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Mechanical spectroscopy, i.e., cyclic deformations at varying frequencies, is used theoretically and numerically
to compute dissipation in model glasses. From a normal mode analysis, we show that in the high-frequency
terahertz regime where dissipation is harmonic, the quality factor (or loss angle) can be expressed analytically.
This expression is validated through nonequilibrium molecular dynamics simulations applied to a model of
amorphous silica (SiO2). Dissipation is shown to arise from nonaffine relaxations triggered by the applied
strain through the excitation of vibrational eigenmodes that act as damped harmonic oscillators. We discuss an
asymmetry vector field, which encodes the information about the structural origin of dissipation computed by
mechanical spectroscopy. In the particular case of silica, we find that the motion of oxygen atoms, which induce
a deformation of the Si-O-Si bonds, is the main contributor to harmonic energy dissipation.
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I. INTRODUCTION

Mechanical losses through energy dissipation is a limiting
factor central to the design of high-precision devices, such as
micro- and nanoelectromechanical systems (MEMS/NEMS)
[1–3], and even highly sensitive interferometers such as
gravitational wave detectors, whose resolution is currently
controlled by fluctuations and energy dissipation in the oxide
glass coatings of the mirrors [4–6]. While the source of energy
dissipation in crystals can be traced back to crystalline defects
[7], dissipation in glasses can take many forms and may involve
diverse phenomena such as thermally activated relaxations
[8–11], Zener thermoelastic damping [12,13], Akhiezer damp-
ing [14–16], Rayleigh scattering [17–20], and more, depending
on the frequency range of interest.

At high frequencies (THz), dissipation in glasses arises
from the attenuation of collective vibrational excitations
[10,21,22]. The latter are most often studied through the
dynamical structure factor S(q,ω), the space- and time-Fourier
transform of the density-density correlation function [23],
which is measured both experimentally using inelastic x-ray
scattering (IXS) (see, for instance, Refs. [20–22,24–27]) and
numerically with molecular dynamics (MD) (see, for instance,
Refs. [19,28–36]).

At small wave vectors, typically below 1–3 nm−1 in
amorphous silica [19,37,38], the spectrum of S(q,ω) shows
a peak at a well-defined frequency, an evidence that in this
regime, glasses support propagating vibrational modes, similar
to crystalline phonons, but with a damping related to the finite
width of the excitation peak. The latter is therefore naturally
fitted as a damped harmonic oscillator (DHO) to extract the
excitation frequency �(q) and attenuation (or linewidth), �(q).
Dissipation, as measured from the quality factor associated
with the loss angle, is then obtained as Q−1 = �/�, a relation
which holds, for instance, at low damping in Zener’s standard
linear solid [39].

However, for wave vectors larger than a few nm−1, in
the region leading to the boson peak (BP) [40–43], glasses
exhibit a strong damping with an attenuation increasing
rapidly with frequency. � ∝ �α , with α ≈ 4 in three dimen-

sions, in both experiments [24,38,44,45] and MD simulations
[19,33,34,46–48]. (A logarithmic correction was identified
very recently in Ref. [49].) In this regime, damping is mainly
of harmonic origin and is controlled by the structural disorder
in the glass [17,30,31,48]. More specifically, the acoustic
vibrations undergo a Rayleigh type of scattering by the elastic
heterogeneities in the glass that are correlated on the same
nanometer scale as the wavelength of the acoustic vibrations
at the boson peak [18,34,50–53]. As a result, the phonon
mean free path (∝ 1/�) decreases rapidly with frequency
and becomes comparable to the wavelength, thus reaching the
Ioffe-Regel (IR) limit (� = �/π ) [54], above which the notion
of a phonon with a well-defined wave vector is inapplicable
[35,55].

Above the IR limit, S(q,ω) shows a very broad peak, which
results from the convolution of several excitations that cannot
technically, nor theoretically, be fitted as a DHO, as recently
mentioned in the conclusions of Refs. [19,20,56]. How can
we then describe dissipation in glasses above the Ioffe-Regel
limit? This question is addressed theoretically in the present
paper by measuring dissipation directly using mechanical
spectroscopy. With this technique, the loss (or internal friction)
angle φ is measured between an imposed sinusoidal strain and
the resulting internal stress, yielding the energy dissipation
Q−1 = tan φ. This approach is widely used experimentally
in the hertz to kilohertz regime to study glasses [57,58],
liquids, and soft matter systems [59,60], but has also been used
numerically at higher frequencies in MD simulations [61–63].
Here we show that in the high-frequency regime of harmonic
dissipation, the quality factor Q−1 can be expressed analyti-
cally, allowing us to analyze in detail the features that control
dissipation in a glass, both below and above the IR limit.

In the present work, we study dissipation using a combina-
tion of nonequilibrium MD simulations applied to a model of
amorphous silica (SiO2) and an analytical expression obtained
in the harmonic approximation. Details of the simulations and
the analytical calculations are given in Sec. II. The results of
the simulations are compared to experimental data and the
analytical expression in Sec. III. Finally, in Sec. IV we discuss
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FIG. 1. Vibrational density of states (VDOS) of the SiO2 model.
The partial VDOS of the oxygen atoms is decomposed on the rocking,
stretching, and bending motions of the Si-O-Si bonds. The inset shows
a sketch of a Si-O-Si bond with the vectors used to decompose the
bond deformation into bending, stretching, and rocking components.

the properties of dissipation deduced from the analytical
expression.

II. METHODOLOGY

A. Glass model

The glass model considered for this study is amorphous
silica (SiO2), whose structure and properties are well known
[29,64–69]. The MD simulations were performed in three-
dimensional (3D) cubic cells, with a side L = 34.77 Å, con-
taining 1000 Si atoms and 2000 O atoms. The corresponding
density, 2.4 g/cm3, is the equilibrium density with zero average
pressure, with the present interatomic potential [69]. Twenty
glassy structures were obtained by quenching a liquid melt
by MD at a constant quench rate of 1010 K s−1 from 5000 K
down to 0 K, followed by an energy minimization. Interactions
between particles are described using a standard van Beest,
Kramer, and van Santen (BKS) pair potential [70], with
the long-range Coulomb interactions screened using a Wolf
truncation. We used the cutoff function proposed by Carré
et al. [71] and already employed in Refs. [72] and [69] to
model SiO2 glasses. Periodic boundary conditions are applied
in all directions. An example of configuration is shown in the
inset of Fig. 2. The corresponding vibrational density of states
(VDOS) is represented in Fig. 1, along with the partial VDOS
for oxygen atoms projected on the rocking, stretching, and
bending motions of the Si-O-Si bonds, as done in Refs. [73]
and [74].

