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Dynamical quantum phase transitions in presence of a spin bath
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We derive an effective time independent Hamiltonian for the transverse Ising model coupled to a spin bath,
in the presence of a high frequency AC magnetic field. The spin blocking mechanism that removes the quantum
phase transition can be suppressed by the AC field, allowing tunability of the quantum critical point. We calculate
the phase diagram, including the nuclear spins, and apply the results to quantum Ising systems with long-range
dipolar interactions; the example of LiHoF4 is discussed in detail.
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I. INTRODUCTION

“Quantum phase transitions” (QPT) take place between
bulk equilibrium phases in the zero-temperature (T → 0)
limit. Hertz [1] showed that finite-T thermodynamic and
transport properties near the zero-T quantum critical point
(QCP) should be determined solely by the nature of the QCP
itself. Classic examples are the quantum Ising system and the
paramagnetic/ferromagnetic (PM/FM) transition in strongly-
correlated conductors. However in real experimental systems
things are not so simple: In zero-T PM/FM transitions, disor-
der and first-order phase transitions often obscure the physics,
and in solid-state quantum Ising systems “environmental” spin
bath modes [2] can suppress the QCP entirely [3,4]. This is un-
fortunate, given the importance of quantum Ising phenomenol-
ogy in so many areas of physics. There currently exists no good
theory of QPT in Ising systems in the presence of a spin bath;
however, the external control of the spin bath decoherence for
qubits has been studied from the perspective of nuclear mag-
netic resonance, where sequences of pulses are used to manip-
ulate the coupling of qubits to the environmental modes [5–9].

In this work we address this problem by: (i) enlarging the
QPT scenario for quantum Ising systems by generalizing the
theory to the case of a strong high-frequency AC field, and
(ii) showing how in principle this allows the manipulation
of the effective Ising Hamiltonian, enabling one to suppress
the spin bath effects. The AC field creates a new effectively
time-independent Hamiltonian for the system, inducing new
interactions and suppressing others, thereby opening up a new
class of QPTs for investigation. By varying the frequency, and
intensity of the field, one also obtains a very rich zero-T phase
diagram with various new kinds of QCP.

II. LOW ENERGY HAMILTONIAN

Well-known solid-state examples of experimental quantum
Ising systems with long-range dipolar interspin interactions
include the LiHoxY1−xF4 rare earth system ([3,4] and [10–17])
and the transition metal-based Fe8 molecular spin system [18].
Recent experiments on one-dimensional ion trap quantum
Ising chains (where spin bath effects may be entirely absent)
have also successfully varied the range of the interactions
[19,20]. These systems are all described at low energies
by Hamiltonians with spins �τi truncated to the lowest Ising
doublet (i.e., to its doubly degenerate ground state), separated
from the next level by a gap �o � |Vi,j |,|A|, where Vi,j and

A are the strengths of the interspin and hyperfine couplings.
Then, their low energy behavior reduces to the study of the
next Ising type Hamiltonian:

H (t) = −
N∑

i=1

[�o + �(t)]τ x
i −

∑
i<j

Vi,j τ
z
i τ z

j + HHF. (1)

The total effective field here is the sum of a constant �o and
a time-dependent �(t). Typically these are not real magnetic
fields but effective fields acting in the Hilbert space of the Ising
doublet. Then, it is useful to briefly describe the truncation
procedure: The low-energy effective Hamiltonian is truncated
from a microscopic spin Hamiltonian of the form:

HM (t) = −
∑

i

Ho(Si) + [Bx + Hx(t)]Sx
i

− 1

2

∑
i,j �=i

Ui,j S
z
i S

z
j + HM

HF, (2)

where Ho(Si), the local “high-energy” ionic spin Hamiltonian,
acts on spins {Sj }. The Hilbert space for each magnetic ion now
has dimension 2S + 1. The high-energy hyperfine coupling
takes the form:

HM
HF =

∑
μ,ν

∑
j,k

�
μν

j,kS
μ

j I ν
k , (3)

where we use a slightly unconventional notation in which �
μν

jk

denotes the “bare” hyperfine coupling between the full spin
Sj and the nuclear spin Ik and drop the nuclear quadrupolar
couplings, which are negligible for the quantum Ising systems
examined so far. While the low-energy form [Eq. (1)] is generic
to all of the quantum Ising systems so far investigated, the
high-energy form [Eq. (2)] varies widely from one physical
system to another, depending on the magnitude of the Sj , the
lattice symmetry, the strength of the spin-orbit, crystal field,
hyperfine fields, and so on. Thus the details of the truncation,
of the dependence of the low-energy fields �o and �(t) on
the external fields, and of the magnitude and anisotropy of the
low-energy A

μν

j,k and Vi,j , depend very much on which system
we are looking at. We will discuss here the three cases:

LiHoxY1−xF4: In this case, the high-energy Hamiltonian
involves ionic spins with S = 8 and a local spin Hamiltonian

Ho(S) =
∑
k=4,6

R4
k (C)Ô4

k (C) + R4
6(S)Ô4

6 (S) +
∑

k=2,4,6

R0
k Ô

0
k

(4)
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written in terms of the standard Stevens operators Ô
q

k (see, eg.,
Jensen and MacKintosh [21]); the best values of the parameters
R

q

k are given by Ronnow et al. [3,4]. This “high-energy” form
is valid up to energy scales ∼103 K. The truncation of the
high-energy Hamiltonian of Eqs. (2) and (4) down to the
low-energy form in Eq. (1) has been thoroughly discussed in
the literature [3,4,10,22]. The low-energy form can be used for
energies smaller than the gap of ∼11.3 K which exists between
the low-energy spin doublet and a third intermediate state,
through which virtual transitions allow a coupling between the
two lowest Ising states |⇑〉 and |⇓〉 on each site. The transition
matrix element �o(Bx) between these states is a highly
nonlinear function of Bx , obtainable by exact diagonalization
[10]. The hyperfine interactions are large: Experiment shows
that �μν

j,k ∼ 0.039 K for the bare on-site Ho hyperfine coupling,
for which I = 7/2, with considerably smaller values for the
hyperfine couplings to the four F nuclear spins. This then
gives a splitting between adjacent hyperfine levels of ∼0.22 K,
and a total spread of energy over the eight hyperfine levels
of ∼1.5 K. Thus the hyperfine energy scale competes very
well with the dipolar coupling Ui,j between nearest neighbor
Ho ions, even for the pure LiHo system, where the energy
difference between |⇑ ⇑〉 and |⇑ ⇓〉 configurations coming
from the dipolar interactions is also ∼1.5 K. For Y -doped
LiHoxY1−xF4, this nearest neighbor dipole coupling is reduced
by a factor ∼O(x), and the hyperfine coupling then dominates.

