical lines
are exact, while dashed ones are approximated. The convergence to
the XY model in the ¢ — oo limit is very fast and critical lines with
g > 8 are practically superimposed, but for the region in the lower
left corner.

with A € [0,1]. In this way, when ¢ — oo we exactly recover
the uniform continuous distribution for the XY gauge glass
model. Furthermore, in this model we can use any g value,
since we do not expect any difference between even and
odd values: any pair of spins can in principle assume a
configuration satisfying a coupling w;; for any g value.

By using the same techniques exposed above, we derive
the phase diagram of this model as a function of 7 and A.
The results are shown in Fig. 6, where we draw critical lines
for several different values of g. As in the bimodal case, the
convergence to the XY model in the ¢ — oo limit is very
fast and already for ¢ = 8 most of the phase diagram does not
depend on g anymore and provides the result for the XY model.
Also in this case the only region where the ¢ dependence is
stronger is the one where the temperature is close to zero and
the disorder is very weak. In the ¢ — oo limit, the XY model
seems again to show RSB effects for any infinitesimal amount
of disorder in the 7 = 0 limit.

We notice en passant that for ¢ = 2 the two versions of
the clock model are identical up to the transformation p <
1 — A /2. This is clearly visible in Figs. 5 and 6, where the red
lines corresponding to the ¢ = 2 clock model are identical up
to a horizontal reflection.

V. CONVERGENCE OF PHYSICAL OBSERVABLES

We face now the main task of this work, studying the
convergence of physical observables of the g-state clock
model toward those of the XY model. We measure physical
observables via the population dynamics algorithm, but we
need to use a population size A/ = 107 in order to achieve the
required accuracy.

The results presented in the previous sections about the
fast convergence of the phase diagrams and the exponential
convergence of discretized Bessel functions, strongly suggest
an exponential convergence of physical observables as long as
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T > 0.Indeed, as shown by the three upper panels in Fig. 7, the

free-energy of the clock model converges to the one of the XY

model exponentially fast in g as long as 7 > 0. In these plots,

we restrict the analysis to the low-temperature phases (spin

glass, mixed, and ferromagnetic), because in the paramagnetic

phase the convergence is so fast that it is hardly measurable.
We fit data at T > 0 via the exponential function

InAfUT) =In[fOT) - fOUT) = A—q/q*

estimating the following values for g¢* (all fits have an
acceptable x2 per degree of freedom, as shown by the values
reported below on the right):

g*(p =0.50, T = 0.02) = 2.57(1),
g*(p =0.95, T = 0.02) = 2.60(5),
g*(p =0.99, T = 0.30) = 0.70(1),

x%/dof = 0.20/5,
x2/dof =0.19/3,
x%/dof = 0.12/2.

As soon as g > g* the clock model provides an extremely
good approximation to the XY model physical observables,
with a systematic error which is by far much smaller than the
typical statistical uncertainty achieved in numerical simula-
tions. In this sense, a Monte Carlo study of the clock model
with ¢ large enough can be a much more efficient way of
measuring physical observables in the XY model.

At T = 0, we observe a slower convergence in g, which is
well fitted by a stretched exponential

InAfT =0)= A —(q/q"). (63)

For the two cases reported in Fig. 7, we find that the b exponent
is very close to 1/2 (and thus we fix it to that value in the fits),
while values for ¢g* are the following:

g*(p = 0.50) = 0.67(1), x*/dof = 6.4/9,
¢*(p =0.95) = 0.79(1), x*/dof = 2.4/9.

Although these values are slightly smaller than those in the
T > 0 case, the b ~ 1/2 exponent makes the convergence at
T = 0 slower. So, it seems that even in the slowest case (T =
0) the convergence of clock model observables to those of the
XY model is fast enough to safely allow to use the clock model
with moderately large values of ¢g.

In Fig. 8, we report the analogous results for the clock
model with the gauge glass coupling distribution in Eq. (62).
Also in this case, convergence in ¢ is exponentially fast for
T > 0 with the following parameters:

q*(A =1.0,T =0.02) =2.55(1),
g* (A =02,T =0.02) =2.66(1), x2/dof =1.35/13,
g* (A =0.1,T =0.20) = 0.83(1), x?/dof =0.43/4.
It is interesting to note that these values are similar to the ones
found by using the bimodal coupling distribution.