B. Mechanical spectroscopy

Mechanical spectroscopy was simulated by imposing cyclic
deformations to the simulation cell and following the resulting
internal stress to compute the complex modulus as a function
of the loading frequency. This method only considers the
first harmonic of the decomposition in Fourier series of

the constraint and therefore requires to be in the linear
response regime. In the following, we mainly consider the
case of isostatic deformations. We also performed simple shear
deformations, but they resulted in qualitatively similar results
and are not presented here.

For isostatic deformations, the simulation cell is subjected
in the X, Y , and Z directions to a sinusoidal applied strain
ε(t) = ε0 sin(ωt) with a frequency ω/2π varying from 0.1
to 50 THz and an amplitude ε0 = 0.007 chosen such that the
deformation remains elastic in the quasistatic limit. The system
is thermostated in order to dissipate the heat produced during
the deformation cycles and maintain a constant temperature,
which was varied from 10 K to 700 K. We compared different
thermostats (Andersen, Nose-Hoover, Langevin) [75] with
different strengths but did not find any marked influence on the
computed dissipation. The energy dissipation was also com-
puted for a few frequencies on a larger system (24 000 atoms)
to check that the system size did not strongly affect the
calculations. In the following, we consider a Langevin ther-
mostat, which allows for the analytical calculations developed
in Sec. II D, and limit our study to the high-temperature
regime of classical mechanics [76]. Atomic trajectories are
integrated using SLLOD equations for isostatic tractions and
compressions [75]:

ṙα
i = pα

i

mi

+ ε̇rα
i ,

ṗα
i = Fα

i − ε̇pα
i − γpα

i + Fth, (1)

where rα
i is the current position of atom i in direction α in

the deformed simulation cell, pα
i its momentum, and Fα

i the
force coming from the interatomic potential. The Langevin
friction γ is related to the random force Fth through the
fluctuation-dissipation theorem. γ was varied between 0.1 and
10 THz. Below 0.1 THz, the thermostat is too weak to maintain
a constant temperature, and above 10 THz, the forcing is too
strong and affects the dynamics of the glass. (The influence of
the friction parameter is further discussed in Sec. III.) The time
step of the simulations was 1 fs when the forcing frequency
was 1 THz or below. Above 1 THz, the time step was set to
10−3/ω in order to maintain a constant strain increment per
simulation step.

We follow simultaneously the time evolution of the pressure
P (t), which, in the stationary regime, is a periodic function of
same period as the applied strain (T = 2π/ω) with cycle-
dependent fluctuations illustrated in Fig. 2. In the following,
we consider the smooth periodic part of the pressure averaged
over multiple cycles:

〈P 〉(t) = lim
N→+∞

1

N

N∑
n=0

P (t + nT ). (2)

The dissipation Q−1 is related to the loss angle φ between
the pressure 〈P 〉(t) and the applied strain ε(t):

Q−1(ω) = tan(φ)

= 1

ω

∫ T

0 〈P 〉(t)ε̇(t) dt∫ T

0 〈P 〉(t)ε(t) dt
. (3)
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FIG. 2. Evolution of the hydrostatic pressure during cycles of
isostatic applied strain. The dashed curves show the instantaneous
pressure. The solid curve is the average computed over 250 cycles.

The spectroscopic simulations were performed during 300
deformation cycles, the value of the energy dissipation usually
converging after about 50 cycles, after which the glass enters
a stationary regime where all measurements were carried out.

C. Harmonic approximation

In order to separate harmonic and anharmonic effects, me-
chanical spectroscopy was also applied to harmonic systems,
where the interaction between particles was described using
the dynamical matrix of the system, D̃

αβ

ij = 1√
mimj

∂2E

∂rα
i ∂r

β

j

=
1√

mimj
D

αβ

ij , where indices i and j refer to atoms and α and
β to Cartesian coordinates. The dynamical matrices were
computed on the equilibrium configurations obtained after
energy minimization. The potential energy E is computed
using the Wolf-truncated BKS potential, which is an analytical
pair potential and thus yields an analytical expression for the
dynamical matrix. The potential energy of the system was then
approximated as

E = −1

4

∑
iαjβ

D
αβ

ij

(
r

β

ij − R
β

ij

)(
rα
ij − Rα

ij

)
, (4)

where rα
ij (resp. Rα

ij ) is the separation between atoms i and
j in direction α in the deformed (resp. initial) cell, using
the minimum image convention to account for the periodic
boundary conditions. The corresponding expressions for the
atomic forces and pressure are given in Appendix II D.

D. Analytic expression

The dissipation computed numerically from Eq. (3) can
be expressed analytically in the harmonic approximation
and linear response regime when a Langevin thermostat is
assumed. The calculations are detailed in the Appendix in
the case of isostatic deformations. Generalization to arbitrary
deformations (for instance, shear) is straightforward.

