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Characterizing many-body localization by out-of-time-ordered correlation
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The out-of-time-ordered (OTO) correlation is a key quantity for quantifying quantum chaoticity and has been
recently used in the investigation of quantum holography. Here we use it to study and characterize many-body
localization (MBL). We find that a long-time logarithmic variation of the OTO correlation occurs in the MBL
phase but is absent in the Anderson localized and ergodic phases. We extract a localization length in the MBL
phase, which depends logarithmically on interaction and diverges at a critical interaction. Furthermore, the
infinite-time “thermal” fluctuation of the OTO correlation is zero (finite) in the ergodic (MBL) phase and thus
can be considered as an order parameter for the ergodic-MBL transition, through which the transition can be
identified and characterized. Specifically, the critical point and the related critical exponents can be calculated.
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I. INTRODUCTION

Recently, the proposal and studies of a simple quantum-
mechanical model, known as the Sachdev-Ye-Kitaev (SYK)
model [1–3], show that it has some interesting features shared
by a black hole, and it is proposed to be a model of quantum
holography. A key quantity in this context is the out-of-time-
ordered (OTO) correlation [4,5], which is generalized from a
quantity describing classical chaos and can be used to diagnose
quantum chaos as well as scrambling of quantum information
in black holes. These attract a lot of attention and there are
also experimental proposals to simulate the SYK model [6]
and measure this quantity in cold atom systems [7] or via a
“quantum clock” [8].

The SYK model is a disordered model in zero dimension.
The disorder plays a key role in making the model most chaotic.
However, when disorder is introduced in finite-dimensional
models, one usually finds Anderson localization [9] or many-
body localization (MBL) [10–15] if the system is weakly
interacting. An MBL system is effectively integrable because
of the emergence of a complete set of local integrals of
motion [13,14,16–18], thus any chaoticity is suppressed and
ergodicity is broken down as well. This makes MBL special.
Consequently, it is difficult to describe intriguing properties of
MBL by conventional correlation functions and convectional
methods, especially the critical behavior of the ergodic-
MBL transition and the subtle distinction between Anderson
localization and MBL.

In this paper, we employ the OTO correlation to study
and characterize MBL first via phenomenological analysis
and then by numerical calculations for a one-dimensional
interacting spinless fermionic model. We find that the OTO
correlation initially decreases polynomially in short time,
then it reaches zero in an ergodic phase but remains finite
in the noninteracting Anderson localized phase. What is
interesting is that in an MBL phase the OTO correlation
decreases logarithmically to zero in long time, reminiscent
of the behavior of the logarithmic increase in time of the
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entanglement entropy [19–22]. A localization length for the
MBL can be further extracted, which depends logarithmically
on the interaction, diverges at a critical interaction, and hence
predicts a transition—the ergodic-MBL transition. Further-
more, we find that the “thermal” fluctuation of the OTO
correlation at infinite time is zero for an ergodic phase but
finite for an MBL phase. Thus this fluctuation can be used as
an order parameter to characterize the ergodic-MBL transition,
of which the critical point and related critical exponents can
be calculated, for example.

II. MODEL

For the sake of concreteness, a one-dimensional spinless
fermionic model with nearest-neighbor hoppings, nearest-
neighbor density-density interactions, and disordered on-site
potentials is studied. The Hamiltonian is

Ĥ = −1

2

∑
〈ij〉

(c†i cj + c
†
j ci)

+V
∑
〈ij〉

(
n̂i − 1

2

)(
n̂j − 1

2

)
−

∑
i

μi n̂i , (1)

where μi is randomly chosen in [−w,w] with uniform
distribution and n̂i = c

†
i ci . L is the number of lattice sites.

A periodic boundary condition is chosen. This model can
be transformed into a random-field XXZ spin chain by the
Jordan-Wigner transformation. For V > 0, there is an ergodic
to MBL phase transition as w increases, while the system is
Anderson localized for V = 0 and w > 0.

