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As the grain size decreases to the nanometer range, the characteristics of the ferroelectric nanoceramic can be
ultimately determined by the competition between two effects: the intrinsic effect that is associated with the local
properties of the grain boundary and the extrinsic effect that arises from the dynamics of domain structure which
is highly influenced by the depolarization field caused by the grain boundary. In this work we investigate such a
competition with a phase-field simulation based on the time-dependent Ginzburg-Landau kinetic equation. The
study is performed on poled/unpoled nanoceramics under high- and low-amplitude bipolar alternating electric
field with selected grain size and loading frequency. Our calculations for poled BaTiO3 at 100 Hz show that,
for the grain size from 170 to 50 nm, its properties are dominated by the extrinsic effect, and from 50 to
10 nm, they are dominated by the intrinsic one. As the grain size decreases, the dielectric and piezoelectric
constants at the remnant state continuously rise in the extrinsic-dominated region and then drop sharply in the
intrinsic-dominated region. Our frequency calculations from 10 to 2500 Hz at the grain size of 100 nm indicate
that the high-frequency behavior is very similar to that of the small grain-size, intrinsic-dominated one, whereas
the low-frequency behavior is closely related to that of the large grain-size, extrinsic-dominated part, with the
demarcation line occurring around 400 Hz. For the unpoled ceramics under small-signal loading, the intrinsic
effect is dominant over the entire range of grain size and frequency.
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I. INTRODUCTION

Ferroelectric nanoceramics share outstanding application
prospects with other types of ferroelectrics in the field of
microelectronics, data storage, microsensors, transducers, and
actuators [1]. In addition to the complex microstructures
inherited from their coarse-grained counterpart, ferroelectric
nanoceramics possess some very unique features: the grain
boundary area to volume ratio is much higher [2]; the non-180◦
domain twinning was reported being less popular [3,4]; the
monodomain structure is relatively easy to form [5]; and the
elastic clamping in the grains is believed to be more severe
[4,6]. As a consequence, there are quite a few challenging
problems in the study of ferroelectric nanoceramics. Specifi-
cally, the grain-size dependence of the dielectric, piezoelectric,
and ferroelectric properties has attracted much attention in the
past decade [7]. A great number of experimental studies [5,8,9]
confirmed that a peak value of the dielectric/piezoelectric
constant is generally formed as the grain size reduces to
the submicron region. Meanwhile some key ferroelectric
properties, which are characterized by the hysteresis behavior
[10], such as the coercive field, remnant polarization, actuation
strain, etc., are found to vary with the grain size, too [11,12].
As the advances in nanoprocessing technology further push the
grain size to a lower limit [13,14], there is an immediate need to
understand the grain-size-dependent properties of ferroelectric
nanoceramics over the range from 200 nm down to several
nanometers.

The cause of grain-size dependence in fine/ultrafine-grained
ferroelectrics is multifold. Investigations were carried out
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toward the understanding of such size-dependent phenomena
and some key aspects—either intrinsic or extrinsic—correlated
to the size dependence have been identified through the studies.
Frey et al. [15] and Buscaglia et al. [16] showed that the distinct
local property of the grain boundaries plays an important role
in the size dependence. Frey and Payne [4] and Huan et al.
[5] examined the variation in the density of the non-180◦
domain wall upon the reduction of grain size and correlated it
to the intensified elastic constraint that could affect the overall
properties [6,17]. More recently, Ghosh et al. [8] investigated
the 90◦ domain wall dynamics in submicron-grained barium
titanate (BaTiO3) ceramics and discovered that the grain-size-
dependent property is mainly attributed to the variation in the
domain wall mobility. They found no significant change in
the residual internal stress along the reduction of the grain
size.