Dissipation is calculated as the ratio of the imaginary and
real parts of the complex modulus, which relates the Fourier

transforms of the periodic applied strain εκξ to the cycled-
averaged internal stress 〈σαβ〉. For that, the cycled-averaged
stress in the harmonic approximation is projected on the
normal modes of the glass and expressed as the sum of an
affine and nonaffine contribution:

〈σαβ〉(ω) = C∞
αβκξ εκξ (ω) − 2

V0

∑
m

Cαβ
m 〈sm〉(ω), (5)

where ω/2π is the forcing frequency, sm the mass-scaled
amplitude of the mth normal mode, and V0 the volume of
the reference undeformed cell. The first term in the right-hand
side of Eq. (5) is the affine Born contribution, with C∞

αβκξ the
affine elastic modulus obtained when all atoms are forced to
follow the macroscopic applied uniform deformation εκξ :

C∞
αβκξ = − 1

2V0

∑
ij

[
Dακ

ij R
β

ij + D
βκ

ij Rα
ij

]
R

ξ

ij . (6)

The second term in the right-hand side of Eq. (5) is the
nonaffine contribution, which is expressed as a sum over the
normal modes of the system:

Cαβ
m = 1

2

∑
ijκ

[
Dακ

ij R
β

ij + D
βκ

ij Rα
ij

]eκ
j (m)
√

mj

. (7)

Here, eκ
j (m) is the component on atom j and direction κ of the

mth eigenvector of the mass-scaled dynamical matrix D̃, with
corresponding eigenfrequency ωm.

The temporal Fourier transform of the nonaffine displace-
ment 〈sm〉(ω) is expressed by projecting the linearized SLLOD
equations of motion in Eq. (1) on the normal modes of the
system (see Appendix for details):

〈sm〉(ω) = C
κξ
m

ω2
m − ω2 + iγ ω

εκξ (ω). (8)

From Eq. (5), the resulting complex modulus is thus

Cαβκξ (ω) = C∞
αβκξ − 2

V0

∑
m

C
αβ
m C

κξ
m

ω2
m − ω2 + iγ ω

, (9)

which involves the response function of the normal modes,
1/(ω2

m − ω2 + iγ ω), broadened by the Langevin thermostat
through the iγ ω term. Building on the decomposition of the
elastic constants into affine and nonaffine contributions first
proposed by Lutsko [77], Lemaı̂tre and Maloney obtained
an expression similar to Eq. (9) to analyze the viscoelastic
response of disordered solids [78]. The static limit of this
expression (ω = 0) was used by these authors and Zaccone
et al. [79] to study the effect of nonaffine relaxations on the
elasticity of glasses.

In the case of isostatic deformations of main interest here,
the above equations adopt a more compact form (see Appendix
for details), with the complex bulk modulus relating the Fourier
transform of the average pressure 〈P 〉(ω) to the applied strain
ε(ω):

K(ω) = K∞ − 2

9V0

∑
m

C2
m

ω2
m − ω2 + iγ ω

. (10)
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The affine bulk modulus and mode-dependent nonaffine term
are, respectively,

K∞ = − 1

9V0

∑
iαjβ

D
αβ

ij R
β

ijR
α
ij ,

Cm =
∑
iαjβ

D
αβ

ij Rα
ij

e
β

j (m)
√

mj

. (11)

Finally, we obtain the expression of the dissipation produced
by isotropic deformations:

Q−1(ω) =
∑

m C2
m

ωγ

(ω2
m−ω2)2+(γω)2

9V0
2 K∞ − ∑

m C2
m

ω2
m−ω2

(ω2
m−ω2)2+(γω)2

. (12)

In the next section, we compare this analytic expression
of the dissipation with numerical calculations and discuss the
physical insights gained from this expression on the origin of
dissipation in glasses.

III. SIMULATION RESULTS

A. Full nonlinear calculations

The energy dissipation obtained by mechanical spec-
troscopy in the present amorphous SiO2 model is presented
in Fig. 3 at three different temperatures, for a range of fre-
quencies, which broadly covers that of the vibrational density
of states of the glass in Fig. 1. Dissipation is numerically
zero below 0.1 THz, increases up to about 1.2 at 12 THz,
and decreases back to zero above 27 THz. The three sets
of data obtained at 10, 300, and 700 K are superimposed.
This temperature independence is a strong indication that, as
expected from previous works [30,31,67,80], dissipation is
harmonic in the present range of high frequencies.

In Fig. 3 are also plotted the experimental attenuation
data �/ω of Baldi et al. [38], obtained using a DHO fit of

FIG. 3. Energy dissipation as a function of frequency (ω/2π ) in
amorphous SiO2 modeled with the full nonlinear BKS potential at
three different temperatures. The friction of the Langevin thermostat
was set to 1 THz. The yellow circles are experimental data obtained
by fitting the excitation peak of the x-ray scattering spectra with the
DHO model [38].

FIG. 4. Energy dissipation as a function of frequency computed
with the nonlinear BKS potential, the harmonic approximation of
Eq. (4) and the analytical expression of Eq. (12). The same thermostat
friction of 1 THz is used in all calculations.

the dynamical structure factor of vitreous SiO2. The very
good agreement between the experimental and numerical
data below the IR limit, �/ω = 1/π , confirms the strong
connection between the quality Q−1 and attenuation �/ω

factors. However, we note that this link is difficult to justify
theoretically, even in the harmonic approximation considered
below [39]. In addition, the Ioffe-Regel criterion is defined here
from the spectroscopic linewidth � and not from the (inverse)
propagation lifetime of a wave packet, the latter giving slightly
different values for the corresponding energy dissipation
(see Refs. [80] and [36]).

We see in Fig. 3 that above the IR limit, the experimental
data overestimate the numerical dissipation. This discrepancy
might be expected for two reasons. First, simple models like
Zener’s standard linear solid [39] predict that the dissipation
and attenuation factors match only in the limit of low
dissipation, while at large dissipation, the attenuation factor
overestimates the quality factor. Second, above the IR limit,
the dynamical structure factor contains several excitation peaks
that cannot be fitted by a simple DHO model [22,81,82].