III. OTO CORRELATION

The OTO correlation for two commuting/anticommuting
operators Ŵ and V̂ is defined as

F (t) = ±〈Ŵ †(t)V̂ †(0)Ŵ (t)V̂ (0)〉, (2)

where + (−) is chosen when Ŵ and V̂ commute (anticom-
mute) and Ŵ (t) = exp(iH t)Ŵ exp(−iH t) withh̄ = 1, and the
average 〈· · · 〉 is taken on some ensemble described by a density
operator ρ̂, i.e., 〈Ô〉 = tr ρ̂Ô. The OTO correlation arises from
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a commutator square

C(t) = 1
2 〈[Ŵ (t),V̂ (0)]†±[Ŵ (t),V̂ (0)]±〉, (3)

which is non-negative and is zero at t = 0. Let us call it “OTO
commutativity” for convenience. Usually, Ŵ and V̂ are chosen
to be local operators in different locations. Ŵ (t) spreads in
space as time. C(t) becomes significant when the spread of
Ŵ (t) reaches the location of V̂ . When Ŵ and V̂ are unitary,
C(t) = 1 − �F (t), and this is the case on which we focus
below. For clarity of later references, when choosing Ŵ = κi

and V̂ = κj with κi being an operator at site i, we denote
the OTO correlation/commutativity as Fij (κ; t)/Cij (κ; t), and
further denote as F

(n)
ij (κ; t)/C(n)

ij (κ; t) when choosing ρ̂ =
|n〉〈n| with |n〉 being an eigenstate of the system.

IV. PHENOMENOLOGICAL ANALYSIS

In the MBL phase, the Hamiltonian (1) can be transformed
into a simple form in terms of a complete set of local integrals
of motion {τ̂i} ([τ̂i ,τ̂j ] = [τ̂i ,Ĥ ] = 0) [16,17]:

Ĥ =
∑

i

ξi τ̂i +
∑
ij

Vij τ̂i τ̂j +
∑
ijk

Vijkτ̂i τ̂j τ̂k + · · · , (4)

where ξi,Vij ,Vijk, . . . are coupling coefficients and V ’s decay
exponentially as the distance between i,j,k, . . . increases. The
locality of τ̂i is manifested by τ̂i = Û n̂iÛ

†, where Û is a local
unitary operator and diagonalizes the Hamiltonian, as shown
in Ref. [18]. The OTO correlation Fij (η; t) can be formally
obtained for this model, where ηi ≡ ÛγiÛ

† with γi ≡ ci + c
†
i

being a Majorana fermion operator. Note that ηi and γi are
unitary and Hermitian.

Fij (η; t) =
∑

n

ρnF
(n)
ij (η; t) (5)

=
∑

n

ρn exp
[
it�τ

(n)
i �τ

(n)
j Ṽ

(n)
ij

]
(6)

=
∫ ∞

−∞
f (x) exp(itx)dx, (7)

where ρ̂ = ∑
n ρn|n〉〈n| describes an ensemble and |n〉 is an

eigenstate of Ĥ . F
(n)
ij (η; t) = exp[it�τ

(n)
i �τ

(n)
j Ṽ

(n)
ij ]. τ

(n)
i ∈

{0,1} is the eigenvalue of τ̂i on |n〉. |n\i〉 ≡ ηi |n〉 is also
an eigenstate of Ĥ and �τ

(n)
i ≡ τ

(n\i)
i − τ

(n)
i with |�τ

(n)
i | =

1. Ṽ
(n)
ij = Vij + ∑

k Vijkτ
(n)
k + · · · is an effective coupling

strength between τ̂i and τ̂j for state |n〉, which is bounded
and decays exponentially as r ≡ |j − i| increases, i.e., Ṽ (n)

ij ∼
Vr ≡ V exp(−r/ξ ), where ξ defines a localization length.
f (x) = ∑

n ρnδ(x − �τ
(n)
i �τ

(n)
j Ṽ

(n)
ij ) can be considered as a

probability density function with a standard deviation ∼Vr .
In the thermodynamic limit, f (x) is a continuous func-