The Fe8 molecular spin system: In this case the high-energy
Hamiltonian has spin S = 10 (coming from a core of eight Fe
ions), and a local spin Hamiltonian which is well approximated
by

Ho(S) = −DoS
2
x + EoS

2
y − K4(S4

+ + S4
−), (5)

where the values of Do,Eo, and K4 (all positive) were
measured some time ago [23]. This form can be used up
to energy scales ∼50 K. Each Fe8 molecule has up to 213
different nuclear spins, depending on which of the various Fe,
Br, N, O, and H isotopes in the molecule are being used; each
of the hyperfine couplings for this system has been calculated,
but they are typically very small (the proton couplings range
from ∼3 mK down to well below 1 mK, except for the odd
outlier, with similar values for the other nonmetallic nuclear
species; the coupling to isotopically substituted 57Fe nuclei is
∼4 mK). Thus the intermolecular dipolar coupling, of a similar
magnitude to that for LiHo, is much larger. The truncation to
the low-energy doublet form can again be done numerically
[24] and is valid for energies smaller than the gap of ∼5 K to the
next highest states. Again the dependence of �o and �(t) on a
transverse field B is very nonlinear and also varies enormously
with the angle of the field in the easy x̂ŷ plane—for B oriented
along the easy x̂ axis one sees very strong oscillations of �o

as a function of Bx .
Ionic spin chains. In this case one can, to a good approx-

imation, begin by ignoring the coupling to a spin bath. The
Hamiltonian in experiments [19,20,25] can be more general
than the standard quantum Ising system, and the low energy
form is:

Heff = �o

∑
j

τ x
j +

∑
i �=j

J zz
i,j τ

z
i τ z

j + H⊥
J , (6)

where the extra term is just an XY form H⊥
J =∑

i �=j J⊥
i,j (τ+

i τ−
j + τ−

i τ+
j ). The parameters �o and J αα

i,j are
again effective parameters, related to the original applied
fields in ways described in detail in Refs. [19,20,25]. In
different experiments with different ions one can vary these
parameters over a rather wide range; typical values are
10−9 K < Jo < 10−7 K, and 10−2 < �o/Jo < 5, where Jo is
a typical nearest neighbor value for either J zz

i,j or J⊥
i,j . The

interactions typically take a power law form as a function
of the distance rij = ao|i − j |, where ao is the lattice spacing
(typical 2–3 μm), i.e., |J αα

i,j | ∼ Jo|i − j |−p, where in principle
one can vary p between 1 < p < 3. Provided �o is not too
large, the coupling to phonons can be adequately suppressed.
The effective Hamiltonian found in this work applies when we
ignore the “easy-plane” or XY -coupling terms in Eq. (6), as
the phase diagram with these terms added becomes very rich
and requires a separate study.

III. MAGNUS EXPANSION

In what follows we will work exclusively with the low-
energy effective Hamiltonian given in Eq. (1) above, because
our topic is the behavior of a quantum Ising system in a
high-frequency AC field. Thus we will leave the behavior
of the parameters �o,�(t), A

μν

jk , and Vij , as functions of the
real applied fields, in the form of undetermined variables in
this effective Hamiltonian, to be determined in practice by
a combination of numerical calculation and experiment on
whichever system one is dealing with.

The next step to find a time independent Hamiltonian is
to approximate the full time evolution by a stroboscopic one,
in terms of an effective Hamiltonian. For that to be possible,
we assume that the frequency ω of the time dependent field
�(t) falls in the range �o > ω � |Vi,j |,|A|. This allows us to
describe the effects of the AC field on the quantum Ising system
by a standard Magnus expansion [26–32], in inverse powers of
ω. The Magnus expansion is a very powerful method to extract
the stroboscopic time evolution of a time dependent system,
when the frequency of the driving field is large. By means
of a transformation to the interaction picture, i.e., H (t) →
H̃ (t) = U1H (t)U †

1 − iU1U̇
†
1 , where U1 = ei

∫
dt

∑
j �(t)τ x

j , one
can also capture the renormalization of parameters produced
by nonperturbative effects of the field. The Magnus expansion
then approximates the time dependent Hamiltonian by a time
averaged one given by:

H = H̃0 + 1

ω

∞∑
n=1

1

n
[H̃n,H̃−n], (7)

where H̃n is the nth Fourier component of H̃ (t), and terms
∼O(|A|/ωm,|Vi,j |/ωm) (m � 2) are assumed negligible at
high frequency.

In discussing a Magnus expansion, it is important to specify
the “initialization protocol”, i.e., the way in which the AC
applied field is ramped up at the beginning. One option often
used is to use an “adiabatic launching protocol” [32], which
consists of reaching the final nonequilibrium steady state by
keeping the system in the same quasienergy state. Heating can
be a problem here, specially due to the spin-phonon couplings
in the system and the fact that interacting Floquet systems tend
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to evolve towards an infinite temperature, featureless state [33].
Nevertheless the spin-phonon couplings are typically rather
weak for the quantum Ising systems being currently studied;
this means that it will take the phonon bath some time to react
to the rapid oscillations of the electronic spins. Thus the use of
pulsed fields is more appropriate, with widely spaced pulses,
as the system then has time for energy relaxation between
pulses. It would also be helpful to have a phonon bath for
which the density of states for undesired Floquet transitions,
which could drive the system out of the steady state, is small;
this would stabilize the Floquet phase described in this work
[34]. Finally, in order to avoid the tendency towards an infinite
temperature state, one could try to control the nonadiabatic
corrections during the adiabatic launching (as if it is ramped
too slowly, the system will reach the infinite temperature state),
or combine it with a many-body localized phase, which would
prevent the system from thermalizing [35].