Among the aforementioned aspects, the grain-boundary
influence turns to be most significant once the grain size
is very small, i.e., below 200 nm. Based on earlier studies
[11] the grain-boundary influence can be divided into an
intrinsic part and an extrinsic part. The intrinsic part is directly
attributed to the local property of the grain boundary, which
will take over the overall effective property of the material
once the surface area to grain volume ratio is very high (e.g.,
dilution effect). The extrinsic part affects the physical property
through the domain structural dynamics, which is highly
influenced by the interaction between the grain boundary and
the grain interior, such as the depolarization field near the grain
boundary [18]. Despite the earlier research efforts, however,
an emerging consensus on the specific level of significance
of the role played by the intrinsic/extrinsic grain-boundary
effects remains blurred. This is simply because there is yet
insufficient experimental data for the grain size varying in
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this range. Difficulty in sample preparation, testing, and
in situ microstructure examination is the major obstacle to
conducting a consistent study on this problem. On top of that,
a consistent characterization system must be implemented for
the analysis. It has been demonstrated that the properties of
ferroelectric ceramics are also frequency sensitive [19,20].
The applied field with varied frequencies will significantly
affect the measured effective properties. In addition, different
testing approaches can lead to separate observations, too. For
instance, measurements performed on poled ceramics under
high-strength field (above the coercive field) and on unpoled
ceramics under small-signal perturbation (far lower than the
coercive) can both be found in the literature [8,11,21,22]. For
the investigation on poled ceramics, however, reports regarding
moderate-to-high-frequency properties are seldom seen. One
obvious reason is the difficulty in achieving a strong ac field
with relatively high frequency in ferroelectric ceramics. It is
only until very recently that a few strong-field, high-frequency
tests were reported [23,24]. Some of the unique features
include the continuous rise and sharp drop of coercive field
and remnant polarization at high frequency. Indeed, the need to
understand the strong-field frequency-dependent properties—
especially under moderate-to-high frequencies—has emerged.

In view of the stated reasons, we feel that there is an
urgent need to perform a consistent study of the intrinsic and
extrinsic grain-boundary effects on the grain-size-dependent
properties of ferroelectric nanoceramics. To this end we will
carry out a phase-field simulation. It is hoped that the study
could help identify the level of significance of both effects as
well as the underlying mechanism for the grain-size-dependent
phenomena. We will also evaluate the influence of electric-
field loading frequency and testing mode (under poled or
unpoled conditions) in this work. The considered material is
BaTiO3 nanoceramic, which is assumed to be in tetragonal
state at room temperature. The considered average grain size
ranges from 10 to 170 nm, and the selected electric-field
frequency ranges from 10 up to 2500 Hz. In recent years,
the phase-field approach was successfully employed in the
study of domain patterns and structures in ferroelectric single
crystals [25,26], thin films [27–29], and polycrystals [18,30].
It is a robust and versatile method for studying interfacial
problems of a wide spectrum of physical phenomena, such
as the flexoelectric coupling [31,32] and fracturing [33,34]
in ferroelectric solids. At present, there are several different
versions of the phase-field approach for ferroelectric materials
in the literature [35–41]. Here we will adopt the framework
established in Su and Landis [37] to carry out the analysis. The
microstructure of the material is modeled with an aggregate
of nanoscaled grains of predefined geometry. The electrical
polarization in the grain boundary, which is located at the
exterior layer of each individual grain, is assumed to be
completely depressed, forming a “dead-layer” zone [15,18].
Periodic boundary conditions are employed in the model.
To study the frequency influence, we take the view that the
frequency dependence of ferroelectric behavior is a result of
direct competition between the speed of polarization evolution
and the speed of external loading [30]. The evolution of
polarization is evaluated with varied levels of electric-field
frequency under such framework. Underlying domain patterns
will also be reported.

II. THE PHASE-FIELD APPROACH TO THE
MICROSTRUCTURAL DYNAMICS IN FERROELECTRIC

CRYSTALS

In the work of Su and Landis [37], a phase-field approach
was established to obtain the time-dependent multiphysical
solution for the boundary-value problem of ferroelectric
crystals. The temporal evolution of the electrical polarization
as well as the displacement and electric potential are computed
under the applied external field. In the phase-field approach,
the total free energy of a system, F , is given by the volume
integral of the energy density, ψ , as

F =
∫

V

ψ(Pi,Pi,j , εij ,Di)dV, (1)

where Pi is the electrical polarization vector, Pi,j its gradient
(Pi,j = ∂Pi/∂xj ), εij the strain tensor, and Di the electric
displacement vector. The components of the electrical polar-
ization are taken as the order parameters of the system. The
variational derivative of the free energy with respect to the
polarization is given by

δF

δPi

= ∂ψ

∂Pi

− ∂

∂xj

(
∂ψ

∂Pi,j

)
, (2)

where δF/δPi is the thermodynamic conjugate to ∂Pi/∂t , and
its negative serves as the thermodynamic driving force for the
evolution of the polarization vector, Pi .

As the system evolves toward equilibrium, its total free
energy continues to decrease. The evolution of Pi can be
simply correlated with its driving force in a linear form, as

∂Pi(x,t)

∂t
= −Lij

δF

δPj (x,t)
; or βij

∂Pj

∂t

= ∂

∂xj

(
∂ψ

∂Pi,j

)
− ∂ψ

∂Pi

, (3)

where Lij are the components of the positive-definite kinetic
coefficients, and βij the components of the inverse mobility
tensor. Equion (3) is the time-dependent Ginzburg-Landau
(TDGL) kinetic equation for the evolution of the order
parameter, Pi .