tion so that Fij (η; t) decreases from 1 to 0 as time
goes from 0 to ∞. For example, Fij (η; t) = exp(−V 2

r t2/2)
for f (x) ∝ exp(−x2/2V 2

r ) being a normal distribution and
Fij (η; t) = exp(−Vrt) for f (x) = Vr/π (x2 + V 2

r ) being a
Lorentz distribution. Generally, Fij (η; t) may be modeled
by Fij (η; t) = exp[−(bVr t)α] with b ∼ 1 and α > 0 being
parameters, which is surprisingly good as demonstrated by
numerical results below. Accordingly, the corresponding OTO

commutativity is

Cij (η; t) = 1 − exp[−(bVr t)
α]. (8)

For small t , Cij (η; t) increases polynomially as time, which is
essentially different from the exponential increase of Cij (η; t)
for a quantum chaotic system. More interestingly,

Cij (η; t) ≈ 1 − e−1 + e−1α ln bVr t (9)

for bVr t ∼ 1, i.e., at intermediate time Cij (η; t) increases
logarithmically as time. This resembles the logarithmic growth
of entanglement entropy [19–22]. Actually, they share the
same origin of the interaction induced dephasing. For Cij (η; t)
becoming significant, say Cij (η; t) = 1 − e−1, one obtains
r = ξ ln bV t , implying that Ŵ (t), carrying some information,
spreads logarithmically slowly in space.

In the Anderson localization case (V = 0), one finds
immediately that Ṽ

(n)
ij = 0 [16–18] so that Fij (η; t) = 1 and

Cij (η; t) = 0, which is in sharp contrast with the MBL case
where Cij (η; t) increases from 0 and saturates finally to 1 as
time increases. So the OTO correlation can be used to distin-
guish MBL from Anderson localization. A conventional time-
ordered correlation function, such as 〈ηi(t)ηj (t)ηi(0)ηj (0)〉 or
〈ηi(0)ηi(t)ηj (t)ηj (0)〉, lacks this feature because contributions
from the one-body term

∑
i ξi τ̂i in the Hamiltonian (4) cannot

be canceled out. Refer to Refs. [23–25] for related discussions.
The imperfection of this phenomenological analysis is the

choice of the two operators Ŵ and V̂ in the OTO correlation.
They are chosen to be ηi and ηj above. ηi is quasilocalized
in the MBL phase, but becomes extended when the system
enters the ergodic phase. This qualitative change of ηi across
the transition hides in some extent the singular behavior of the
transition from the OTO correlation. It may thus be difficult
to identify and characterize the transition with this choice
of the OTO correlation. A resolution to this difficulty is a
new choice of the OTO correlation with Ŵ = γi and V̂ = γj

totally localized, namely, Fij (γ ; t), which is the same choice
as that in the studies of the Sachdev-Ye-Kitaev model. The
cost is that now it is difficult to find the properties of the
OTO correlation analytically. So we resort to a numerical
calculation, as presented below.

V. NUMERICAL RESULTS

We use the microcanonical ensemble in the calculation. A
relative energy ε ≡ (E − Emin)/(Emax − Emin) is introduced
for convenience, where E is the energy of the system and
Emax and Emin are the maximal and minimal energies of
the many-body eigenenergy spectrum for a specific disorder
realization. ε = 0.5 is set in the following calculation, which
corresponds to infinite temperature for a canonical ensemble
and is most relevant for MBL and the ergodic-MBL transition.
In the calculation, the OTO correlation is averaged over a
number of (∼104) independent disorder realizations. After
averaging, ij -subscripted quantities [e.g., Cij (γ ; t)] depend
only on r = |j − i| and we replace the subscript ij with r