IV. DYNAMICAL QUANTUM PHASE TRANSITION

As a warmup we first consider a ‘pure’ quantum Ising
QPT, with no spin bath. We apply a linear AC field �(t) =
�x cos(ωt) and find that [H̃n,H̃−n] = 0 for all n, leaving only
the zeroth Fourier component H̃0 in Eq. (7) (see Appendix for
details) and thus a time-independent effective Hamiltonian:

Ho = −
∑

i

�oτ
x
i −

∑
i,j>i

[
Ṽ zz

i,j τ
z
i τ z

j + Ṽ
yy

i,j τ
y

i τ
y

j

]
, (8)

where Ṽ zz
i,j (α) = Vi,j [1 + J0(2α)]/2, Ṽ

yy

i,j (α) = Vi,j [1 −
J0(2α)]/2, the dimensionless parameter α = �x/ω and
Jm(α) is an mth order Bessel function; the superscript in Ho

indicates zero hyperfine couplings. Thus the periodic driving
modifies the direction and strength of the interspin coupling
tensor and transforms the Ising model into an XY (strictly a
YZ) model with anisotropy controlled by α (as previously
shown by Ref. [26] in 1D). The anisotropic XY model has
Ising phase transitions when the transverse magnetic field
�0 = ±Ṽ

μμ

i,j , as well as anisotropic transitions for Ṽ
yy

ij = Ṽ zz
ij ,

where the magnetization changes its orientation between Mo
y

and Mo
z (the superindex indicates the absence of a spin bath in

this section). Note Eq. (8) is valid in arbitrary dimension, but
the dimensionality plays an important role when calculating
the different statistical averages, as is discussed next.

To characterize the QPT we must determine the mag-
netization (i.e., the order parameter). For that, we cal-
culate the double-time Green’s function [36] G

α,β
n,m(t,t ′) =

−iθ (t − t ′)〈{Sα
n (t),Sβ

m(t ′)}〉, using a 1/Z expansion to lowest
order (Z is the coordination number), which coincides with
the random phase approximation [4] (RPA). Under this
assumption the Heisenberg equation of motion for the Green’s
function simplifies to:

ωGα,β
n,m =

〈{
Sα

n ,S
β
m

}〉
2π

+ i
∑

μ

εμαδBμGδ,β
n,m

+ i
∑

μ

εμαδ

⎛
⎝∑

j �=n

V
μμ

n,j

〈
S

μ

j

〉 − ∑
r

Aμμ
r,n

〈
Iμ
r

〉⎞⎠Gδ,β
n,m

(9)

and can be generally solved. Note that at this point we are
considering a general magnetic field Bμ and interaction V

μμ

n,j ,
as it does not complicate things. The last step is to relate the
Green’s function with the magnetization using:

〈
Sβ

mSα
n

〉 = i

∫
G

α,β
n,m(ω + iε) − G

α,β
n,m(ω − iε)

eβω + 1
dω (10)

and derive the “self-consistency equation” (SCE) for the
magnetization, which in the absence of the spin bath simply
is:

Mo
μ = Bμ + Mo

μṼ
μμ

0

2ω̃S

tanh

(
βω̃S

2

)
, (11)

where Mo
μ (μ = x,y,z) is the magnetization along the μ

axis, ω̃S =
√∑

μ (Bμ + Mo
μṼ

μμ

0 )
2
, the effective field is Bμ =

(�o,0,0), and Ṽ
μμ

0 is the q = 0 Fourier component of the
effective spin-spin interaction along the μ axis. The detailed
derivation is delegated to the Appendix, as it closely follows
the one of Ref. [37], with the addition of the spin bath.

Note that the formalism applied here is valid for arbitrary
large spins (which is important to describe the 7/2 spin bath
in the next section). Also the 1/Z scaling implies that the
results are expected to be more accurate in higher dimensional
systems (where the coordination number is large), such as the
3D Ising model. Therefore our results for the magnetization
will better describe the experiments on LiHoxY1−xF4 than
the ones on ionic spin chains, where one would expect large
quantum fluctuations which would modify the magnetization.
The system’s dimension is encoded in the coordination number
Z, or equivalently in the zeroth Fourier component of the
interaction potential V0. For the simplest case of nearest
neighbor interaction, one finds that they are related by V0 =
ZV , however in more general situations, as for the case of
long-range dipolar interactions, this relationship fails and it is
more convenient to just estimate V0 by other means, keeping
in mind that the system’s dimension is somehow encoded in
this value. The inverse temperature β in Eq. (11) corresponds
to the phonon bath temperature that in general would couple
to the spin system. Although its definition is not generally
possible in the presence of a driving field, we will discuss in
the last section how, under some circumstances, one can still
make use of it.

Equation (11) allows us to easily compare the AC driven
and the undriven case. For the undriven (�x = 0) pure 3D Ising
model we find the next ground state magnetization:

(1) For �o < V zz
0 /2:

M0
x = �o

V zz
0

, M0
y = 0, M0

z = ±
√(

V zz
0

)2 − 4�2
o

2V zz
0

. (12)

(2) For �o > V zz
0 /2:

M0
x = 1

2 , M0
y,z = 0. (13)

The critical field is given by Bc = V zz
0 /2, and the finite-T

solution gives a zero field Curie temperature Tc = V zz
0 /4.

For the case of long-range dipolar interactions, present in
LiHoxY1−xF4, one can directly estimate the zeroth Fourier
component V zz

0 by numerical means [4], or as we have done
in our case, extract its value from experimental measurements
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FIG. 1. Phase diagram of the AC driven transverse Ising model
vs transverse field Bx and temperature. The dashed black line
corresponds to the undriven system in the absence of hyperfine
coupling. The blue line corresponds to the undriven system coupled
to the I = 7/2 spin bath. The red line corresponds to the AC driven
system coupled to the spin bath for �x/ω ∼ 2.4 (i.e., J0(α) = 0). The
green line corresponds to the case 2�x/ω ∼ 2.4, where the spin-spin
interaction is symmetrical and resembles the Ising system again. For
the plots we used: V zz

0 = 6 K and A
z,(⊥)
0 = 0.2(0.02) K. These values

are chosen so that the phase diagram agrees with the experimental
data in Ref. [22].

[22]. The phase diagram is shown in Fig. 1, where the dashed
black line separates a spin ordered FM phase for �o < Bc and
a paramagnetic one otherwise.