A general form of the Landau-Ginzburg-Devonshire energy
density function [42–44] for BaTiO3 can be written as [37]

ψ = 1

2
aijklPi,jPk,l +

{
1

2
āij (T )PiPj + 1

4
¯̄aijklPiPjPkPl

+ 1

6
¯̄̄aijklmnPiPjPkPlPmPn

+ 1

8
¯̄̄̄aijklmnrsPiPjPkPlPmPnPrPs

}

+
{
bijklεijPkPl + 1

2
cH
ijklεij εkl + fijklmnεij εklPmPn

+gijklmnεijPkPlPmPn

}
+ 1

2κ0
(Di − Pi)(Di − Pi).

(4)

In this function, the first term represents the gradient energy
of the diffuse domain walls, which is also referred to as the
exchange energy. The four terms within the first pair of braces
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consist of the Landau-type energy that i used to create the
nonconvex energy landscape of the free energy with minima
located at the spontaneous polarization states. The four terms
in the second pair are used to fit the spontaneous strain along
with the dielectric, elastic, and piezoelectric properties about
the spontaneous state. The final term represents the energy
stored within the free space occupied by the material, where
κ0 is the permittivity of free space. Among all the coefficients,
only āij which represent the dielectric stiffness are temperature
dependent. The eighth-rank term on the P components was
introduced for better adjustment of the dielectric properties
and energy barrier of the 90◦ switch [45]. The sixth-rank terms
represented by fijklmn and gijklmn have been introduced for
better fit of elastic, piezoelectric, and dielectric properties of
the low-symmetry phase in the spontaneous state. Without
these two terms the elastic properties of the material arise
only from the cH

ijkl tensor, which has the symmetry of the
high-temperature phase.

The quantities of Di and εij are related to Pi through the
constitutive relations

Di = κ0Ei + Pi,
(5)

σij = cijkl(εkl − ε∗
kl),

where the stress-free strains ε∗
ij depend on Pi through the

polynomials

ε∗
ij = Q̄ijklPkPl. (6)

The electrostrictive tensor Q̄ijkl assures that ε∗
ij evolves

from zero to the spontaneous strain ε
sp

ij as the polarization
changes from zero to the spontaneous state, P

sp

i . The elastic
moduli cijkl also change from the form of higher symmetry to a
lower one as the electrical polarization evolves from zero to the
spontaneous state. The quantities of all the considered fields,
i.e., electric field, electric displacement, polarization, stress
and strain, are position dependent. The physical quantities
Di , εij , and Pi are coupled to each other by the constitutive
relations, and they are solved simultaneously, not sequentially.
In our calculations, we used the quasistatic form of the
Maxwell equation, the mechanical equilibrium equation, and
the TDGL equation together to construct a weak form of the
virtual work formula, and numerically solve them by the finite
element method. A more comprehensive description of this
phase-field approach and the value of the parameters in Eq. (4)
can be found in the referred work [18,37,46].

The specific form of the kinetic coefficient tensor Lij in
our calculations is taken to be isotropic as Lδij , where δij

is the Kronecker delta. Although a direct measurement of
L is seldom seen, its value can be indirectly determined
through comparison of the overall responses obtained by
this phase-field computation and available experimental ob-
servations. An appropriate value of L (4 × 10−6 C2/m2 N s)
can be determined such that the numerically obtained overall
frequency-dependent characteristics of the nanoceramic are
comparable to some existing observations. In particular, the
validity of this determined value of L will be confirmed
through comparison with the experimental data of Hossain
et al. [24], wherein their observed trends of coercive field and
remnant polarization and the critical frequency are shown to

be in remarkable agreement with our numerical result [to be
demonstrated in Figs. 8(a) and 8(b)].

