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Impurities near an antiferromagnetic-singlet quantum critical point
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Heavy-fermion systems and other strongly correlated electron materials often exhibit a competition between
antiferromagnetic (AF) and singlet ground states. Using exact quantum Monte Carlo simulations, we examine the
effect of impurities in the vicinity of such an AF-singlet quantum critical point (QCP), through an appropriately
defined “impurity susceptibility” χimp. Our key finding is a connection within a single calculational framework
between AF domains induced on the singlet side of the transition and the behavior of the nuclear magnetic
resonance (NMR) relaxation rate 1/T1. We show that local NMR measurements provide a diagnostic for the
location of the QCP, which agrees remarkably well with the vanishing of the AF order parameter and large values
of χimp.
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I. INTRODUCTION

In materials, such as the cuprate superconductors, mobile
impurities introduced, e.g., via the replacement of La by Sr, are
known to destroy antiferromagnetic (AF) order very rapidly
[1,2]. Long-range spin correlations are somewhat more robust
to static scatterers, e.g., via Zn substitution for Cu in the same
materials [3–5]. This competition of AF and chemical doping
is a central feature of many other strongly correlated systems,
including Li doping in nickel oxides [6,7], spin chains [8], and
ladders [9] and has been explored by quantum Monte Carlo
(QMC) approaches in single band fermion models [10] and
their strong-coupling spin limits [11].

Materials with multiple fermionic bands or localized spins
in multichain or multilayer geometries offer an additional
richness to the effect of impurities on AF since even in
the clean limit they can exhibit a quantum critical point
(QCP) separating AF and singlet phases. Although impurities
reduce AF deep in the ordered phase, nearer to the QCP,
they can increase AF and even, beginning in the quantum
disordered phase, induce AF by breaking singlets [8,9]. This
has recently been explored in heavy-fermion materials where
Cd doping of superconducting CeCoIn5 induces long-range
magnetic order [12]. The underlying mechanism is believed
to be a local reduction of conduction electron-local moment
(c-f ) hybridization on the Cd sites, suppressing the singlet
energy gain. The experimental observation that the NMR
spectra linewidths broaden with Cd substitution indicates that
Cd impurities induce AF puddles around them. The size of
these AF regions shrinks with pressure, which increases this
hybridization towards its value in the absence of disorder, ulti-
mately yielding a revival of superconductivity (SC). However,
as indicated by NMR relaxation rate 1/T1 measurements, the
resulting phase is quite heterogeneous [13] not unlike the stripe
and nematic orders which coexist with superconductivity in
the cuprates. Prior theoretical work examined domains within
a mean-field theory of competing AF and SC orders [13].

A useful initial route to a better understanding of the
mechanisms of the evolution of the NMR relaxation rate 1/T1

is to single out the contributions from the spin degrees of
freedom. This is the approach we follow here in which two
antiferromagnetically coupled layers give rise to a competition
between an interlayer-singlet-rich and an AF phase. By
allowing dilution in the second layer, thus breaking interlayer
singlets, one mimics the reduction of c-f hybridization. In
addition, from a pragmatic perspective, accessible system
sizes for QMC simulations of itinerant fermion systems are
not sufficiently large to encompass multiple impurities and
carefully study finite-size effects. However, it is known that
many of the qualitative features of itinerant AF models,
such as the Hubbard Hamiltonian, are reflected in their spin
counterparts [14,15], notably the successful modeling of the
Knight-shift anomaly, certain aspects of which can be captured
either with descriptions in terms of localized spins [16] or
itinerant electrons [17]. This paper reports QMC simulations of
a disordered bilayer Heisenberg Hamiltonian, characterizing
its physics within an exact treatment of quantum many-body
fluctuations. Key findings are as follows: (i) An appropriately
defined impurity susceptibility captures both the inhibition of
AF order deep in the ordered phase and its sharp enhancement
near the QCP; (ii) quantitative determination of the AF regions
induced by impurities and the criterion for their coalescence
into a state with long-range order at experimentally relevant
temperature scales; (iii) verification of the suggestion that
1/T1 is very weakly temperature dependent at the QCP in the
clean system. We also establish that the local value of 1/T1 at
an impurity site increases abruptly at the QCP and resembles
the behavior of the clean system “far away” from the impurity.

QMC, in combination with analytic scaling arguments, has
previously been used to study the loss of magnetic order and
multicritical points in bilayers where the dilution at a given
site discards simultaneously the spins in both layers [18].
Interesting topological considerations arise from the removal
of a single spin from a bilayer system in the singlet phase since
an unpaired spin-1/2 object is left behind [19]. QMC has been
used to study the spin texture produced by a single impurity
[20] as well as the onset of AF order in lattices of dimerized
chains [21].
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II. MODEL AND METHODS

We consider the spin-1/2 AF Heisenberg bilayer Hamilto-
nian,

H =
∑
〈ij〉,α

J α �S α
i · �S α

j + g
∑

i

�S 1
i · �S 2

i , (1)

where subscripts i,j denote spatial sites on a square lattice and
superscripts α = 1,2 label the two layers. We study the case
when the intraplane exchange constants J α = J are the same,
and we choose J = 1 to set the energy scale. g is the interlayer
exchange.