In the presence of the AC field the system is described by the
anisotropic XY model [Eq. (8)]. The anisotropy factor Ṽ zz

j,l −
Ṽ

yy

j,l = J0(2α)Vj,l becomes a function of α and the Ising model
is recovered when J0(2α) = 0. This means that anisotropic
quantum phase transitions happen every time J0(2α) = 0, and
the magnetization changes its direction between Mo

z and Mo
y

for temperatures below a critical Tc. Ising transitions could also
be induced when α is tuned, as the critical field Bc oscillates
between a maximum and a minimum value (red solid line in
Fig. 2). Therefore, if the DC field is within this window, one
would also observe PM/FM transitions.

As a remark, it is important to ask whether the high
frequency corrections of order ω−2 in Eq. (7) can change the
previous results in a relevant way. The reason is that although
their contribution seems to be small for a high frequency field,
we are considering a time dependent system, where initially
small contributions can grow over time considerably. We will
devote this discussion to the next section, where the spin bath
is included.

V. NUCLEAR SPIN BATH EFFECTS

In quantum Ising systems the spin bath effects are often
dominated by a single species of nuclear spin I

μ
r at positions

rr . Let us assume an effective hyperfine coupling in Eq. (1)
given by:

HHF =
∑
μ,r,j

A
μ

r,j I
μ
r S

μ

j (14)

FIG. 2. The dashed black line shows the critical field Bc as a
function of the ratio α = �x/ω for the AC driven Ising system coupled
to a 7/2 spin bath. The red solid line corresponds to the AC driven
system in the absence of the spin bath. At low amplitude, the spin bath
contributes very strongly and drastically changes the critical field due
to the blocking mechanism. As the amplitude increases, the effect of
the bath is removed and only the transverse part Ax

0 contributes with a
small shift. There are some regions where Bc in the presence of a bath
is even lower than in the absence of hyperfine coupling (α ∼ 1.7–2.7).
These are the regions where Ã

y,z

0 changes sign and overcomes Ax
0 .

The parameters are fixed according to the experimental ones for
LiHoF4:V zz

0 = 6 K, Az
0 = 0.2 K and A

x,y

0 = 0.02 K.

with principal axes along μ = x,y,z (the generalization to
more complex forms is straightforward). Two spin bath
mechanisms can then strongly affect quantum Ising systems:

(i) Transverse blocking mechanism. In a quantum Ising
system with hyperfine coupling, the electronic spin cannot
simply flip between |⇑〉 and |⇓〉; it must carry the nuclear
spin with it. However, transitions between |⇓ ↑〉 and |⇑ ↓〉
can then no longer be mediated by �o, which do not flip the
nuclear spin. Transverse hyperfine interactions could produce
this flip, but in many real quantum Ising systems, the effective
longitudinal hyperfine coupling Az

0 is often much stronger than
the transverse one (the large g factor anisotropy of any Ising
system also forces a strong anisotropy in the Ising hyperfine
coupling). The spin bath then strongly suppresses transverse
electronic spin fluctuations [10], and the system reverts to
classical Ising behavior until �o is large enough to overcome
Az

0. This changes the phase diagram, shifting the critical point
towards large values of �0 (see Fig. 1, blue line), and it also
radically alters the electronic spin dynamics. Many features
of the resulting experimental behavior (such as the gapping of
the electronic exciton mode in LiHo, even at the QCP [3]) are
still not properly understood.

(ii) Spin bath decoherence. The spin bath causes decoher-
ence in the electronic spin dynamics [2,18]. Such decoherence
blocks the use of quantum Ising systems as quantum informa-
tion processors, for which they are otherwise ideally suited.

It would clearly be desirable to control the strength of both
the interspin and the hyperfine couplings, and if possible, to
suppress the hyperfine coupling completely. As we now see,
this can be done in strong AC fields. We treat the hyperfine
coupling HHF = ∑

r,j,μ A
μ

r,j I
μ
r S

μ

j in an AC field using the
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same maneuvers as above; HHF is then renormalized to:

HHF =
∑
μ,j,r

Ã
μ

r,j I
μ
r S

μ

j , (15)

where the effective coupling is Ã
μ

r,j = (Ax
r,j ,A

y

r,jJ0(α),
Az

r,jJ0(α)). Because the field couples to the electronic spins
but not to the nuclear spins (the nuclear Zeeman coupling
�|Aμ

r,j |), the renormalization of A
μ

r,j is different from that of
Vi,j [with factors J0(α) rather than (1 ± J0(2α))/2, and with
α rather than 2α in the argument]. Thus, by tuning the AC field
amplitude, we can either (i) tune the interspin interaction Vi,j ,
to study the spin bath effects, or (ii) suppress the longitudinal
hyperfine coupling Az, to study the effects of Vi,j in isolation.

To quantify all of this, we make use of the self-consistent
equations for the magnetization, now including the hyperfine
coupling to the nuclear spin bath (to be specific this is done
for the case I = 7/2, appropriate to the LiHo system). We
then arrive at the pair of equations for the magnetization of the
electronic system and nuclear bath (Mμ and mμ, respectively):

Mμ = Bμ + MμṼ
μμ

0 − mμÃ
μ

0

2ω̃S

tanh

(
βω̃S

2

)
(16)

mμ = − Ã
μ

0 Mμ

2ω̃B

[
tanh

(
βω̃B

2

)
(17)

+ 2 tanh(βω̃B) + 4 tanh(2βω̃B)

]
,

where ω̃S =
√∑

μ (Bμ + MμṼ
μμ

0 − mμÃ
μ

0 )
2

is the system

quasiparticle spectrum, and ω̃B =
√∑

μ (MμÃ
μ

0 )
2

is the spin
bath quasiparticle spectrum. In order to show the “transverse
blocking mechanism”, in the Appendix we approximate the
equation for Mz when Az

0 � A
x,y

0 and find that Mz � MzV
z

0
2Bx

+
7Az

0
4Bx

; this indicates that Mz = 0 is not a solution due to a
remnant magnetization proportional to Az

0/Bx .
Setting the field amplitude to J0(α) = 0, one can see

that the longitudinal hyperfine coupling Ã
z,y

0 vanishes, and
only the transverse part Ax

0 remains. Then, as the hyperfine
interaction only acts in the longitudinal direction, one finds a
renormalization of the critical field Bc to smaller values, but the
QPT is still well defined, as it is driven by the transverse field
�0(Fig. 1, dotted red). Furthermore, as for this value of α one
has Ṽ

yy

0 > Ṽ zz
0 , the ferromagnetic phase is now magnetized

along the y axis.
Similarly, one can choose other values of α such as

J0(2α) = 0, where the asymmetry factor vanishes, and then
the Ising model is recovered, or one can tune the sign of
Ã

z,y

0 , changing the ground state properties to a triplet state
{|⇑ ↑〉,|⇓ ↓〉}. In Fig. 2 we plot the critical field Bc for the AC
driven Ising model coupled to the spin bath, as a function of
the AC field parameter α, for T = 0.