[e.g., Cr (γ ; t)].
A comparison for the OTO commutativity Cr (γ ; t) between

the Anderson localized (V = 0) and the MBL (V > 0 but
small) phases is shown in Fig. 1. In the two cases, Cr (γ ; t)
shares nearly the same values (except for the most beginning
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FIG. 1. The disorder averaged OTO commutativity Cr (γ ; t) for
V = 0 and 0.2 in linear scale (a) and logarithmic scale (b). w = 8,
ε = 0.5, and L = 14. For small t , C increases polynomially as time
and has no apparent difference for V = 0 and V > 0 (except the
r = 1 case). Then, C increases logarithmically as time for V > 0,
while it saturates for V = 0. Finally, C for V > 0 saturates to 1,
corresponding to 0 for the OTO correlator Fr (γ ; t).

stage for r = 1) and increases polynomially for small t [see
Fig. 1(b)]. In this stage, the interaction does not play a role, as
we can see. The action of γi or γj on an eigenstate will generate
a state composed of a number of eigenstates. The subsequent
short-time evolution, being a local relaxation, is determined
by the one-body energies ξi ∼ w in short time t < w−1. The
interaction energies ∼Vr ≡ V exp(−r/ξ ) are small and have
no effect for small t . At t ∼ w−1 the perturbation of γi or γj

is locally fully relaxed.
For t > w−1, there is not any essential change in Cr (γ ; t)

for the noninteracting case [see Fig. 1(b)]. In contrast, for the
MBL case, the effective two-body interaction energy between
sites i and j , ∼Vr , will cause dephasing in the time evolution of
many-body eigenstates as t increases and approaches V −1

r =
V −1 exp(r/ξ ), i.e., the exponentially small effective interaction
will cause a relaxation in an exponentially long time. Thus we
see a logarithmic increase as time in Cr (γ ; t) for t ∼ V −1

r

and then a saturation when t > V −1
r , consistent with Eqs. (8)

and (9). A localization length ξ can be extracted by a data
collapse with Cr (γ ; t) guided by Eq. (8) as we do in Fig. 2.
The model for the OTO commutativity (8) matches excellently
with the numerical data, as shown in Fig. 2, except for a little
deviation at and before the onset of the logarithmic increase.

FIG. 2. Data collapse for the disorder averaged OTO commu-
tativity Cr (γ ; t) for different r , which can be approximated by
1 − exp[−(bVr t)α] from Eq. (8) with Vr ≡ V exp(−r/ξ ). w = 8,
V = 0.2, ε = 0.5, and L = 14. Fit parameters: ξ = 0.406 defines
a localization length, α < 1 decreases as r increases, and b = 3.41.

This deviation may be accounted for by the additional short-
time local relaxation in Cr (γ ; t) rather than in Cr (η; t).

To investigate the effect of the interaction more carefully,
we have calculated Cr (γ ; t) for several different interactions in
the MBL phase. A good data collapse is shown in Fig. 3 when
the horizontal axis t is rescaled as tV a with a = 1 + u(r − 2)
(where u > 0 is a constant) for r � 2, implying that for the
long-range cases the effective two-body interactions Ṽ

(n)
ij ∼

V a exp[−(r − 2)/ξ0] = V exp[−(r − 2)/ξ ] with

ξ−1 = ξ−1
0 − u ln V (10)

and ξ0 independent of V . Therefore, we find that the local-
ization length ξ depends logarithmically on V . As expected,

FIG. 3. Data collapse for the disorder averaged OTO commu-
tativity Cr (γ ; t) for V = 0.01 (open), 0.05 (open with cross), and
0.20 (solid) in the MBL phase. w = 8, ε = 0.5, and L = 14. The
horizontal axis is rescaled, where a = 1 for r = 1 and a = 1 +
0.2(r − 2) for r = 2, . . . ,5.
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ξ increases as V increases. Remarkably, ξ will diverge as V

approaches Vc ≡ exp(u−1ξ−1
0 ), thus an ergodic-MBL phase

transition is predicted. As ξ goes to infinity, the time range
for the logarithmic increase of Cr (γ ; t) will shrink to zero,
which can be readily inferred from Eq. (8). In the ergodic
phase, Cr (γ ; t) increases polynomially fast to 1 in short time
as expected (data not shown).