Again, at T =0, the convergence becomes a stretched
exponential, with a b exponent close to 1/2 for any A value:

¢*(A = 1.0) = 0.67(1), x%/dof = 12.5/19,
g*(A =0.2) = 0.68(1), x2/dof = 12.8/19.

x2/dof = 0.48/12,

VI. 1RSB CAVITY METHOD

We have shown that in both the XY model and the g-state
clock model at low temperatures the replica symmetric ansatz
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breaks down if the disorder is strong enough (low p or large
A values). We observe this replica symmetry breaking (RSB)

via the RS fixed point becoming unstable.
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In the RSB phase, we know that the RS result is just
an approximation, although we expect it to be a rather

good approximation for some observables (e.g., self-averaging
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observables, like the energy). Nonetheless, in order to keep
track of the RSB effects and the many states present in a RSB
phase, we can resort to a more complicated ansatz with one
step of replica symmetry breaking (IRSB).

In models with pairwise interactions, like those we are
studying here, we expect a full RSB ansatz to be required in the
strongly disordered and low-temperature phase. Nonetheless,
even the 1RSB results can be illuminating on the true physical
behavior. We thus solve the g-state clock model by means of
the 1RSB cavity method derived by Mézard and Parisi [45].

The presence of many states breaks the validity of factoriza-
tion in Eq. (17). Indeed, by adding nodes and links to the graph
by following the RS cavity method prescriptions within each
state, one realizes that each state gets a different free-energy
shift and thus this leads to a reweighing of the different states
[45].

We redirect the reader to book [2] and lecture notes [58]
for an exhaustive description of the 1RSB cavity method for
solving sparse disordered models. Here we just sketch the key
concepts involved in the 1RSB solution.

At a given temperature 7 = 1/f, the number of states with
free energy density f in a system of size N can be written as

N(f) = V=D, (64)

where Xg(f) is called complexity in the literature on spin
glasses and configurational entropy in that on structural
glasses. Introducing a replicated partition function

Zg(x) = Ze—ﬂNxfw ~ /dfeN[ZM)—ﬂxf]
o

~ NI BB B0 (65)

where f, is the free energy of state o and f*(8,x) is the
maximizer of X(f) — Bxf, that depends on both 8 and x, one
can compute X( f) as the Legendre transform of the replicated

free energy ¢p(x):

1
Pp(x) = — N In Zg(x),

FH(B.x) = ¢p(x) + x 0, Pp(x),
(B,x) = Bx? dygp(x).

The complexity X(f) can be obtained by plotting parametri-
cally X(8,x) versus f*(B,x) varying x at fixed 8.

Thermodynamical quantities are obtained by setting x = 1
if the corresponding complexity is positive,i.e., Z(8,x = 1) >
0. Otherwise, if X(8,x = 1) < 0, these states do not exist, and
the partition function is dominated by the states with x =
x* < 1 such that ¥£(8,x = x*) = 0, where x* is called Parisi
parameter.

A. 1RSB equations and their solution by means of population
dynamics algorithm

The computation of the replicated partition function Zg(x)
must take into account the presence of many states, each
one weighed by exp(—pBxf,). In each state « BP equations
(5) are still valid; let us refer to them briefly as n,,; =
Fl{nr—i}]- Since now we have to reweigh the cavity messages
n according to the free energy shift they produce, it is

PHYSICAL REVIEW B 95, 054433 (2017)

necessary to introduce a probability distribution P[-] over the
RS probability distribution P[n] of cavity messages. These two
levels of populations come from the two different averages that
we have to perform in the 1RSB approach: (i) a first average
in a given state, that gives the RS population P[#], and (ii) a
second average over the states, that gives the IRSB population
PIP].

If Z;_,; is the normalization constant that comes from the
computation of cavity message 1;_.; via the RS BP equation
Ni—;j = F[{n—i}l,1.e., the free energy shift due to the addition
of site i and directed edges (k — i)’s with k € 9i \ j, then the
reweigh acts as follows:

Pi_ilnis ] = Gl{Pisi}]

/ [ Presi Peesilimi]
kedi\j

x8[nimj — Flim—iNI(Zis jHnk—i}D*. (66)

In this way, the RS solutions are reweighed by exp (—8Nmf,,),
as required in the computation of Z(x). The average over
all the states yields the distributional equation for probability
distribution P[P]:

=E¢,

PIP ] = / [[ DPei PLP1SIP j — GUL P} 1.

kedi\j
(67)

Equations (66) and (67) are solved by a population dynamics
algorithm, that considers the two levels of average. We store
N populations each one made of M cavity messages n. Cavity
messages evolve via Eq. (66), where populations entering
the r. h. s. are randomly chosen according to Eq. (67). For
each population, the reweighing of messages is performed as
explained in Ref. [2], by first computing » M (with r > 1)
new cavity messages, and then selecting M among these
with a probability proportional to Z*. Typical values for the r
parameter are contained in the range [2,5].