This plot shows that for small α, the system behaves as
in the undriven case, where the spin bath greatly affects the
value of the critical field due to the blocking mechanism.
As this blocking is produced by the difference between the
transverse Ax

0 and the longitudinal hyperfine coupling A
y,z

0 ,
and the later is renormalized by the AC field, one can observe
that by increasing α the system approaches the isolated system

behavior. Therefore it would be possible to experimentally
analyze the opposite regimes of ideal Ising QPT in the absence
and in the presence of a spin bath by just tuning the external
AC field.

As we previously pointed out, it is important to discuss
the effect of the high frequency corrections neglected in the
Magnus expansion [Eq. (7)]. We have calculated the next
order leading term 1

2ω2

∑∞
n=1

1
n2 ([[H̃n,H̃0],H̃−n] + H.c.), and

although the effective Hamiltonian contains now up to four-
body interactions, they are all weighted by Bessel functions
and a factor ω−2, which in general give corrections one or
two orders of magnitude smaller than H̃0. Importantly, we find
that the transverse blocking mechanism, produced due to the
initially large anisotropy between Az

0 and A
x,y

0 , is not restored
by the second order corrections, and the renormalized critical
point should not be greatly affected. Nevertheless one should
be careful with the growth of high frequency corrections for
large times; this would restrict the maximum duration of the
experiments to times shorter than the inverse of the energy
correction. In addition, the time control can be complex due
to the competition between the initialization time and the
infinite temperature limit of interacting Floquet systems [33],
but several strategies based on the properties of the transient
dynamics could allow us to overcome this issue [35,38]. As
a check we have included in the Appendix the simulation
of the dynamics of the quantum Ising system coupled to a
spin bath, when the QCP is crossed from the ferromagnetic
phase. It shows that in the absence of the AC field, the QPT
to the paramagnetic phase is suppressed due to the spin bath,
but in the presence of the AC field tuned to J0(α) = 0, the
time average magnetization

∫ T

0 Mz(t)dt vanishes, indicating
the cancellation of the longitudinal hyperfine coupling Ãz

0 =
0. Therefore, one can conclude that the high frequency
corrections do not affect the suppression of the hyperfine
interaction, at least within the time scales of the simulation.

VI. CONCLUDING REMARKS

We have obtained a static effective Hamiltonian for the AC
driven transverse Ising model in the presence of a spin bath,
in which the interspin and the hyperfine interactions are renor-
malized as a function of the AC field intensity and frequency.
We have found that the interspin and hyperfine interaction
renormalize differently, which allows us to study the Ising QPT
in a large number of cases ranging from positive to negative
hyperfine interaction (Fig. 2). The effective Hamiltonian for
the AC driven quantum Ising model in Eq. (8) and the effective
hyperfine interaction in Eq. (15) are general results, valid in
arbitrary dimension; however the magnetization in Eq. (16)
is calculated to lowest order and should be more accurate for
higher dimensional systems such as the 3D quantum Ising
model. Importantly, the equations for the magnetization in the
presence of the spin bath are derived for arbitrary large spins,
which allows us to apply this theory to different types of spin
bath. Finally, the phase diagram in Eq. (1) is obtained as a
function of the transverse field and the temperature T = 1/β,
which is in general ill defined for nonequilibrium situations
such as the one with the AC field. The temperature is set
by a phonon bath, and in order to avoid heating due to the
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AC field, a pulsed field experiment would be useful, with the
pulses short enough so that the spin-phonon couplings have
no time to heat the phonon bath. As we previously discussed,
the initialization protocol should be engineered so as to reach
the desired steady state, which can be done using adiabatic
launching. Furthermore, in some cases the interactions with
the phonon bath could be used to stabilize the steady state [34].

The classic QPT magnetic insulator LiHoxY1−xF4, with
spin S = 8 magnetic ions, perhaps the canonical quantum
Ising system, displays quantum annealing [11] and a quantum
spin glass phase [13], as well as quantum critical behavior
[14]. However, the strong coupling to the nuclear spin bath
disrupts completely the expected quantum critical behavior
around the QCP [3,10] (and leads to various other dynamic
and thermodynamic effects [15–17]). For nearest neighbor
spins, |Vi,j | → V ∼ 1.2x, in K units, and the hyperfine
level splitting |A| ∼ 0.22 K (with spin I = 7/2). In a
high frequency AC field (�o � h̄ω � |Vi,j |,|Aμ

r,j |, i.e, for
ω ∼ 30–200 GHz), we may then directly apply the theory
given here. The results are shown in Figs. 1 and 2), and these
constitute predictions for this system.

In the Fe8 system the hyperfine couplings are much smaller
and can be varied by isotopic substitution [39]. Because
there is a whole spectrum of these couplings, one cannot
suppress them all simultaneously, but one can select out
particular groups of nuclear spins for suppression, and the
effective couplings as a function of applied field are well
understood [18,24]. What is interesting here is the possibility
of controlling the longitudinal dipolar coupling between
molecules, allowing one to look at single molecule dynamics.

In ion trap spin chains we can typically discount spin bath
effects. What is interesting here is the possibility of varying
the range of the interspin interactions, as well as their strength,
and observing the spin dynamics in real time for both short-
and long-range interaction forms [20]; calculations including
corrections to the RPA result are underway to give quantitative
predictions, as they can be important for low-dimensional
systems. In these systems one can also introduce transverse
interspin interactions—this makes the eventual phase diagram
very rich indeed.