The Heisenberg bilayer model considered here describes
the competition between AF order and singlet formation, such
as in the Kondo effect. The spin-1/2 Heisenberg Hamiltonian
has been studied widely as a model of quantum magnetism,
in particular, as the AF parent compounds of the cuprate
superconductors. In that context, the establishment, via QMC
simulations, that long-range order (LRO) occurs in the ground
state of the Heisenberg model on a square lattice, i.e., g = 0
in Eq. (1) [22] was followed by the demonstration that LRO
is also present at T = 0 in the half-filled fermion Hubbard
Hamiltonian [23,24], emphasizing similarities between the
two models, in the insulating phase of the latter.

In the absence of disorder, the AF-singlet transition has been
located to high accuracy through finite-size extrapolation of the
AF order parameter. The square of the order parameter sums
the spin-spin correlations throughout the lattice, normalized
to the lattice volume N . If those correlations are short ranged
(e.g., decaying exponentially), the local contributions to the
sum, when divided by N , vanish. If the correlations extend
over the entire lattice, then the order parameter is nonvanishing.
In practice, in QMC simulations, careful finite-size scaling is
essential to demonstrate LRO. See also Eq. (1) and Fig. (S1)
of the Supplemental Material for further discussions [25]. Our
focus here will be on the nature of these correlations in the
neighborhood of an impurity,

〈m2〉 =
〈(

1

N

∑
i

(−1)xi+yi+αSα
i

)2〉
. (2)

For the symmetric case [26,27] J 1 = J 2, the critical
interlayer exchange is gc = 2.5220. For the “Kondo-like”
lattice where one of the intralayer J ’s is zero, gc = 1.3888.

As in Ref. [26], we use the stochastic series expansion
(SSE) method to obtain 〈m2〉. SSE samples terms in a power
expansion of e−βĤ in the partition function using operator loop
(cluster) updates to perform the sampling efficiently [28]. Here
we consider bilayer systems with N = 2×L×L and L up to
100 sites.

We also evaluate the NMR relaxation rate, given by the
low-frequency limit of the dynamic susceptibility,

1

T1
= T lim

ω→0

∑
q

A2 χ ′′(q,ω)

ω
, (3)

where A is the hyperfine coupling and T is the temperature.
We obtain 1/T1 using the long imaginary-time behavior of the

FIG. 1. The square of the staggered magnetization 〈m2〉 as a
function of the impurity concentration p for different g’s. In the
AF phase with g = 2 < gc(p = 0) = 2.522, impurities reduce the
order. The effect of impurities near the QCP and in the singlet phase
is discussed in the text. The inset: Finite-size scaling of 〈m2〉 for
p = 0.01. The position of the QCP is increased to gc(p = 0.01) =
2.65. Data were averaged over 120 disorder realizations. The inverse
temperature is β = 80.

spin-spin correlation function,

1

T1
= A2

π2T
〈Si(τ = β/2)Si(τ = 0)〉; (4)

the regime of validity of Eq. (4) is discussed in Ref. [29].

III. AF DOMAINS AND IMPURITY SUSCEPTIBILITY

For a given lattice size L and one disorder realization (i.e.,
random removal of a fraction p of the spins on layer α = 2),
we perform the simulations to obtain the quantities of interest;
these are then averaged over about 120 disorder realizations.
The inset of Fig. 1 shows an example of the size dependence
of the AF order parameter thus calculated for a given impurity
concentration and different values of g: The intercepts with the
vertical axes provide the extrapolated (L → ∞) values for the
given p appearing in the main body of the figure. As expected,
impurities decrease 〈m2〉 deep within the AF phase (g = 2)
where they act to reduce the average coordination number of
the lattice and hence the tendency to order. Closer to the QCP, a
different behavior emerges. Impurities begin to inhibit singlet
formation by leaving unpaired moments on their partner sites.
The AF order parameter, which had been disrupted by singlet
formation, therefore increases with p for g � gc and does so
especially sharply at g = gc. For g > gc, sufficiently large
p can induce AF order, even though these larger interplanar
couplings would result in singlet formation in the pure case.
The appearance of a finite pc for g > gc is discussed further
below.