Physical observables in the thermodynamical limit can
be written as averages over the two levels of probability
distributions [2,45], namely, over populations P’s and over
cavity marginals 7’s:

1
Bp(x) = 2‘% Ep[nE,[25]] - 5 Ee[nE,[2]]

1 [En[Zfan,-]j|

f(B.,x) = _E]EP ]En[Zix]

c En[Zl’;hlle]
—Ep| 2
2% | TE[E]
X(B.x) = Bx(f(B,x) — ¢px)).

In the 1RSB ansatz, thanks to the two levels of average,
we can define two different overlaps: an inner overlap Qj,
describing the similarity of local magnetizations inside a given

state
E,[Z (m? 2
QIZEP[ d ’(m”‘+m”y)]} (68)

+
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and an outer overlap Qy, describing the similarity of magneti-
zations between different states:

E,[Zim:.,]] E,[Zim:,]]
QO:EP[M} +EP|:¢i|_ (69)

E,[Z] E,[Z]

Asexpected, itholds Q1 > Q. These two overlaps are nothing
but the analogous of the ones introduced in the 1RSB solution
to the SK model by Parisi [59,60]. We are going to use these
overlaps to approximate the Parisi function, Q(x), in the spin
glass phase, given that the full RSB solution is not known for
disordered models on sparse graphs.

B. 1RSB solution of the g-state clock model

The 1RSB ansatz is known to provide the correct solution
to many disordered models defined on random sparse graphs
(e.g., p-spin models [39], random K-SAT problems [42],
and random coloring problems [40]), at least in a range of
parameters. These models have either interactions involving
p > 2 variables (p-spin and K-SAT models) or variables
taking ¢ > 2 values (coloring problems).

For the g-state clock model on a sparse random graph
(hereafter we restrict to symmetric bimodal couplings, p =
1/2), it is less clear how close to the right solution the
IRSB ansatz is. We expect a continuous phase transition for
most g values, and so the 1RSB solution should be seen
as an approximation to the correct full RSB solution. Our
expectation comes from the following observations. Forg = 2,
the clock model coincides with an Ising model, and for g = 4,
it is equivalent to a double Ising model. For ¢ = 3, the clock
model is equivalent to a 3-state Potts model or ¢ = 3 coloring
problem that has no thermodynamical phase transition on a

PHYSICAL REVIEW B 95, 054433 (2017)

random three-regular graph [61], but only a dynamical phase
transition is expected to happen (well described by a 1RSB
ansatz). This case can be studied by fixing x* =1 as in
Ref. [62], where the g-state clock model with multi-body
interactions is studied in the 1RSB frame. For g > 5, there are
no known results on sparse graphs and our results in Sec. [V A
suggest a continuous transition for any ¢ value. This may
look at variance with results for the g-state Potts model, but
in the clock model the g states have a specific ordering that
eventually converge to the orientations of a continuous variable
in the ¢ — oo limit. Given that in that limit the transition is
again continuous, it is reasonable to expect that the transition
in the disordered g-state clock model on a sparse random graph
is continuous for any ¢ values.

The literature provides one more piece of evidence in this
direction. Nobre and Sherrington [38] have studied the g-state
clock model on the complete graph, finding a continuous phase
transition for any g # 3 value. Moreover, they have expanded
the replicated free energy close to the critical point, i.e., for
Tt = (T, — T)/T. < 1, where the Parisi function Q(x) can be
well approximated by a linear function Q(x) = axforx < bt
and aconstant Q(x) = a bt forx > b . The parameters a and
b determine the universality class. Nobre and Sherrington [38]
found that ¢ = 2 and 4 belong to the Ising universality class,
while ¢ = 3 is in the three-state Potts one and for g > 5 the
universality class is the same as the one of the XY model.