In all three systems experimental testing of the results
herein should be easily possible—quantitative comparison
will require numerical work, and we emphasize that in real
experiments one will need to take account of demagnetization
fields, which are in general inhomogeneous in real systems.
This will need to be evaluated numerically (compare Ref.
[18]), and experiments with “whisker”-shaped samples (for
solid-state systems) would be useful.
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APPENDIX A: MAGNUS EXPANSION

To quantify the renormalization effects produced by a large
amplitude of the AC field, one must first use a transformation

to the interaction picture:

H̃ (t) = U1H (t)U †
1 − iU1U̇

†
1 = −

∑
i

�oτ̃
x
i

− 1

2

∑
i,j �=i

Vi,j τ̃
z
i τ̃ z

j +
∑
μ,r,j

A
μ

r,j I
μ
r τ̃

μ

j , (A1)

where U1 = exp [i
∫ ∑

j �(t)τ x
j ]dt , with μ = x,y,z and τ̃

μ

j ≡
U1τ

μ

j U
†
1 . For the calculation of the Magnus expansion one

needs the Fourier coefficients of the time dependent Hamilto-
nian. They are given by the next expressions:

H̃0 = −
∑

i

�oτ
x
i −

∑
i,j �=i

Vi,j

4

{
[1 + J0(2α)]τ z

i τ z
j

+ [1 − J0(2α)]τ y

i τ
y

j

} +
∑
μ,r,j

Ã
μ

r,j I
μ
r τ

μ

j (A2)

H̃±(2n+1) = ±i
∑
i,j �=i

VijJ2n+1(2α)

4

(
τ

y

i τ z
j + τ z

i τ
y

j

)

± iJ2n+1(α)
∑
r,j

(
A

y

r,j I
y
r τ z

j − Az
r,j I

z
r τ

y

j

)
(A3)

H̃±2(n+1) = −
∑
i,j �=i

VijJ2n+2(2α)

4

(
τ z
i τ z

j − S
y

i τ
y

j

)

+J2(n+1)(α)
∑
r,j

(
A

y

r,j I
y
r τ

y

j + Az
r,j I

z
r τ z

j

)
, (A4)

where α ≡ �x/ω,Jm(α) is an mth order Bessel function and
where the renormalized hyperfine couplings are

Ãx
r,j = Ax

r,j , Ã
y

r,j = A
y

r,jJ0(α), Ãz
r,j = Az

r,jJ0(α). (A5)

From these expression we see that [H̃n,H̃−n] = 0, and to order
1/ω we only need to use H̃0 in the expansion. The effective
time-independent Hamiltonian becomes:

H = −
∑

i

�oτ
x
i − 1

2

N∑
i,j �=i

[
Ṽ zz

ij τ z
i τ z

j + Ṽ
yy

ij τ
y

i τ
y

j

]

+
∑
μ,r,j

Ã
μ

r,j I
μ
r τ

μ

j (A6)

in which the renormalized couplings are:

Ṽ zz
i,j (α) = Vi,j [1 + J0(2α)]/2 (A7)

Ṽ
yy

ij (α) = Vi,j [1 − J0(2α)]/2. (A8)

We see that under the effect of the AC field the model becomes
an effective anisotropic “XY ” (actually, YZ) spin system in a
transverse field. Thus one effect of the AC field is to modify
the very strong dominance of the “zz” coupling in the effective
dipolar interaction between Ising spins. We note also that the
argument of the Bessel functions in the renormalized hyperfine
couplings is half that involved in the renormalized interspin
couplings.
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APPENDIX B: MAGNETIZATION CALCULATION

Here we include the details of the calculation for the
magnetization self-consistency equations in the presence of the
spin bath. A more general form of the Hamiltonian discussed
in this paper is:

H = −
∑
μ,j

BμS
μ

j − 1

2

∑
μ

∑
j,l �=j

V
μ

j,lS
μ

j S
μ

l +
∑
μ,r,j

A
μ

r,j I
μ
r S

μ

j ,

(B1)

where α,β = x,y,z, and Sα
n operates on an arbitrary spin of

spin S (not just S = 1/2) at site n; the nuclear spin I
μ
r also

takes arbitrary value. We are interested in the Green’s function
for the calculation of the magnetization, defined by:

Gα,β
n,m(t,t ′) = −i

〈
Sα

n (t); Sβ
m(t ′)

〉
, (B2)

where 〈. . .〉 corresponds to the statistical average with respect
to the thermal density matrix ρ = e−βH , and the semicolon
indicates that we can consider the time ordered, retarded, or
advanced Green’s functions (they all have the same equation
of motion). The corresponding equation of motion for the
electronic spins is given by:

ωGα,β
n,m(ω) = 1

2π

〈{
Sα

n ,Sβ
m

}〉 + i
∑

μ

εμαδBμGδ,β
n,m(ω)

+ i
∑

μ

εμαδ

∑
j �=n

V
μ

n,jG
μδ,β

jn,m(ω)

− i
∑
μ,r

εμαδA
μ
r,nK

μδ,β
rn,m (ω), (B3)

where we have defined:

G
μδ,β

jn,m(t,t ′) = −i
〈
S

μ

j (t)Sδ
n(t); Sβ

m(t ′)
〉
,

Kμδ,β
rn,m (t,t ′) = −i

〈
Iμ
r (t)Sδ

n(t); Sβ
m(t ′)

〉
. (B4)

The expression above is valid for arbitrary spin values. Note
that we have used anticommutation relationships for the
definition of the Green’s functions, as it is more convenient for
the underlying pole structure that we will encounter later on. In
what follows we adapt the spin operator decoupling methods
discussed by, e.g., Wang et al. [37], for lattice electronic spins,
to the more general case of a set of lattice spins coupled to
nuclear spins.

We decouple the higher Green functions in the equation of
motion neglecting correlations between different sites. This
approximation can be understood from the perspective of
a 1/Z expansion, Z being the coordination number of the
system. It is known that to lowest order, i.e., neglecting
quantum correlations, the 1/Z expansion agrees with the
random phase approximation (RPA) and that for higher
dimensional systems such as the 3D Ising model considered
for LiHoF, it should provide reasonable good results [3,4].
Once applied the decoupling scheme, we find:

ωGα,β
n,n = χα,β

2π
+ i

∑
μ

εμαδ

×
⎛
⎝Bμ+

∑
j �=n

V
μ

n,j

〈
S

μ

j

〉 − ∑
r

Aμ
r,n

〈
Iμ
r

〉⎞⎠Gδ,β
n,n, (B5)

where χαβ = 〈{Sα
n ,S

β
n }〉 are the spin anticommutators (we

suppress the site index n) and G
α,β
n,n is now the Green’s function

in the RPA approximation. The calculation of the Green’s
functions is fairly straightforward [37]); we rewrite the system
of equations as:

(1ω − H)G(ω) = F, G(ω) =
⎛
⎝G

x,β
n,n (ω)

G
y,β
n,n (ω)

G
z,β
n,n(ω)

⎞
⎠, (B6)

where

F = 1

2π

⎛
⎝χx,β

χy,β

χz,β

⎞
⎠, H =

⎛
⎝ 0 iHz −iHy

−iHz 0 iHx

iHy −iHx 0

⎞
⎠,

(B7)

and Hα are the components of an effective field defined as

Hα = Bα + MαV α
0 − mαAα, (B8)

Mα is the electronic spin magnetization, and mα the nuclear
spin bath magnetization. The H matrix can be diagonalized
and has eigenvalues ω = {0, ± √∑

α H 2
α }.