B. Harmonic approximation

To confirm the harmonic origin of energy dissipation in
the present range of frequencies, we applied mechanical
spectroscopy to the same sample but with the interactions
between particles described using the dynamical matrix of
the equilibrium configuration, as explained in Sec. II C. The
resulting energy dissipation is compared with the full nonlinear
BKS calculations in Fig. 4. The very good agreement between
both calculations confirms the harmonic origin of dissipation
in this frequency range. We note that at low frequencies,
typically below 1 THz, the harmonic calculations find a
dissipation systematically lower than the nonlinear model,
an indication that anharmonic effects may play a role in this
region. However, we see below that dissipation measurements
are strongly affected by the thermostat in this low-frequency
regime.
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Finally, we compare in Fig. 4 the harmonic simulations to
the analytical expression in Eq. (12). The perfect agreement
between both approaches, even in the regions where the
dissipation fluctuates rapidly (e.g., near 10 THz), confirms
the validity of the analytic calculations of Sec. II D. The
expression of energy dissipation in Eq. (12) also shows directly
that dissipation in the harmonic regime is independent of the
temperature and the strain amplitude (ε0). Q−1, however, de-
pends on the friction parameter γ of the Langevin thermostat, a
point detailed in the following section, where we also address
other properties of dissipation deduced from the analytical
expression.

IV. PROPERTIES OF HARMONIC DISSIPATION

A. Physical interpretation

Focusing on the numerator of Eq. (12), which mostly
controls the shape of the dissipation spectrum, we see that
Q−1 is expressed as a sum of contributions coming from the
vibrational eigenmodes. Each contribution is the product of
the square of the nonaffine coefficient Cm [Eq. (11)] with a
Lorentzian centered on the mode eigenfrequency ωm, with a
width fixed by the Langevin friction γ .

Physically, dissipation arises because the deformation
applied to the cell triggers nonaffine relaxations [Eq. (5)] that
are supported by the eigenmodes of the system [Eq. (8)]. Since
the latter are harmonic oscillators damped by the thermostat,
they induce a lag in the nonaffine stress contribution, which
is maximum when the forcing frequency equals the mode
eigenfrequency. The coupling coefficient C

αβ
m reflects the

sensitivity of the stress on the amplitude of mode m, since from
Eq. (5), Cαβ

m ∝ ∂σαβ/∂〈sm〉. The modes that dissipate most are
therefore those that produce large nonaffine stress relaxations
and resonate with the forcing frequency.

B. Influence of the Langevin friction parameter

The dissipation in Eq. (12) depends on the friction param-
eter γ of the Langevin thermostat, which might appear as an
artifact since γ is a numerical parameter with no physically
defined value. However, we argue below that except in the
region ω < γ , the shape and main features of the dissipation
spectrum do not depend on γ .

The effect of a finite value of γ is to broaden the response
function of the eigenmode oscillators [Eq. (8)]. As a result,
the numerator of the dissipation in Eq. (12) is expressed as
a weighted average of the nonaffine coefficients Cm over a
frequency window of order γ . As is emphasized in Fig. 7, Cm

varies rapidly from mode to mode. Therefore, when γ is small,
the nonaffine parameter Cm is not averaged over a large enough
window and the dissipation shows rapid fluctuations, as seen
in Fig. 4. However, when γ increases and Cm is averaged over
more modes, the dissipation spectrum becomes smoother but
retains the same shape and features, as shown in Fig. 5, even
near the peak of dissipation at 10 THz. This is typically true as
long as ω remains in the frequency spectrum of the density of
states and ω > γ . Indeed, in the limit ω < min(γ,ωm), Eq. (12)
predicts Q−1 ∝ γω. This is visible in the inset of Fig. 5, where
the dissipation below typically 1 THz scales with the frequency
and friction. In this region outside the VDOS, the slow decay

FIG. 5. Energy dissipation as a function of frequency computed
using the analytical expression for three different thermostat frictions:
0.3, 1, and 3 THz. The inset shows a log-log view of the low-frequency
region.

when ω → 0 is an artifact of the finite width of the Lorentzian
and therefore, of the finite-friction thermostat. Equivalently,
we can say that the fluctuations seen in Fig. 4 are a finite-size
effect, due to the fact that in the small systems considered
here, there are not enough modes to obtain a smooth average of
Cm. Larger systems with denser eigenfrequency spectra would
show smoother dissipations at fixed γ . However, considering
larger systems is difficult since diagonalizing the dynamical
matrix becomes rapidly very computationally intensive.

Another way to limit the fluctuations is to average the
dissipation spectrum over independent SiO2 glassy config-
urations of the same size, as done in Fig. 6. Fluctuations
between different configurations are obvious, but the general
shape remains the same and the average curve shows the same
features as seen in Figs. 3 and 5.

FIG. 6. Mean energy dissipation as a function of frequency,
calculated with Eq. (12) for 20 different SiO2 glasses, with a
thermostat frequency γ = 1 THz. The blue area represents the
standard deviation of the energy dissipation computed on the 20
samples.
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FIG. 7. Square of the mode-dependent nonaffine coefficient, C2
m,

computed from Eq. (11), as a function of the mode eigenfrequency.

C. Properties of Cm

From Eqs. (5) and (8), every eigenmode m has an influence
on the total stress, through a nonaffine contribution (departure
of the mode from the affine macroscopic imposed displace-
ment) whose amplitude is fixed by the mode-dependent
parameter C

αβ
m . Figure 7 shows C2

m = (
∑

α Cαα
m )2, the square

of the coupling parameter for isostatic deformations, as a
function of the mode frequency. We see that (1) the coupling
parameter varies rapidly from mode to mode, (2) C2

m vanishes
at low frequencies for the long-wavelength modes, which
approach plane waves, and (3) C2

m falls abruptly down to
zero above about 27 THz. This frequency corresponds in the
VDOS of the present SiO2 model (Fig. 1) to the beginning
of the opticlike modes that compose the two high-frequency
bands between about 27 and 40 THz [53,74,82]. In between
these two limits, in the so-called main band of the VDOS
there are very rapid variations, with many modes having very
low C2

m values, and a few modes having very large values.
Similar spectra with very rapid variations between modes are
obtained with other applied strains, such as simple shear or
uniaxial loading, although in both cases, C2

m does not vanish
in the high-frequency band above 27 THz. (See Sec. IV D for
an explanation.)