III. THE TWO-DIMENSIONAL COMPUTATIONAL
MODEL OF BaTiO3 NANOCERAMICS WITH THE

DEAD-LAYER GRAIN BOUNDARY

It is computationally prohibitive to conduct a phase-field
simulation in the real space range of a testing sample over
numerous distributed grains, especially while considering the
complex microstructure morphology near the grain boundary.
In this study we devised a two-dimensional (2D) computa-
tional polycrystal model with the “dead-layer” assumption
for the grain-grain interface to represent the structure of
a nanocrystalline polycrystal, as shown in Fig. 1. A unit
cell of the polycrystal with periodic geometry is employed.
Figure 1(a) shows a portion of the overall look of the arranged
grains, with one representative unit marked by the dotted-line
frame. A similar scheme of idealized representation of the
grain structure has also been adopted by Guo et al. [47] and Ma
et al. [48]. The grain structure is determined with respect to a

FIG. 1. The schematic of the polycrystalline model.
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scanned topography image of a dense nanocrystalline BaTiO3

ceramic, and the grains in the model are made in comparable
size to each other. Figure 1(b) illustrates the unit cell with the
grain-grain interface featured by the dead layer. The dead layer
is assumed to be amorphous without spontaneous polarization.
Thus the material in the dead layer is effectively paraelectric
with lower dielectric permittivity than the grain interior. Such
dead-layer model is different from the core-shell model which
has been previously established by Su et al. [30]. In the
core-shell model, the material near the grain boundary stays in
a weak ferroelectric state with both lower dielectric constant
and lower spontaneous polarization compared to the grain
interior. The reason to select the dead-layer model relies on
the fact that there exist quite a number of microstructural
observations [13,15,16,49,50] of ferroelectric nanoceramics
showing supportive evidence to such assumption.

All the computations are under the assumption of a
plane problem. The out-of-plane components of the polar-
ization, electric field, and electric displacement are zero,
i.e., P3 = 0, E3 = 0, and D3 = 0. Generalized plane strain
is assumed for the mechanical fields, i.e., ε13 = ε23 = 0,
ε33 = −0.3259ε0, and σ13 = σ23 = 0, where constant ε0 is
the spontaneous strain along the c axis of BaTiO3 crystal.
Periodicity boundary conditions of the electric potential and
the polarization vector are imposed to the boundaries of the
representative unit as shown in Fig. 1(b). On the lower and
upper horizontal boundaries, the periodicity conditions are
given by ϕ(x,0) = ϕ(x,h) + Eh and Pi(x,0) = Pi(x,h) (i =
1,2) for the electric potential and polarization, respectively.
The constant h is the height of the representative unit cell. On
the left and right vertical boundaries, the periodicity conditions
are given by ϕ(0,y) = ϕ(w,y) and Pi(0,y) = Pi(w,y) (i =
1,2), where the constant w is the width of the representative
unit cell. The equilibrium of surface charge and surface
gradient flux at the boundaries were ensured via the method of
multipoint constraints during the finite element procedure.

The representative unit consists of 16 typical grains with
local crystal lattice orientations varying gradually from 0◦ to
90◦. These angles are randomly assigned to these 16 grains.
The computation procedure starts with an initial condition
wherein the polarization is randomly aligned along the local
crystal lattice of each grain. A sufficient time period is
taken to allow for full relaxation and then followed by
increments of uniaxially applied electric field. In order to
represent the microstructure of the nanoceramic, the choice
of the polycrystal grain assembly must possess sufficient
isotropy. With grain orientations varying uniformly from 0◦
to 90◦ and with the angles randomly assigned to these 16
grains, our choice of grain assembly possesses sufficient
in-plane isotropy based on the lamination theory. The further
increase of grain number or orientation angle would not
deliver fundamentally different physical characteristics. In our
calculations we have set the dielectric permittivity of the dead
layer to be 35% of the grain interior. Such properties were
set through adjustment of its Landau coefficients in Eq. (4).
We took the thickness of the dead layer to be 0.8 nm [15],
regardless of the grain size. During the numerical analysis,
the transition conditions between the grains through the dead
layer are controlled through the compatibility of the strain field,
electric displacement, and polarization. These transitions are

fulfilled continuously, from one field point to another, from
one grain to the dead layer, and then to the neighboring grain.

The frequency dependence of the BaTiO3 nanoceramics
was studied by applying a uniaxial electric field to the
developed model in Fig. 1(b). A time-dependent sinusoidal
electric field can be achieved through the setting of electric
potentials in the boundary conditions, with

E = Emax sin(2πf t), (7)

where Emax is the amplitude of the applied field and f

the loading frequency. During the study of the frequency
dependence under a high-amplitude field, the value of Emax

is set to be sufficiently high to ensure the saturation of
polarization switching. Here the value of Emax is set to E0,
the field needed to completely switch a uniform domain of
BaTiO3 crystallite. In the case of small-signal computation,
the value of Emax is set as 1%E0. The mechanical boundary
condition is set to be traction-free. In all cases the local stress
field stemming from the piezoelectric effect is fully considered
in our calculations. All the obtained results are meant to be read
according to the current boundary-condition configuration as
described in this section.