VI. THE ERGODIC-MBL TRANSITION

A more careful inspection on the OTO correlation allows
us to identify and characterize the ergodic-MBL transition. We
define a thermal fluctuation for Fij (κ; t) as

�Fij (κ; t) =
√∑

n

ρn

∣∣F (n)
ij (κ; t) − Fij (κ; t)

∣∣2
. (11)

�Fij (η; ∞) = 1 because |F (n)
ij (η; t)| = 1 and Fij (η; ∞) = 0.

But �Fij (γ ; t) < 1 because the action of γi on an eigenstate
|n〉 will generate a state composed of a number of [denote
this number as N (n)(γi)] eigenstates [denoted as {|ψ (n)

k (γi)〉}
with k = 1,2, . . . ,N (n)(γi)] and then the time evolution
will result in dephasing and make |F (n)

ij (γ ; t)| < 1. Note

that Û †ηiÛ ≡ γi and Û is a local unitary transformation
in the MBL phase, so N (n)(γi) is finite and |ψ (n)

k (γi)〉 (for
different k) differ from each other only locally within a
localization length [18], resulting in a limited dephasing and
hence a lower but finite thermal fluctuation for Fij (γ ; t). In
contrast, for the ergodic phase Û is a global transformation
so that N (n)(γi) = ∞ and the dephasing will result in a
complete destructive interference and hence F

(n)
ij (γ ; t) = 0 at

a sufficiently long time and �Fij (γ ; ∞) = 0. This analysis is
supported by the numerical result shown in Fig. 4.

For a fixed V , the system is in the ergodic phase for w < wc

and enters the MBL phase for w > wc. As shown in Fig. 4(a),
the fluctuation of Cij (γ ; ∞) approaches zero as the system size
L increases for small w and remains finite for large w. A careful
scaling analysis in Fig. 4(b) yields wc = 3.7 for V = 1, being
well consistent with other results in the literature. Effectively,
this fluctuation can be taken as an order parameter for the
ergodic-MBL transition and the related critical exponents can
be calculated. Furthermore, one may find the mobility edge of
the system with this quantity simply by varying ε [26].

VII. CONCLUSION

In summary, we have used the OTO correla-
tion/commutativity, a key quantity for the description of
quantum chaoticity and quantum holography, to study and
characterize MBL. We find a short-time polynomial increase
and long-time logarithmic increase of the OTO commutativity
in the MBL phase but an absence of a long-time logarithmic
increase in the Anderson localized and ergodic phases. The
saturate value of the OTO commutativity can be reached
finally in the MBL and ergodic phases but not in the Anderson
localized phase. A localization length can be extracted in the

FIG. 4. (a) Disordered averaged thermal fluctuation �Cr (γ ; t)
[∝�Fr (γ ; t)] at t = ∞, serving as an order parameter for the
transition from the ergodic phase (small w) to the MBL phase (large
w), vanishes in the ergodic phase, while it remains finite in the MBL
phase as L → ∞, which is more evidently shown in (b) by the data
collapse. V = 1 and ε = 0.5. �Cr (γ ; ∞) ∼ |w − wc|β for L → ∞
with wc = 3.7 and β = 0.57. ν = 1.2. The r = 2 case is shown, and
�Cr (γ ; ∞) hardly depends on r .

MBL phase, which depends logarithmically on the interaction,
diverges at a critical interaction, and predicts a transition—the
ergodic-MBL transition. Moreover, the thermal fluctuation of
the OTO correlation at infinite time is zero (finite) for the
ergodic (MBL) phase, and thus can be considered as an order
parameter for the ergodic-MBL transition and can be used to
identify and characterize the transition, of which the critical
point and related critical exponents can be calculated.

Note added. Recently, we became aware of a few related
works [27–30].
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