Still focusing on the case of isostatic deformations, the
nonaffine parameter Cm in Eq. (11) can be rewritten as

Cm = −
∑
iα

�α
i

eα
i (m)√
mi

, (13)

with �α
i introduced in Ref. [78] as

�α
i = ∂Fα

i

∂ε
= −

∑
jβ

D
αβ

ij R
β

ij , (14)

where Fα
i is the force on atom i in direction α induced

by an affine isostatic deformation ε applied to the initial
configuration. The atomic vector field � can be interpreted
in two complementary ways. From the first equality in
Eq. (14), � corresponds to the atomic forces that induce
nonaffine displacements after application of an elementary

affine deformation; � is therefore a field of nonaffine forces.
From the second equality, the vector

−→
� i can be interpreted as

a measure of the lack of symmetry of the atomic environment
around atom i. This is particularly clear with a pair potential
φ(r) because in this case,

−→
� i can be rewritten as

−→
� i =

∑
j

φ′′(Rij )
−→
R ij . (15)

If the local environment of atom i is centrosymmetrical, there
is for each atom j at

−→
R ij , an atom j ′ at −−→

R ij with an

opposite contribution to
−→
� i , which is therefore zero. This

is true for other symmetrical environments, such as the regular
tetrahedra surrounding Si atoms in SiO2, since from Eq. (15),−→
� i vanishes whenever atom i is at the center of gravity of its
neighbors weighted by the bond strengths (measured by φ′′).

In the general case [Eq. (7)], the vector field �αβ depends
on the orientation of the applied strain εαβ :

�κ
αβ,i = −1

2

∑
j

(
Dκα

ij R
β

ij + D
κβ

ij Rα
ij

)
. (16)

This expression cannot be simplified as above, but it retains the
property of vanishing in symmetrical local environments [78],
justifying to quality � as an asymmetry vector field. Since Cm

is the projection of eigenvector e(m) on the asymmetry field
� [Eq. (13)] (we neglect here the potential effect of varying
masses, which can be incorporated if needed in the definition
of �), we conclude that the modes that dissipate the most
are those that best resemble �. This field thus encodes the
information about the structural features that control harmonic
dissipation when measured with mechanical spectroscopy.

We finally note that the nonaffine parameter can also be
rewritten in a third alternative way,

Cm =
∑

i

∑
jα

ξα
j→i(m)Rα

ij , (17)

with

ξα
j→i = −Fα

j→i

sm

=
∑

β

D
αβ

ij

e
β

j (m)
√

mj

, (18)

where Fα
j→i is the force on atom i in direction α due to the

displacement of atom j when the mode m has a mass-scaled
amplitude sm. Therefore, ξα

j→i measures the sensitivity on
the mode amplitude of the force on atom i due to atom
j . This alternative expression shows the strong connection
between dissipation and the forces induced in the glass by
the eigenmodes. Such connection between force distributions
and vibrational properties has recently been pointed out in
the case of hard-sphere glasses [83]. In silica, the most
important forces are supported by the Si-O bonds and form
force chains supported by the SiO2 skeleton. When nonaffine
atomic displacements are induced by an eigenmode, the force
chains adopt a specific response, reflected by ξα

j→i , which
varies very rapidly from mode to mode, like Cm.

D. Application to SiO2

We concluded from the above discussion that inspecting the
asymmetry field � allows us to identify the structural elements
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FIG. 8. Asymmetry vector field � in the case of isostatic
deformations, represented in two-dimensional projection for an 8-Å
slab in a SiO2 sample. Black arrows are for Si atoms, red arrows
for oxygen atoms. The scaled forces ξα

j→i for the mode of maximum
dissipation are shown in gray, with a width proportional to their
intensity. The inset shows the stereographic projection of the �

vectors (normalized to unity) of the O atoms in the basis formed
by the rocking, stretching, and bending vectors (VRock, VStre,VBend) of
each Si-O-Si bond.

responsible for harmonic dissipation. To this end, we plot in
Fig. 8 the � field for isostatic deformations in a slab of SiO2.

The � vectors on the Si atoms (in black) are very
small and hardly visible, as expected from their tetrahedral
environment. Fourfold-coordinated Si atoms therefore do not
participate in harmonic dissipation. On the other hand, oxygen
atoms are either two- or three-folded and have asymmetrical
environments, resulting in finite � vectors (in red). Moreover,
O atoms form Si-O-Si bonds, and we can see in Fig. 8 that
in most cases, the � vectors point towards the inside of the
Si-O-Si bond, i.e., in a direction which bends the bond. This
is readily understood from Eq. (15), where the O atom in
a Si-O-Si bond has two Si neighbors at similar distances,
resulting in a � vector close to the bisector vector of the Si-O-Si
angle. We checked this result numerically by computing in the
inset of Fig. 8 the stereographic projection of the � vectors
(normalized to unity) of the O atoms in the basis formed by
the rocking, bending, and stretching vectors (VRock, VBend, and
VStre) of each Si-O-Si bond (see Fig. 1). Most � vectors are
oriented along the bending vector, which by construction, is
the bisector vector of the Si-O-Si angle. Therefore, in the case
of isostatic deformations, bending of the Si-O-Si bonds is the
main contributor to harmonic dissipation in amorphous SiO2.

For a general applied strain, the �αβ field will remain small
on the Si atoms and may take other orientations on the O atoms.
As an illustration, we show in Fig. 9 the case of simple shear.
Dissipation is smaller than with isostatic deformations, as evi-

FIG. 9. Asymmetry vector field �xy and its stereographic projec-
tion for an applied shear strain εxy in the same 8-Å slab as in Fig. 8,
projected on the xy plane of the slab. The scale of the arrows is tripled
compared to Fig. 8.

denced by the smaller length of the �xy vectors (their scale was
tripled compared to Fig. 8). Moreover, the difference between
Si and O atoms is smaller, although O atoms still support on
average larger �xy vectors than Si atoms. Finally, the distri-
bution of orientations of the �xy vectors on O atoms is more
spread, but the stereographic projection shows that they are
predominantly oriented along VStre. In simple shear, dissipation
is therefore dominated by the stretching motion of the Si-O-Si
bonds. As a consequence, the coupling parameter in shear C

xy
m

and the dissipation do not vanish in the high-frequency band
above 27 THz, which is dominated by the stretching of the
Si-O-Si bonds, as shown in the VDOS of Fig. 1.