IV. RESULTS AND DISCUSSION

Based on the aforementioned polycrystalline model, we
have carried out the phase-field analysis with an induced
bipolar ac electric field as described in Eq. (7). For each com-
putation, a constant frequency was set within the range from 10
to 2500 Hz. The average grain size of the polycrystal model
was selected from 170 down to 10 nm. For the simulation
on both the poled and unpoled ceramics, it started with zero
applied electric field, such that the electrical polarization in the
material is in a completely relaxed state. After that, the electric
field in a sinusoidal form was applied. For the simulation on
poled ceramics, a stable hysteresis loop (electric displacement
vs electric field) and a butterfly loop (the axial strain vs electric
field) can be obtained after several cycles of loading/unloading.
Based on the numerical results, we now report the intrinsic
and extrinsic effects of the grain boundary on the ferroelectric
properties of BaTiO3 nanoceramics.

A. Transition from the extrinsic-dominated to the
intrinsic-dominated effect as grain size decreases

1. High-amplitude loading on poled nanoceramics

Under the high-amplitude bipolar ac field at a constant
frequency of 100 Hz, the hysteresis loop and the butterfly loop
of the poled nanoceramics were obtained with the average
grain size being 10, 20, 40, 50, 80, 100, 130, and 170 nm,
respectively. Figures 2(a) and 2(b) show the obtained results
with remarkable grain-size dependence. The hysteresis loop,
as illustrated in Fig. 2(a), becomes more titled as the average
grain size becomes smaller. Meanwhile, both the remnant
polarization and the coercive field also decrease. Specifically,
the hysteresis loop becomes severely tilted and the behavior
approaches a superparaelectric characteristic once the grain
size is below 20 nm. Such characteristic highly agrees with
experimental observations of BaTiO3-based nanoceramics
[2,15,16,51,52]. The nonlinear electromechanical coupling
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FIG. 2. The computed grain-size dependence of (a) the hysteresis
loop and (b) the butterfly loop of the poled nanoceramics with varied
grain size.

behavior, as shown in Fig. 2(b), also evolves from a typical
butterfly shape to a flattened one as the grain size reduces.
In particular, the “tails” of the butterfly loop disappear when
the grain size is smaller than 20 nm, confirming the freeze
of polarization switching in the material. The actuation strain
(the maximum difference in the axial strain under the applied
electric field) becomes nearly negligible for the case of very
small grain size.

Based on these results, the values of the remnant polariza-
tion, coercive field, and axial actuation strain are plotted in
Fig. 3 as the average grain size decreases from 170 down to
10 nm. The reference electric displacement, electric field, and
strain are set at D0 = 0.26 C/m2, E0 = 218 kV/cm, and ε0 =
0.82%; these correspond to the known values of spontaneous
polarization, the field needed to completely switch a uniform
domain, and axial spontaneous strain in BaTiO3 crystal [37].
As shown in the plot, all three quantities decrease monotoni-
cally as the grain size reduces. During this process, the reduc-
tion of the quantities is relatively slow from 170 to 50 nm, and
becomes very drastic from 50 down to 10 nm, which we mark
in blue. Such monotonic decrease of remnant polarization and
coercive field agrees with the observations by Mudinepalli
et al. [21] on poled BaTiO3-based nanoceramics. The transi-
tion in Fig. 3 is seen to occur around the grain size of 50 nm.

FIG. 3. The grain-size dependence of remnant polarization, co-
ercive field, and actuation strain of the poled nanoceramics.

The differential dielectric coefficient at the remnant state
(κr ) and the coercive state (κc), as well as the differential
piezoelectric coefficient at the remnant state (d33), are found
to be varying with the average grain size, too. In Fig. 4, the
values of κr/κ

0, κc/κ
0, and d33/d

0 are plotted as functions
of the average grain size. The reference permittivity κ0 and
the reference piezoelectric constant d0 are set being equal
to D0/E0 and ε0/E0, respectively. It is noticed that, as the
grain size decreases, the values of κr and d33 both increase
from 170 down to 50 nm, and then quickly drop from
50 down to 10 nm. The peaks form at 50 nm. There is
also a change of curvature in the κc curve at 50 nm. We
also note that the increase part of the remnant dielectric

FIG. 4. The grain-size dependence of the differential dielectric
constant at the remnant state and coercive state, and the remnant
piezoelectric constant for poled nanoceramics.
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constant is also consistent with the observation of Mudinepalli
et al. [21] which reported the change from 200 nm down to
60 nm.