Unfortunately, for diluted models with a continuous transi-
tion, the study of the 1RSB solution very close to the critical
point is infeasible, because the replicated free energy ¢g(x)
differs from the constant RS free energy ¢4z(0) by a quantity
going to zero linearly in 7, and—given the complexity is
very small (see Fig. 9)—computing numerically ¢g(x) at
very small 7 is too noisy. For this reason we have computed

(a) ¢g=2 (b) g =4 ()g=5
2¢e-4 ; ; ; 2e-4 . . . 2e-4 T T % T
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FIG. 9. Plot of complexity X(x) for the g-state clock model with bimodal couplings (p = 1/2) at reduced temperature 7 = 1/2, i.e.,
T = T,/2. Plot ranges are the same in all the panels. We also draw the fitting quadratic curve used for each g value to estimate the Parisi

parameter x*, such that ¥(x*) = 0.
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TABLEI. 1RSB parameters in the g-state clock model with J;; =
=+1 couplings (p = 1/2) on a random three-regular graph.

q x* Qo 0O

2 0.45(1) 0.497(4) 0.748(1)
4 0.47(2) 0.506(9) 0.750(2)
5 0.48(1) 0.427(5) 0.700(1)
6 0.51(3) 0.499(9) 0.685(3)
7 0.47(2) 0.447(8) 0.666(2)
8 0.46(2) 0.449(7) 0.664(2)

¢g(x) at T = 1/2, namely in the middle of the spin glass
phase.

We focus on values of ¢ ranging up to 8, excluding the
g = 3 case that we know to be very different (it has just a
IRSB dynamical transition). The numerical evaluation has
been performed with A = 262 144 populations, each made
of M = 512 marginals. This unbalanced choice (M <« N) is
due to the observation that the complexity X(8,x) shows much
stronger finite size effects in A/ than in M. The reweighing
factor r is dynamically adapted during the run in order to avoid
the presence of “twins” in a population, that would reduce the
effective size of the population; the range actually spanned is
r € [2,10].

In Fig. 9, we plot the complexity (8 = 28,,x) for all
the g values studied. We have used the same plot ranges in all
panels, in order to allow a direct comparison between different
q values. In each plot, we also draw the fitting quadratic curve
that we use to estimate the Parisi parameter x*, such that
¥ (x*) = 0. The values of the estimated x* parameters are
reported in Table I. Errors on X are large due to the fact we
are measuring a very small complexity, = ~ O(107%).

The overlaps Qp and Q; as a function of x are shown in
Fig. 10 for all the g values studied. Statistical errors on the
overlaps at a given x are smaller than the symbol size; thus
the uncertainty reported in Table I is completely due to the
error on the estimation of x*. We notice that data for ¢ = 2
and 4 in Fig. 10 perfectly coincide (and this is expected for the
reasons explained above). More interestingly is that also data
for g = 7 and g = 8 coincide: this seems to suggests that, after
the “transient” values ¢ = 5 and 6, the g-state clock model
converges immediately to its large ¢ limit, the XY model.
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A comparison with the RSB solution for the corresponding
fully connected model can be done only in the Ising case (g =
2); for the SK model the 1RSB solution returns at T = T, /2
the following parameters [59]:

x*=028, Qyp=0213, 0,=0.619,

which are rather different from the ones describing the 1RSB
solution in the ¢ = 2 sparse case (see Table I). So the solutions
we are studying are quite far from those on the fully connected
topology. Nonetheless, similarly to what has been observed
in the fully connected case [38], we notice that the 1RSB
parameters in Table I seem to vary little for g > 5; actually
they are compatible with g-independent values within the error
bars. Only the value g = 6 shows a peculiar behavior, maybe
due to some reminiscence of the ¢ = 3 case. Given the very
fast convergence in ¢, and willing to have a precautionary
attitude, we can safely take the ¢ = 8 clock model as a
very good approximation to the XY model, even in the RSB
low-temperature phase. Also, the d = 3 cubic lattice case
in the Migdal-Kadanoff RG approximation [63] shows very
similar results, with ¢ =2 and 4 having the same critical
exponents, ¢ = 3 showing a peculiar behavior, and finally
q 2 5 converging to the asymptotic values of the XY model.

VII. CONCLUSIONS

In this work, we have studied analytically the disordered XY
model on random regular graphs (Bethe lattice) with different
disorder distributions. We have used the cavity method, that
provides the correct answer for models with a locally treelike
topology. Given that the (replica symmetric) solution to the
XY model requires to deal with O (N) probability distributions
on [0,27), with N being the system size, we have chosen to
approximate the XY model with the g-state clock model. The
computational effort to solve the latter scales as O(g>N).