V. CONCLUSION

Mechanical spectroscopy was used to compute dissipation
at high frequencies in a model SiO2 glass. We have shown that
the loss angle can be expressed analytically in the harmonic
regime, characteristic of the high frequencies accessible to
molecular dynamics simulations and inelastic x-ray scattering
experiments. This analytical expression, written as a sum of
damped harmonic oscillator dissipations, shows the role of the
eigenmodes as energy dissipators. The sensitivity of the stress
tensor to the vibrational modes is central to understanding
high-frequency dissipation. Up to now, however, despite its
formal evidence, a more quantitative connection between
eigenfrequencies and the contribution of the corresponding
eigenmodes to the global stress tensor is lacking due to
the complex shape of the vibrations in amorphous solids.
Interestingly, the present work should also be connected to
studies of heat transport in harmonic models of disordered
systems, where eigenmodes also play a central role [84,85].
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We have shown that an asymmetry vector field, which
depends only on the equilibrium configuration of the glass,
can be used to characterize the structural features that control
harmonic energy dissipation. We recover here that force
asymmetries are at the origin of nonaffine displacements, as
discussed in the works of Lemaı̂tre and Maloney [78] and
Zaccone et al. [79], and that the nonaffinity of the local fields
in turn are responsible for energy dissipation, as computed by
mechanical spectroscopy.

In the particular case of SiO2, we have shown that the
deformation of the Si-O-Si bonds is the main contributor
to energy dissipation. However, we should insist that since
dissipation arises from the extended modes of the main band
of the VDOS, dissipation is not related to the local vibration of
a bond but rather to the collective vibration of many Si-O-Si
bonds. With respect to the ring structure of silica, we have
seen in Fig. 8 that in the case of isostatic deformations,
the � arrows point mostly towards the center of the rings,
anticipating a potential connection between ring morphology
and dissipation. Also, it was shown that internal friction is
related to the forces induced in the SiO2 skeleton by the
eigenmodes, in connection with their effect on the stress tensor.
This sensitivity of the stress tensor to the vibration modes of
the system not only confirms that the force distribution affects
vibrational properties, as pointed out in Ref. [83], but shows
also that the components of the forces that are relevant for
high-frequency internal friction are the nontrivial harmonic
components induced by displacements along the eigenmodes
of the samples.

The present analytic expression of the quality factor and
application of � as a structural indicator of dissipation go
beyond the case of oxide glasses. For instance, we understand
that in crystals, defects that break the local symmetry, such
as dislocation cores or grain boundaries, will be sources of
harmonic dissipation. Likewise, we expect that noncentrosym-
metrical crystals, such as quartz, should exhibit high-frequency
dissipation, even in the absence of defects, although these
aspects of energy dissipation at high frequencies remain to be
explored quantitatively.
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APPENDIX: ANALYTIC EXPRESSION
OF THE DISSIPATION

We detail here the calculations leading to an analytic
expression of the dissipation in Eq. (12) in the harmonic
linear response regime, assuming a Langevin thermostat. We
consider here only the case of isostatic deformations. The
general expressions given in the main text are obtained by a
straightforward generalization of these calculations.

1. Frequency-dependent pressure

We note by rα
i the current position of atom i in direction α

and Rα
i , its equilibrium position in the reference undeformed

cell. At time t , the cell is compressed or stretched isostatically

along the X, Y , and Z directions by ε(t) = ε0 sin(ωt), such
that

rα
i = (1 + ε)Rα

i + xα
i , (A1)

where xα
i is the nonaffine displacement. In the harmonic

approximation, using the expression of the energy given in
Eq. (4) of the main text, the force on atom i and direction α is
given by

Fα
i = −

∑
jβ

D
αβ

ij

(
r

β

ij − R
β

ij

)
, (A2)

where Rα
ij is the equilibrium separation between atoms i

and j in direction α in the underformed initial cell. The
dynamical matrix {Dαβ

ij } has the following usual symmetries

D
αβ

ij = D
βα

ji = D
αβ

ji = D
βα

ij and
∑

i D
αβ

ij = 0. The pressure is
expressed as

P = 1

3V

∑
iαjβ

D
αβ

ij

(
r

β

ij − R
β

ij

)
rα
ij , (A3)

where V = L3 is the current volume of the cell, with L =
L0(1 + ε). At the rather low temperatures considered here, we
have checked that the kinetic pressure is negligible and is not
included in the calculations.

The pressure can be rewritten as a function of the applied
strain ε and the nonaffine displacements xα

i using Eq. (A1):

P = 1

3V

∑
iαjβ

D
αβ

ij

[
εR

β

ij + x
β

ij

][
(1 + ε)Rα

ij + xα
ij

]

= ε(1 + ε)

3V

∑
iαjβ

D
αβ

ij R
β

ijR
α
ij + 1

3V

∑
iαjβ

D
αβ

ij x
β

ij x
α
ij

+ (1 + 2ε)

3V

∑
iαjβ

D
αβ

ij Rα
ij x

β

ij . (A4)

In the linear response regime, only the first-order terms in
ε and x

β

ij are kept. The second term of the above expression
is therefore neglected and the current volume V is replaced
by the reference volume V0. The first term corresponds to the
pressure in case of affine atomic motion, with the affine bulk
modulus:

K∞ = −V
dP

dV
= −1

3

dP

dε

= − 1

9V0

∑
iαjβ

D
αβ

ij R
β

ijR
α
ij . (A5)

The last term of Eq. (A4) is the nonaffine contribution,
which can be rearranged using the symmetries of D:∑

iαjβ D
αβ

ij Rα
ij x

β

ij = ∑
iαjβ D

αβ

ij Rα
ij x

β

j − ∑
iαjβ D

αβ

ij Rα
ij x

β

i =
2
∑

iαjβ D
αβ

ij Rα
ij x

β

j . The pressure is thus expressed as

P = −3K∞ε + 2

3V0

∑
iαjβ

D
αβ

ij Rα
ij x

β

j . (A6)

We then project the nonaffine displacements onto the
normal modes of the system. To this end, we introduce
mass-scaled displacements s