The Green’s functions can be obtained as:

Gα,β
n,n =

3∑
λ=1

3∑
τ=1

UατU
−1
τλ

ω − ωτ

Fλ,β =
3∑

λ=1

Rα,λF λ,β, (B9)

where U is the matrix that diagonalizes H . From this ex-
pression we calculate the statistical averages straightforwardly
using:

〈
Sβ

n Sα
n

〉 = i

∫
G

α,β
n,n (ω + iε) − G

α,β
n,n (ω − iε)

eβω + 1
dω (B10)

〈
Sβ

n Sα
n

〉 =
3∑

λ=1

3∑
τ=1

UατU
−1
τλ

eβωτ + 1
F̃ λ,β, (B11)

where

F̃ λβ = 2πFλβ = χλβ. (B12)

In order to simplify the expression we can use the relation
between commutators and anticommutators:

〈{
Sα

n ,Sβ
n

}〉 = 〈[
Sα

n ,Sβ
n

]〉 + 2
〈
Sβ

n Sα
n

〉
. (B13)

Writing � = ∑3
τ=1

Uατ U
−1
τλ

eβωτ +1 , the matrix equation for the statis-
tical averages becomes:

(1 − 2�)

⎛
⎜⎝

〈
S

β
n Sx

n

〉
〈
S

β
n S

y
n

〉
〈
S

β
n Sz

n

〉

⎞
⎟⎠ = �

⎛
⎜⎝

〈[
Sα

n ,S
β
n

]〉
〈[
Sα

n ,S
β
n

]〉
〈[
Sα

n ,S
β
n

]〉

⎞
⎟⎠. (B14)

We now define everything in terms of a dimensionless
“eigenvalue normalized” effective field hα = Hα/

√∑
α H 2

α ,
and a renormalized frequency ω̃ = ω/

√∑
α H 2

α . The explicit
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calculation of the matrix equation results in:

2

⎛
⎝ 0 ihz −ihy

−ihz 0 ihx

ihy −ihx 0

⎞
⎠

⎛
⎜⎝

〈
S

β
n Sx

n

〉
〈
S

β
n S

y
n

〉
〈
S

β
n Sz

n

〉

⎞
⎟⎠ =

⎛
⎜⎝

coth
(

βω̃

2

) −ihz ihy

ihz coth
(

βω̃

2

) −ihx

−ihy ihx coth
(

βω̃

2

)

⎞
⎟⎠

⎛
⎜⎝

iεxβδ

〈
Sδ

n

〉
iεyβδ

〈
Sδ

n

〉
iεzβδ

〈
Sδ

n

〉
⎞
⎟⎠. (B15)

In order to solve these coupled equations one must realize that they are not independent, as the determinant of I − 2� vanishes.
The first row multiplied by hx , plus the second row times hy , plus the third row times hz gives zero. The same condition on the
right reads:

εxβδ

〈
Sδ

n

〉
hx + εyβδ

〈
Sδ

n

〉
hy + εzβδ

〈
Sδ

n

〉
hz = 0. (B16)

If we now choose β = x,y,z we find, respectively: 〈
Sy

n

〉
hz = 〈

Sz
n

〉
hy〈

Sz
n

〉
hx = 〈

Sx
n

〉
hz〈

Sx
n

〉
hy = 〈

Sy
n

〉
hx,

which are the so-called regularity conditions. They imply that we only need to know one of the components of the magnetization
in order to calculate the other components.

Actually one can solve a somewhat more general system of equations, again for arbitrary spin. Consider an arbitrary polynomial
function of spin operators of form:

P
({

Sα
n

}) =
2S+1∑

r,p,q=1

crpq

(
Sx

n

)r(
Sy

n

)p(
Sz

n

)q
; (B17)

then we have the equation:

⎛
⎝ 0 ihz −ihy

−ihz 0 ihx

ihy −ihx 0

⎞
⎠

⎛
⎜⎝

〈
PnS

x
n

〉
〈
PnS

y
n

〉
〈
PnS

z
n

〉
⎞
⎟⎠ = 1

2

⎛
⎝coth

(
βω̃

2

) −ihz ihy

ihz coth
(

βω̃

2

) −ihx

−ihy ihx coth
(

βω̃

2

)
⎞
⎠

⎛
⎜⎝

〈[
Sx

n ,Pn

]〉
〈[
S

y
n ,Pn

]〉
〈[
Sz

n,Pn

]〉
⎞
⎟⎠.

If we take this set of equations for Pn ≡ P ({Sα
n }), along with the regularity conditions

(
Sx

n

)2 + (
Sy

n

)2 + (
Sz

n

)2 = S
(
S + 1

)
(B18)

[
Sα

n ,Sβ
n

] = iεαβδS
δ
n (B19)

〈
Sz

n

〉
hx = 〈

Sx
n

〉
hz,

〈
Sx

n

〉
hy = 〈

Sy
n

〉
hx,

〈
Sy

n

〉
hz = 〈

Sz
n

〉
hy (B20)

and the usual spin algebra identities for spin-S degrees of freedom, we find that the system of equations for the two-point
functions 〈Sβ

n Sα
n 〉 and 〈Sx,y

n 〉 can be solved as a function of 〈Sz
n〉, i.e., we need one extra equation to solve the system. This can

be obtained from the identity:

S∏
r=−S

(
Sz

n − r
) = 0 (B21)

which clearly becomes more and more complicated as the spin S is increased.
Specific cases involving electronic and nuclear spins: As a first check, we can take S = 1/2. In that case we find that

(Sz
n)2 = 1/4, which provides the extra equation needed for the solution. The system of equations results in:

〈
Sμ

n

〉 = hμ

2
tanh

(
βω̃

2

)
,

〈(
Sμ

n

)2〉 = 1

4
,

〈
Sμ

n Sν
n

〉 = i
εμνδhδ

4
tanh

(
βω̃

2

)
(B22)

which is the expected result from the RPA calculation for a spin 1/2.
Consider now the case of S = 1, for which the extra equation reads:

(
Sz

n

)3 = Sz
n. (B23)

Hence, we must obtain statistical averages for (Sz
n)3 as well by setting Pn = (Sx

n )p(Sy
n )

q
(Sz

n)r (for this case p,q,r = 0,1,2 is
sufficient) and solving for a larger system of equations. We can then see how a general rule for arbitrary spins emerges—this was
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derived by Wang et al. [37]—and one finds:

〈
Sz

n

〉 = [(2S + 1)R − Qz](Qz + R)2S+1 + [(2S + 1)R + Qz](Qz − R)2S+1

2R2[(Qz + R)2S+1 − (Qz − R)2S+1]
, (B24)

where we have defined

R = 1/|hz|, Qz = coth
(

βω̃

2

)
hz

. (B25)

Now it is easy to see how to deal with a set of coupled
nuclear and electronic spins. We first consider the nuclear
spin averages. As an example, take the case where In = 7/2
(the case of the Ho nuclear spins in the LiHoF system). Then
for the nuclear spin averages we get

〈
I z
n

〉 = 1

2Qz

+ 2Qz

Q2
z + R2

+ 8Qz

(
Q2

z + R2
)

Q4
z + 6Q2

zR
2 + R4

(B26)

〈
I y
n

〉 = hy

hz

〈
I z
n

〉
,

〈
I x
n

〉 = hx

hz

〈
I z
n

〉
. (B27)

As these equations depend on ω̃ = ω̃(〈I x
n 〉,〈I y

n 〉,〈I z
n〉), we have

to solve them numerically.
If we now consider the full LiHo system, i.e., with a

coupling between an Ising electronic system (S = 1/2) and a
spin bath (I = 7/2), the self-consistency equations are coupled
for all values of the magnetization. We then find:

Mμ = hS
μ

2
tanh

(
βω̃

2

)

mμ = hB
z

2

[
tanh

(
β�̃

2

)
+ 2 tanh(β�̃) + 4 tanh(2β�̃)

]

(B28)

for the electronic system and nuclear bath magne-
tization, respectively, where hS(B)

μ = HS(B)
μ /ω̃(�̃) repre-

sent the system(environment) normalized fields, respec-
tively, and ω̃(�̃) represent the normalized eigenener-
gies of the system(environment), respectively. Note that
now hS

μ = hS
μ(Mμ,mμ),hB

μ = hB
μ(Mμ), �̃ = �̃(Mμ) and ω̃ =

ω̃(Mμ,mμ). We can easily obtain the T = 0 limit from these
expressions; we get:

Mμ = 1

2

Bμ + MμV
μ

0 − A
μ

0 mμ√(
Bx − Ax

0mx

)2 + A
y

0m
2
y + (

V z
0 Mz − Az

0mz

)2

(B29)

mμ = −7

2

AμMμ√(
Ax

0Mx

)2 + (
A

y

0My

)2 + (
Az

0Mz

)2
. (B30)

We can directly substitute mμ into the system’s magnetization.
Since we are interested in the behavior at large Bx , in order to
see if the QPT can be blocked, we note that in the asymptotic
limit Bx � Aμ,V z

0 , one finds:

Mx � 1

2
, Mz � mzV

z
0

2Bx

+ 7
(
Az

0

)2
mz

4Bx

√(
Ax

0mx

)2 + (
Az

0mz

)2
.

(B31)

Clearly in the second equation we could have Mz = 0 as
a solution of the system, meaning that a QPT would exist.
However, if we assume the highly anisotropic case Az �=
0,Ax = 0, we find:

Mz = 1

2

MzV
z

0 + 7
2Az

0√
B2

x + (
V z

0 Mz + 7
2Az

0

)2
� MzV

z
0

2Bx

+ 7Az
0

4Bx

(B32)

which proves that Mz will always have a remnant magnetiza-
tion blocking the QPT at T = 0 for all Bx (the second equation
can never be fulfilled when Mz = 0). Hence, the longitudinal
hyperfine coupling blocks the phase transition as one would
expect.

APPENDIX C: DYNAMICS ACROSS THE QUANTUM
CRITICAL POINT

Here we include simulations of the magnetization dy-
namics for the quantum Ising model coupled to a spin bath
when it crosses a QCP. The simulation is performed for
a slightly simpler version of the Ising model than the one
considered in the main text, but the differences should not
be important for the final conclusions. We consider a finite
Ising system coupled to a spin bath made of 1

2 -spins (we
assumed I = 1/2 instead of I = 7/2 for simplicity, but the
renormalization of the hyperfine coupling should make no
difference between the two). We then integrate numerically
over time the Heisenberg equation of motion under the same
decoupling scheme used for the calculation of the Green’s
functions. Figure 3(left) shows the case without AC field and
hyperfine coupling, as a test for the protocol. As the transverse
DC field increases, the longitudinal magnetization decreases,
vanishing when B = Bc. The small oscillations around the
mean value Mz = 0 correspond to nonadiabatic effects during
the protocol. Fig. 3(right) corresponds to the case with
hyperfine coupling, where the QPT is suppressed due to the
transverse blocking mechanism and a remnant magnetization
is always present. Finally, the case with AC field and hyperfine
coupling is not explicitly shown due to the fast oscillations
of the magnetization, but we find that the average value of
the longitudinal magnetization is

∫ T

0 Mz(t)dt � 0.0003 for
J0(α) = 0 and frequency ω = 10Vi,j . This indicates that the
renormalization of the longitudinal hyperfine coupling persists
when all corrections to the Magnus expansion are included,
and it is even possible to adiabatically cross the QCP.

054402-9
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FIG. 3. (Left) Magnetization as a function of time for the quantum Ising model in the absence of AC field and hyperfine coupling. During
the protocol, the transverse magnetic field increases linearly to its final value Bx = 2Bc at t = 1000. At t = 500 the system crosses the QCP
and nonadiabatic effects produce the oscillations that persist at large times (which average to Mz = 0 indicating the presence of the PM phase).
(Right) Simulation in the presence of hyperfine coupling, where the magnetization remains finite due to the transverse blocking mechanism,
indicating the absence of QPT to the PM phase. Time is measured in inverse units of Vi,j .
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