First of all we have shown that both the physical observables
and the critical lines of the g-state clock model converge to
those of the XY model very quickly in g: exponentially in ¢
for positive temperatures (7 > 0) and following a stretched
exponential in g for T = 0. In practice, we believe that the
clock model with a not too large number of states can be safely
used both in analytical computations and numerical simula-
tions, especially in presence of quenched disorder and positive
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FIG. 10. Plots of overlaps Q; and Q, in the IRSB solution for the g-state clock model with bimodal couplings (p = 1/2) at reduced
temperature T = 1/2,i.e., T = T./2. Please notice the different ranges on the y axis for the two plots.
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temperatures. Indeed, the situation where the discretization
becomes more evident is the very low-temperature limit in
presence of a very weak disorder. Avoiding this limit, the
clock model perfectly mimics the XY model.

Secondly, by using the clock model with large g as a
proxy for the XY model, we have computed accurate phase
diagrams in the temperature versus disorder strength plane.
We have used different disorder distributions and found some
common features, that are apparently universal. Among these
features, the one which is markedly different from disordered
Ising models is the presence of spontaneous replica symmetry
breaking at zero temperature for any disorder level: indeed,
even an infinitesimal amount of disorder seems to bring the
system into a spin glass phase. This new finding suggests that
in the XY model it is much easier to create many different kinds
of long range order (namely thermodynamic states), probably
due to the continuous nature of XY variables.

Finally, we tried to study the low-temperature spin glass
phase within the ansatz with one step of replica symmetry
breaking. Our original aim was to make connection to what
is known in the fully connected clock model. The 1RSB
analytical solution is computationally very demanding. Within
the accuracy we managed to achieve, the clock model with
finite connectivity studied here looks quantitatively far from
its fully connected version. However, as in the fully connected
case, the dependence on g seems to be relevant only for very
small values of ¢: as soon as g = 5, the model properties
resemble those of the XY model.
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APPENDIX: SUSCEPTIBILITY PROPAGATION

As stated in Sec. III C, one of the most used methods to
detect the RS instability is to linearize the BP equations and
see when RS fixed point becomes unstable under a small
perturbation. This method is better known as susceptibility
propagation, since the propagation of the BP perturbations
allows one to compute the susceptibility in any given sample.

1. Susceptibility propagation at a positive temperature

Let us start from the J;; = %1 case at T > 0. We use the
notation for the XY model, since the corresponding equations
for the clock model are easily obtained by changing all
integrals over 6;’s with discrete sums. To help the reader, we
rewrite here the BP equations (5)

1

Hisj6) = [1 / doy P00 0 (AL

= kepivj
with Z;_, ; given by
Zi—>j :/dei l_[ /dekeﬁjikcos(gﬁgk) Nk—i (Or)-
kedi\j

The most generic perturbation to a cavity marginal n;_, ;(6;)
must be such that the perturbed marginal

Moy j01) = nis j(6;) + mis j(6)

remains well normalized, thus implying
/dei i ;(6;) =0.

So, in the study of the instability of the RS fixed point, one
has to search for the most unstable perturbation among those
satisfying the above condition.

Linearization of the BP equations (A1) leads to

Z fdgk o Bix cos (6,—61) Snisi (O 1_[ /dek’ o Pl €08 (6;=6) Ne—i(Or)

1
i j(6) = Z., 2
kedi\j k' £k
1 : o
_ i 1_[ /dgkeﬁlmcoswz 6k) Mk (O0)
i—j | kedi\j

- / doi | Y / doy e P00 sy 00 T / dye P SO0 )

kedi\ j

(A2)
k'#k

All cavity messages that appear in this expression—as well as normalization constant Z;_, ;—have to be evaluated on the RS BP

fixed-point.