β

j and their projections sm on the
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eigenmodes e(m) of the system, i.e., the eigenvectors of the
mass-scaled dynamical matrix D̃:

s
β

j = √
mjx

β

j =
∑
m

sme
β

j (m). (A7)

Replacing x
β

j in Eq. (A6), we form a mode-dependent term

Cm =
∑
iαjβ

D
αβ

ij Rα
ij

e
β

j (m)
√

mj

(A8)

and the final expression of the pressure is

P = −3K∞ε + 2

3V0

∑
m

Cmsm. (A9)

Averaging this equation over multiple cycles and taking its
Fourier transform, we obtain

〈P 〉(ω) = −3K∞ε(ω) + 2

3V0

∑
m

Cm〈sm〉(ω), (A10)

where ε(ω) is the Fourier transform of ε(t) between 0 and T =
2π/ω. We see that Cm is proportional to ∂P/∂sm and therefore
expresses the sensitivity of the pressure to the amplitude of the
normal mode m. The properties of Cm are further explored
below.

2. Complex bulk modulus

To express 〈sm〉(ω), we rewrite the SLLOD equations of
Eq. (1) in the main text as a second-order differential equation:

mir̈
α
i = mir

α
i (ε̇2 + ε̈) −

∑
jβ

D
αβ

ij

(
r

β

ij − R
β

ij

)

−miγ
(
ṙα
i − rα

i ε̇
) + Fth, (A11)

which is written in terms of nonaffine displacements, keeping
only the first-order terms, as

miẍ
α
i = −

⎛
⎝∑

jβ

D
αβ

ij R
β

ij

⎞
⎠ε −

∑
jβ

D
αβ

ij x
β

j − miγ ẋα
i + Fth.

(A12)
We now introduce the mass-scaled coordinates sα

i ,

s̈α
i = −

⎛
⎝∑

jβ

D
αβ

ij√
mi

R
β

ij

⎞
⎠ε −

∑
jβ

D̃
αβ

ij s
β

j − γ ṡα
i + Fth√

mi

,

(A13)
which yields after projection on the eigenmodes,

s̈m = Cmε − ω2
msm − γ ṡm + Fm. (A14)

Here, Fm is the random force on mode m and ω2
m the

eigenfrequency of mode m, i.e., the eigenvalue of D̃ corre-
sponding to the eigenmode e(m). We have also recognized that∑

iαjβ

D
αβ

ij√
mi

R
β

ij e
α
i (m) = −Cm, in reference to Eq. (11), where

the minus sign comes from the exchange between indices i and
j . Averaging this equation over multiple cycles, the random
force term, of zero mean, vanishes, and taking the Fourier
transform, we obtain

〈sm〉(ω) = Cm

ω2
m − ω2 + iγ ω

ε(ω). (A15)

From Eq. (A10), we have

〈P 〉(ω) = −3K∞ε(ω) + 2

3V0

∑
m

C2
m

ω2
m − ω2 + iγ ω

ε(ω),

(A16)
resulting in the complex bulk modulus reported in the main
text,

K(ω) = K∞ − 2

9V0

∑
m

C2
m

ω2
m − ω2 + iγ ω

. (A17)

[1] R. Lifshitz and M. L. Roukes, Phys. Rev. B 61, 5600 (2000).
[2] B. H. Houston, D. M. Photiadis, M. H. Marcus, J. A. Bucaro,

X. Liu, and J. F. Vignola, Appl. Phys. Lett. 80, 1300 (2002).
[3] M. Li, H. X. Tang, and M. L. Roukes, Nat. Nanotechnol. 2, 114

(2007).
[4] P. R. Saulson, Phys. Rev. D 42, 2437 (1990).
[5] R. Flaminio, J. Franc, C. Michel, N. Morgado, L. Pinard, and B.

Sassolas, Classical Quantum Gravity 27, 084030 (2010).
[6] M. Granata, K. Craig, G. Cagnoli, C. Carcy, W. Cunningham, J.

Degallaix, R. Flaminio, D. Forest, M. Hart, J.-S. Hennig et al.,
Opt. Lett. 38, 5268 (2013).

[7] A. Seeger, H. Donth, and F. Pfaff, Discuss. Faraday Soc. 23, 19
(1957).

[8] J. Jackle, Z. Phys. A: Hadrons Nucl. 257, 212 (1972).
[9] W. A. Phillips, Rep. Prog. Phys. 50, 1657 (1987).

[10] R. Vacher, E. Courtens, and M. Foret, Phys. Rev. B 72, 214205
(2005).

[11] R. Hamdan, J. P. Trinastic, and H. P. Cheng, J. Chem. Phys. 141,
054501 (2014).

[12] C. Zener, Phys. Rev. 53, 90 (1938).

[13] C. Zener, W. Otis, and R. Nuckolls, Phys. Rev. 53, 100 (1938).
[14] J. Fabian and P. B. Allen, Phys. Rev. Lett. 82, 1478 (1999).
[15] K. Kunal and N. R. Aluru, Phys. Rev. B 84, 245450 (2011).
[16] G. Carini, G. Carini, G. D’Angelo, D. Fioretto, and G. Tripodo,

Phys. Rev. B 90, 140204(R) (2014).
[17] G. Ruocco, F. Sette, R. Di Leonardo, D. Fioretto, M. Krisch,

M. Lorenzen, C. Masciovecchio, G. Monaco, F. Pignon, and T.
Scopigno, Phys. Rev. Lett. 83, 5583 (1999).

[18] C. Ganter and W. Schirmacher, Phys. Rev. B 82, 094205 (2010).
[19] Z. Liang and P. Keblinski, Phys. Rev. B 93, 054205 (2016).
[20] G. Baldi, V. M. Giordano, B. Ruta, and G. Monaco, Phys. Rev.

B 93, 144204 (2016).
[21] C. Masciovecchio, G. Baldi, S. Caponi, L. Comez, S. Di Fonzo,

D. Fioretto, A. Fontana, A. Gessini, S. C. Santucci, F. Sette,
G. Viliani, P. Vilmercati, and G. Ruocco, Phys. Rev. Lett. 97,
035501 (2006).