The effect of impurities on the AF order parameter can be
characterized by an impurity susceptibility,

χimp = d〈m2〉
dp

∣∣∣∣
p=0

, (5)

which, as shown in Fig. 2, has a sharp peak at gc. The
effect of impurities is especially large close to the QCP
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FIG. 2. The impurity susceptibility χimp is sharply peaked at
gc (vertical dashed line): Impurities induce AF order. Away from
gc, χimp < 0: Impurities reduce the AF order parameter. The inset
shows the g dependence of 〈m2〉 for p = 0.01 (squares) and the clean
system (circles); these data were used to obtain χimp. Both the shift in
gc and the large effect of impurities at the QCP are evident. Data for
〈m2〉 result from extrapolations to L = ∞. The inverse temperature
is β = 80.

where the system in delicately poised between two phases.
Farther away from the QCP in the AF phase g � 2, the
impurity susceptibility is negative as in the two-dimensional
(2D) Heisenberg model with site dilution [30].

For g > gc, impurities induce AF order in an otherwise
singlet phase [31]. We estimate the critical impurity con-
centration as follows: Prior to the establishment of order,
the coupling between two regions centered at sites i and
j will oscillate in phase with an amplitude which decays
exponentially [32–34] Jeff ≈ J (−1)−|i−j+1|exp(−〈l〉/ξ ). Here
〈l〉 is the mean impurity separation, and ξ is the correlation
length in the clean system. For 2D, 〈l〉 = 1/

√
p. Assuming that

the AF order will set in when the average distance between the
impurities is on the same scale as ξ yields ξ

√
pc ≈ 1. For a

dilute system, we compute ξ by embedding a single impurity in
the lattice and evaluating the decay of the spin-spin correlation
in its vicinity; see the Supplemental Material [25]. Figure 3(a)
shows the resulting ξ , and panel (b) validates the picture that
the critical concentration of impurities to induce AF order
occurs when 〈l〉 = 1/

√
p ∝ ξ .

There are several subtleties to this argument. At T = 0, an
exponentially small interaction between impurities can induce
order [35]. (This occurs despite the fact that some impurity
pairs, which are sufficiently close spatially, lock into singlets
[36].) This suggests pc = 0 throughout the singlet phase—an
arbitrarily small number of impurities will order despite the
rapid decay of their coupling. The effect of these very small
couplings is, however, seen only at extremely low T , a fact
that is reflected in SSE simulations [35] by the need to study
inverse temperatures β ∼ 104–105 (except very close to the
QCP where ξ diverges). In contrast, β which is two to three
orders of magnitude smaller is sufficient to reach the ground
state on lattices of L ∼ 60 studied here.
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FIG. 3. (a) Correlation length ξ as a function of g. Data are shown
around a single impurity (square) and for the clean system (circles).
(b) ξ

√
pc is roughly constant, consistent with a picture where AF

order occurs when the mean impurity separation 〈l〉 is proportional to
ξ . Data for inverse temperatures β = 40,80 were compared to ensure
convergence to the ground state. L up to 100 was used to calculate ξ .
(c) The AF order parameter at fixed β = 80 exhibits a sharp crossover
indicating the position of the enhanced range of AF order created by
the spin-1/2 impurities.

The ordering temperatures in Cd-doped CeCoIn5 are about
2–5 K, and the c-f coupling is reported to be around 49 meV
so that Tc ∼ 10−2J . Thus a more refined interpretation of
Fig. 3(b) is that, although AF likely exists at infinitesimal pc

strictly at T = 0, panel (b) gives the effective critical impurity
concentration to induce AF in the singlet phase at experimental
temperature scales [37]. Figure 3(c) shows the position of this
sharp crossover in the AF order parameter.

IV. UNIVERSAL BEHAVIOR OF
THE NMR RELAXATION RATE

The NMR spin-relaxation rate 1/T1 provides an experimen-
tal window into doped heavy-fermion materials. Secondary
spectral peaks and broadening of the main line implicate
the presence of inhomogeneous environments [13]. Here we
provide a quantitative description of the effect of impurities
on 1/T1 and demonstrate that these provide a crisp signature
at the QCP.

The main panel of Fig. 4(a) shows the evolution of 1/T1

with interlayer coupling at different fixed temperatures for
the clean case: It follows the same trend as the AF order
parameter 〈m2〉, i.e., it initially rises as the two planes are
coupled, has a maximum for g ≈ 0.5, and then decreases to
small values at the QCP. The inset of Fig. 4(a) emphasizes
the common crossing point at gc ∼ 2.52, which is indicative
of a very weak T dependence of 1/T1 as the QCP is
approached. Indeed, this behavior is consistent with early
predictions [38] of universality in clean two-dimensional
quantum antiferromagnets, according to which 1/T1 ∼ T η

with η ≈ 0.0375 [39] and in the Kondo lattice model [40];
more on this in the Supplemental Material [25].
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FIG. 4. (a) 1/T1 as a function of g for different values of β. The
linear size is L = 50,60. The inset: blowup of the crossing point.
g < gc, g = gc, and g > gc. (b) g dependence of 1/T1 for a system
with a single removed spin. x = 0,1,2,L/2 are different horizontal
distances from the impurity. See the text. For the impurity system the
linear lattice size is L = 20,30.