The strong-field properties reported in Figs. 3 and 4 clearly
point to the separation of the small grain-size region marked
in blue from the large grain-size region marked in white. They
are separated at 50 nm. In the blue region, the local property of
the grain boundary is dominant, so this region is dominated by
the intrinsic effect. As a consequence the effective dielectric
permittivity, piezoelectric coefficient, remnant polarization,
and coercive field all decrease as the grain size decreases.
In the white region, the intrinsic effect is negligible, so it is
dominated by the extrinsic effect.

In general the influence of grain boundary becomes in-
significant for the grain size above several microns, but its
effect is significant when the grain size is in the nanoscale
[2]. Apparently the grain-size dependence is a result of the
combined contributions from both types of effect, and each
plays a role of different level of significance at varied grain
sizes. With the reduction of grain size from 170 to 10 nm,
both types of effect tend to lower the remnant polarization and
coercive field. But their effects on the differential dielectric
and piezoelectric coefficients are competitive, leading to the
rise and fall of these two quantities.

2. Small-signal simulation on unpoled nanoceramics

In addition to the high-amplitude hysteresis computa-
tion, we also conducted small-signal simulation on unpoled
nanoceramics to examine the grain-size effect on the remnant
dielectric coefficient. The motivation of this investigation
lies on the fact that, in many measurements, the dielectric
constant is obtained by applying a low-amplitude ac field to
unpoled ferroelectrics, so it is enlightening to see the grain-size
effect on the dielectric coefficient computed under small-signal
perturbation. A low-amplitude (1%E0) alternating bipolar
electric field was then applied in the simulation to examine
the remnant dielectric coefficient, κ , with the frequency being
100 Hz. The value of the normalized dielectric constant is
plotted in Fig. 5 as a function of the average grain size, which
reduces from 170 to 10 nm. It is noted that the value of the
dielectric coefficient quickly drops as the grain size decreases.
This result is consistent in trend with most experimental
observations on unpoled nanoceramics [6,15,53].

3. The underlying domain patterns for poled nanoceramics

The low-permittivity paraelectric nature of the dead layer
can result in a significant depolarization field near the grain-
boundary interface. To compensate the strong depolarization
field, the spatial distribution of the electrical polarization
vectors has to disperse near the grain-boundary interface and
also satisfies the continuity condition throughout the entire
polycrystal. As a consequence the polarization microstructure
tends to change from the single-domain to the toroidal structure
as grain size decreases [18,54]. Such change also translates
into the different ferroelectric characteristics for both types of
grain size. To demonstrate the effect of depolarization field,
we computed the distribution of the electrical polarization
with the average grain size being 15 and 110 nm. The
corresponding polarization distributions at the remnant state

FIG. 5. The grain-size dependence of the remnant dielectric
constant for unpoled nanoceramics.

are plotted in Figs. 6(a) and 6(b), respectively. It is seen that the
distribution of polarization exhibits single-domain structures
at 110 nm, whereas it is of the vortex nature at 15 nm when the
depolarization field is particularly strong. As single-domain
structures possess lower polarization switching mobility than
a multidomain or a vortex structure, the coercive field with
larger grain size is higher over the entire range of grain size.
The higher domain mobility that comes with the decrease of
grain size also implies a larger change of slope in the D vs E

plot at the remnant state, and thus a higher dielectric constant.
Thus, in the large grain size part (above 50 nm), decreasing the
grain size will result in an increase of dielectric constant. For
the same reason, it also leads to an increase of the piezoelectric
constant. But below this critical grain size, the low permittivity
of the dead layer eventually brings down these constants and
leads to the drastic drop of their magnitudes.

B. Transition from the extrinsic-dominated to the
intrinsic-dominated effect as loading frequency increases

To examine the transition between the extrinsic and intrinsic
effects as loading frequency changes, a bipolar alternating
electric field was applied to the nanoceramic based on Eq. (7)
with selected frequency from 10 to 2500 Hz. A common
average grain size of 100 nm is set for each computation. The
amplitude of the field is E0 for the high-amplitude computation
and 1%E0 for the small-signal case. The obtained hysteresis
and butterfly loops for poled nanoceramics are respectively
plotted in Figs. 7(a) and 7(b). It is evident that the response
exhibits conventional hysteresis and butterfly shapes while the
frequency is relatively low. Once the frequency is increased
to about 400 Hz, the hysteresis and butterfly loops start to
change, eventually to a kidney shape and an ellipse shape,
respectively, at 1000 Hz. Such kind of frequency-induced
change was also reported by Rao et al. [55] on magnetic
hysteresis and by Su et al. [30] on ferroelectric hysteresis, but
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FIG. 6. The remnant-state polarization distribution of poled
BaTiO3 nanoceramic with the grain size of (a) 15 nm and
(b) 110 nm.

here it is investigated through the polycrystalline phase-field
model with the dead-layer grain boundary. In particular, as
the frequency goes beyond 1000 Hz, both the hysteresis
and butterfly loops show the trend of very unconventional
characteristics.