[22] G. Baldi, V. M. Giordano, B. Ruta, R. Dal Maschio, A. Fontana,
and G. Monaco, Phys. Rev. Lett. 112, 125502 (2014).

[23] J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids
(Elsevier Academic Press, Cambridge, MA, 2006).

054203-9

https://doi.org/10.1103/PhysRevB.61.5600
https://doi.org/10.1103/PhysRevB.61.5600
https://doi.org/10.1103/PhysRevB.61.5600
https://doi.org/10.1103/PhysRevB.61.5600
https://doi.org/10.1063/1.1449534
https://doi.org/10.1063/1.1449534
https://doi.org/10.1063/1.1449534
https://doi.org/10.1063/1.1449534
https://doi.org/10.1038/nnano.2006.208
https://doi.org/10.1038/nnano.2006.208
https://doi.org/10.1038/nnano.2006.208
https://doi.org/10.1038/nnano.2006.208
https://doi.org/10.1103/PhysRevD.42.2437
https://doi.org/10.1103/PhysRevD.42.2437
https://doi.org/10.1103/PhysRevD.42.2437
https://doi.org/10.1103/PhysRevD.42.2437
https://doi.org/10.1088/0264-9381/27/8/084030
https://doi.org/10.1088/0264-9381/27/8/084030
https://doi.org/10.1088/0264-9381/27/8/084030
https://doi.org/10.1088/0264-9381/27/8/084030
https://doi.org/10.1364/OL.38.005268
https://doi.org/10.1364/OL.38.005268
https://doi.org/10.1364/OL.38.005268
https://doi.org/10.1364/OL.38.005268
https://doi.org/10.1039/df9572300019
https://doi.org/10.1039/df9572300019
https://doi.org/10.1039/df9572300019
https://doi.org/10.1039/df9572300019
https://doi.org/10.1007/BF01401204
https://doi.org/10.1007/BF01401204
https://doi.org/10.1007/BF01401204
https://doi.org/10.1007/BF01401204
https://doi.org/10.1088/0034-4885/50/12/003
https://doi.org/10.1088/0034-4885/50/12/003
https://doi.org/10.1088/0034-4885/50/12/003
https://doi.org/10.1088/0034-4885/50/12/003
https://doi.org/10.1103/PhysRevB.72.214205
https://doi.org/10.1103/PhysRevB.72.214205
https://doi.org/10.1103/PhysRevB.72.214205
https://doi.org/10.1103/PhysRevB.72.214205
https://doi.org/10.1063/1.4890958
https://doi.org/10.1063/1.4890958
https://doi.org/10.1063/1.4890958
https://doi.org/10.1063/1.4890958
https://doi.org/10.1103/PhysRev.53.90
https://doi.org/10.1103/PhysRev.53.90
https://doi.org/10.1103/PhysRev.53.90
https://doi.org/10.1103/PhysRev.53.90
https://doi.org/10.1103/PhysRev.53.100
https://doi.org/10.1103/PhysRev.53.100
https://doi.org/10.1103/PhysRev.53.100
https://doi.org/10.1103/PhysRev.53.100
https://doi.org/10.1103/PhysRevLett.82.1478
https://doi.org/10.1103/PhysRevLett.82.1478
https://doi.org/10.1103/PhysRevLett.82.1478
https://doi.org/10.1103/PhysRevLett.82.1478
https://doi.org/10.1103/PhysRevB.84.245450
https://doi.org/10.1103/PhysRevB.84.245450
https://doi.org/10.1103/PhysRevB.84.245450
https://doi.org/10.1103/PhysRevB.84.245450
https://doi.org/10.1103/PhysRevB.90.140204
https://doi.org/10.1103/PhysRevB.90.140204
https://doi.org/10.1103/PhysRevB.90.140204
https://doi.org/10.1103/PhysRevB.90.140204
https://doi.org/10.1103/PhysRevLett.83.5583
https://doi.org/10.1103/PhysRevLett.83.5583
https://doi.org/10.1103/PhysRevLett.83.5583
https://doi.org/10.1103/PhysRevLett.83.5583
https://doi.org/10.1103/PhysRevB.82.094205
https://doi.org/10.1103/PhysRevB.82.094205
https://doi.org/10.1103/PhysRevB.82.094205
https://doi.org/10.1103/PhysRevB.82.094205
https://doi.org/10.1103/PhysRevB.93.054205
https://doi.org/10.1103/PhysRevB.93.054205
https://doi.org/10.1103/PhysRevB.93.054205
https://doi.org/10.1103/PhysRevB.93.054205
https://doi.org/10.1103/PhysRevB.93.144204
https://doi.org/10.1103/PhysRevB.93.144204
https://doi.org/10.1103/PhysRevB.93.144204
https://doi.org/10.1103/PhysRevB.93.144204
https://doi.org/10.1103/PhysRevLett.97.035501
https://doi.org/10.1103/PhysRevLett.97.035501
https://doi.org/10.1103/PhysRevLett.97.035501
https://doi.org/10.1103/PhysRevLett.97.035501
https://doi.org/10.1103/PhysRevLett.112.125502
https://doi.org/10.1103/PhysRevLett.112.125502
https://doi.org/10.1103/PhysRevLett.112.125502
https://doi.org/10.1103/PhysRevLett.112.125502


T. DAMART, A. TANGUY, AND D. RODNEY PHYSICAL REVIEW B 95, 054203 (2017)

[24] M. Foret, E. Courtens, R. Vacher, and J.-B. Suck, Phys. Rev.
Lett. 77, 3831 (1996).

[25] G. Ruocco and F. Sette, J. Phys.: Condens. Matter 13, 9141
(2001).

[26] P. Benassi, M. Krisch, C. Masciovecchio, V. Mazzacurati, G.
Monaco, G. Ruocco, F. Sette, and R. Verbeni, Phys. Rev. Lett.
77, 3835 (1996).

[27] A. Devos, M. Foret, S. Ayrinhac, P. Emery, and B. Rufflé,
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