Equation (A2) can be solved on a given graph or in population dynamics if one is interested only in computing the typical
behavior. In the latter case, we need to evolve a population of pairs of functions (n;(6;),61,(6;)): marginals n;(6;) evolve according
to BP equations (A1), while perturbations é7;(6;) evolve according to Eq. (A2). We then measure the growth rate of the

perturbations via the norm

HIEDS

li—=Jj}

do; ni j(0)I,

(A3)

that evolves as |67n| o exp(A t) for large times. The critical point leading to RS instability is identified by the condition A = 0.
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In the gauge glass, the linearized BP equations read

i j(6;) =

i~ kedi\j

1

i—~j | kedi\j

: / DY f doy e <00 sy 00 T f dye e G )

kedi\ j

2. Susceptibility propagation at zero temperature

At zero temperature, the situation is more complicated and
important differences arise between the g-state clock model
with discrete variables and the XY model with continuous
variables. Let us recall the zero-temperature version of the BP
equations for the J;; = 1 XY model:

hi—j(0;) = Z max [ (O) + Jik cos (0; — )], (AS)
kedirj
where h;_, j(6;) is defined up to an additive constant such that
maxy, [h;, j(6;)] = 0, as we discuss in Sec. IIl. Linearizing
Eq. (AS), we get the following equation for the evolution of
perturbations:

Shi;j(0) = Z Shi—i (07 (6))), (A6)
kedi\j
where 6, (6;) is given by
0, (6;) = arg max [hesi(Ok) + Jikcos(0; — Op)]. (A7)
'k

In practice, we never solve the equations for the XY model,
we always solve those for the g-state clock model, where the
only difference is that the maximum in Egs. (A5) and (A7)
must be taken over the discrete set of g possible values for 6.

A natural question is whether the solution to these equations
changes smoothly with ¢ in the limit of very large ¢g. We find
that the marginals in the g-state clock model with g large
are very close to those in the corresponding XY model: thus
Eq. (AS5) for the marginals can be used safely, and the XY
model well approximated by the clock model with moderately
large values for g.

On the contrary, perturbations in the clock model at 7 = 0
evolve in a completely different way with respect to what
happens in the XY model. Indeed, due to the fact the maximum
in Eq. (A7) is taken over a discrete set, it can happen that
perturbations obtained from Eq. (A6) have the same value for
any 6;. And this in turn corresponds to a null perturbation.

To understand the last statement, one has to remember
that the correct normalization for each cavity marginal is
enforced by the condition that the maximum of h;_, ;(6;) is
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Z /d@k o B cos Oi—O—awi) Sniksi (O0) 1_[ /dek’ o B cos (6 =0y —wy) Ne—i(O)

k' #k

> l_[ / dek eﬁ/ c0s (0; =0k —wik) nk—>[(9k)

(A4)
k' #k

(

zero, and this must be true also for the perturbed marginal.
This implies that the perturbation must be zero in 6" =
argmax, [hi- ;(6;)]. We enforce this condition by shifting the
perturbations obtained from Eq. (A6) as follows:

Shi— j(6;) <« Shiss;j(0;) — 8hiss;(6™).

1

Consequently, a constant perturbation generated by Eq. (A6)
becomes a null perturbation after the shift.

So, in the T = 0 clock model, the perturbations evolve
exactly as in the Ising model [64], where perturbations divide
in two groups: null perturbations and nonnull perturbations.
Since the norm of the nonnull perturbations changes a little
and remains finite during the evolution, the instability of the
RS BP fixed point is mainly determined by the evolution of
the fraction of nonnull perturbations.

Nonetheless, we have observed that such a fraction shrinks
with a rate that depends on ¢, and in the ¢ — oo limit this
fraction seems to remain finite. So, we conclude that the
shrinking of the fraction of nonnull perturbations is a direct
consequence of the discretization, and it is not present in the
XY model.

The fact that perturbations evolve in a drastically different
way in the XY model and in the clock model for any value
of g, may suggest the latter model is unfit to describe the
fluctuations of the XY model, and thus its physical behavior
in the T = 0 limit. Luckily enough there is a way out to this
problem.

The solution is to use the BP equations (AS5) in a fully
discretized way, but computing the maximum in Eq. (A7) on
the reals. Given that the argument of the argmax in Eq. (A7)
is defined only on g discrete points, we interpolate with
a parabola the three points around the maximum, i.e., the
point where the argument achieves its maximum and the two
nearby. A similar interpolation is performed on the function
8hi—i(-) that needs to be evaluated at the value 6;(6;) that
no longer belongs to the discrete set. By proceeding this way,
we obtain perturbations that shrink, but never become exactly
zero. Thus the critical point can be computed just by checking
the evolution of the norm of the perturbations as in the 7 > 0
case.
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