The frequency dependence of the remnant polarization and
coercive field is plotted in Fig. 8(a). The remnant polarization
exhibits a rise followed by an immediate reduction as the
frequency is increased from 10 to 2500 Hz. The coercive
field exhibits an even sharper increase until about 400 Hz,
then followed by a drop, all the way to 2500 Hz. Such an
increase-and-then-decrease trend was very recently observed
experimentally by Hossain et al. [24] in nanocrystalline

FIG. 7. The computed frequency dependence of (a) the hysteresis
loop and (b) the butterfly loop.

BaMn3Ti4O14.25 (BMT) polycrystals. They observed the same
kind of evolution of the remnant polarization and the coercive
field as the frequency of the applied field increases from 5 to
5000 Hz. In their study, the value of the remnant polarization
and the coercive field of the nanocrystalline material was
observed to increase with the frequency in low-frequency
range (5– 500Hz) and then decrease in the high-frequency
range (500 – 5000Hz), as demonstrated in Fig. 8(b). Both
Fig. 8(a) and Fig. 8(b) exhibit the transition of the properties
around the same 500 Hz. This was the basis of our choice of the
kinetic coefficient, L = 4 × 10−6 C2/m2 N s. In addition, the
frequency dependence of the differential dielectric coefficient
at the remnant and the coercive states as well as the differential
piezoelectric coefficient at the remnant state is plotted in Fig. 9.
It is found that these three quantities all decrease with the
applied frequency.

The underlying mechanism of the observed frequency-
dependent characteristics lies on the direct competition be-
tween the speed of the applied electric field and the speed of the
polarization switching process. The evolution of the electrical
polarization in the phase-field model is time dependent. Upon
the change of the applied field, each electric dipole needs
a certain time to respond and another time to finalize the
switching [20]. Such time-dependent process is controlled
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FIG. 8. The frequency dependence of the coercive field and
remnant polarization for poled nanoceramics

by the Ginzburg-Landau kinetic equation [Eq. (3)] in the
phase-field model. In the low-frequency range (10 –400Hz)
the microstructural evolution follows closely with the variation
of the applied electric field. It has sufficient time to evolve
toward the equilibrium state. As such, a complete 180◦ polar
reorientation can be realized during a complete cycling. Within
this frequency range, as the speed of field variation increases,
the back switching of the electric dipoles starts to fall behind.
As a result, the value of the remnant polarization at zero field
remains mostly at the fully polarized state and thus is higher
at a higher frequency. For the same reason, plus the increased
resistance to polar reorientation with frequency, the coercive
field also increases with the frequency. Once the frequency of
the applied field is raised to a higher level (400–2500Hz), the
development of polar reorientation severely falls behind and
the electric dipole cannot fully rotate to the 180◦ direction. The
outcome of the D vs E loop exhibits a trend of an ellipse. At
this stage, higher applied frequency will lead to a less polarized
state. As a result, the hysteresis behavior is approaching a
linear dielectric behavior. Both the remnant polarization and
the coercive field start to drop with the frequency. Meanwhile, a

FIG. 9. The frequency dependence of the differential dielectric
constant at the remnant state and coercive state, and the remnant
piezoelectric constant for poled nanoceramics.

higher loading speed will leave less time for the electric dipole
to respond, thus leading to a lower changing rate in the electric
displacement with respect to the applied field at the remnant
state. As a result, the value of the differential dielectric and
piezoelectric coefficients decrease with the frequency over the
entire frequency range, as shown in Fig. 9.