The behavior of 1/T1 in the presence of disorder is shown
in Fig. 4(b). We consider the simplest case of a single spin
removed from one layer and compute the relaxation rate of
spins in the pure layer as a function of distance x on a horizontal
line from the removed site. x = 0 corresponds to the removed
spin’s immediate partner, whereas x = 1,2 are near and next-
nearest neighbors and finally at x = L/2, far away from the
impurity. For x = 0 the partner shows a sharp QCP signature.
Above g = gc when all the other spins are locked in singlets,
the free spin-1/2 left behind by spin removal has a greatly
enhanced 1/T1. Meanwhile, the relaxation rate is small for
all other sites. For g = 0 the spins on the undiluted plane are
decoupled from the second layer and hence share a common
value of 1/T1 regardless of impurities. Figure 4(b) indicates
this independent plane behavior extends out to g � gc for
x � 1. The curve for x = 0 breaks away for g � 1 and has a
sharp increase at the QCP. Comparison with the results for the
clean system shows that 1/T1 on the farthest spin is unaffected
by the impurity as observed experimentally [37].

FIG. 5. T dependence of 1/T1 for separations x from the
impurity. See the text. The inset: determination of the η′ exponent.
Linear lattices sizes were L = 20,30, somewhat smaller than in
previous figures because of the necessity to compute the imaginary
time-dependent correlation functions.

FIG. 6. AF correlation C(r) of the spin at an impurity site with
the other spins in the layer α = 1. g = 4, 3, 2.7, and 2.52. See the
text.

We conclude by computing the T dependence of 1/T1 at the
QCP g = 2.52 for this same collection of sites. As emphasized
by Fig. 5, 1/T1 is weakly temperature dependent away from
the impurity site. For the spin left behind at x = 0, 1/T1

increases substantially as T is lowered and can be described by
a power law (the inset). Sachdev et al. have argued [19] that
the imaginary-time autocorrelation function of an impurity
at the QCP scales as Si(τ )Si(0) ∼ τ η′

, implying, through
Eq. (4), that 1/T1 ∼ T (η′−1). Here we obtain η′ = 0.41 ± 0.03,
in agreement with Ref. [20].

Finally, we study correlations between AF puddles believed
to form around Cd sites. Figure 6 shows the AF correlation
function C(r) = (−1)�r〈S1,z

i S
1,z
i+r〉, around an impurity site i, at

the center of the lattice. For g = 4 only spins in the close
vicinity of an impurity at the lattice center are correlated
with it. When g = 3 other impurity locations become evident.
Correlations start to become substantial over the whole lattice
at g ∼ 2.7. For an impurity density p = 0.01 (16 impurities
on a 40×40 lattice), enhanced spin-correlation values gc =
2.52 (bottom right panel) are consistent with the establishment
of a nonzero order parameter value of m2 ∼ 0.02 in Fig. 1.

V. CONCLUSIONS AND OUTLOOK

Exploration of randomness and dilution effects on mag-
netic and superconducting order is crucial to understanding
disordered strongly interacting quantum systems, such as
heavy fermions and cuprates. Impurities reduce order but also
nucleate ordered domains which, when sufficiently proximate,
coalesce to create long-range order [41–43]. We brought
together exact QMC calculations of the effect of impurities
on spin correlations/domains and the NMR relaxation rate as
a system is tuned through a QCP.

Our key conclusions are as follows: (i) The impurity sus-
ceptibility, defined as the response of the AF order parameter
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to the removal of a small number of spins, exhibits a sharp
peak at the QCP so that low disorder concentrations readily
lead to long-range order; (ii) the critical concentration pc for
randomness to induce long-range AF order in the singlet phase,
at moderate β, is well described by ξ

√
pc ∼ 0.4, where ξ is

the spin-correlation length at g > gc; and (iii) verification that
the NMR relaxation rate is nearly temperature independent at
the QCP and that an abrupt increase in the local value of 1/T1

on an impurity site provides a clear signature of the QCP.
Our paper focused on localized Heisenberg spins. Anal-

ogous studies dealing with itinerant electrons, such as the
periodic Anderson model, are underway [44]. In that case, an
impurity is modeled by a site with reduced c-f hybridization
V ∗ < V , and similar to our case, it becomes increasingly

effective at inducing AF correlations as the AFM-singlet
transition is approached.
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