In both Figs. 8 and 9, we have purposefully marked the
high-frequency range above 400 Hz in blue [500 Hz for
BMT in Fig. 8(b)], and the low-frequency range below it in
white. In the blue regions, the remnant polarization, coercive
field, and the three constants, d33, κr , and κc, all continue to
decrease with increasing frequency. Such a decreasing trend
for all five quantities is the trademark of the blue regions in
Figs. 3 and 4 that has been identified as the intrinsic-dominated

FIG. 10. The frequency dependence of the remnant dielectric
constant of the unpoled BaTiO3 nanoceramic.
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FIG. 11. The remnant-state polarization distribution of poled BaTiO3 nanoceramic with the low frequency of 10 Hz with 100 nm grain size.

effects. So the effect of increasing the loading frequency at
the high-frequency end is similar to the decrease of grain
size at the low grain size end. In the white regions, we see
that, with increasing frequency, both Pr and Ec increase, and
both d33 and κr decrease with it. Such a trend is similar
to the changes in the white regions of Figs. 3 and 4 with
increasing grain size. These parallel trends allow us to draw
the conclusion that the high-frequency behaviors above the
critical 400 Hz exhibit the intrinsic-dominated characteristic,
with increasing the loading frequency having the effect of
decreasing the grain size. The low-frequency behavior below
it exhibits the extrinsic-dominated mode, with increasing
frequency having the same effect as increasing the grain
size.

With respect to the low-amplitude simulation for unpoled
nanoceramic, as the strength of the applied field is far less
than the coercive field, large polar reorientation is not likely to
occur during such process. However, the differential remnant
dielectric coefficient, as shown in Fig. 10, is still highly
dependent on the field frequency and decreases with it.
In comparison with Fig. 5, we observe that increasing the

loading frequency has a similar effect as decreasing the grain
size.

The reported hysteresis and butterfly loops in Figs. 7(a)
and 7(b) are closely related to the underlying domain patterns.
At the low frequency of 10 Hz, the variations of polarization
vectors at four selected states are shown in Figs. 11(a)–11(d),
and those at the high frequency of 1000 Hz are depicted in
Figs. 12(a)–12(d). The former one is representative of all the
low-frequency characteristics up to 400 Hz, with full polariza-
tion switch from 0 to 180◦. The latter one represents those high-
frequency characteristics whose polarization switch tends to
stop at 90◦ because the speed of polar reorientation cannot
catch up with the speed of external loading. One could see
that the polarization vectors in Fig. 11(a) are mostly pointing
up, whereas those in Fig. 11(c) are mostly pointing down, with
Fig. 11(d) bringing them back to the original state. These result
in the full hysteresis and butterfly loops in Figs. 7(a) and 7(b).
But those in Figs. 12(a) and 12(b) do not exhibit the complete
180◦ switch. As a consequence the D vs E hysteresis and the
ε vs E butterfly loops turn into the unusual elliptic and kidney
shapes, respectively.
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FIG. 12. The remnant-state polarization distribution of poled BaTiO3 nanoceramic with the high frequency of 1000 Hz with 100 nm grain
size.

V. CONCLUSIONS

In this phase-field study, we numerically investigated the
intrinsic and extrinsic effects of grain boundary on the physical
properties of BaTiO3 nanoceramics along the reduction of
the grain size from 170 down to 10 nm. It was found that
the low-permittivity paraelectric grain boundary possesses
profound influence on the properties of the material. Under
high fields as the grain size decreases, the two types of
grain-boundary influence (the intrinsic and extrinsic effects)
play the roles of different level of significance. The extrinsic
grain-boundary effect is found to dominate the process at
the high grain size range above 50 nm, and the intrinsic
grain-boundary effect quickly takes over once the grain size
is reduced below it. As a result, the values of the remnant
dielectric and piezoelectric coefficients first increase, then
rapidly decrease during the reduction of the grain size, forming
a peak near the grain size of 50 nm. For the same reason, the
calculated remnant polarization, coercive field, and actuation
strain decrease slowly while above 50 nm and then drop
quickly as the grain size is further reduced. For the small-
signal computation, however, the extrinsic grain-boundary

influence is negligible since the polarization switching does
not occur under such weak-field perturbation. The intrinsic
grain-boundary influence dominates the entire process and
leads to a monotonic decrease in the value of the dielectric
coefficient.

With respect to the frequency dependence under high-
amplitude field, the numerical results show that the conven-
tional hysteresis and butterfly loops evolve to a kidney-shaped
loop and an ellipse-shaped loop, respectively, as the applied
frequency increases from 10 to 2500 Hz. Such an evolution
is a result of the direct competition between the speed of
the applied electric field and the speed of the polarization
switching process. The entire process can be split into two
parts: the low-frequency part wherein a complete 180◦ polar
reorientation can be realized, and the high-frequency part
wherein the material cannot be fully poled and a complete 180◦
reversal is absent. The obtained rise-then-drop trend of the
remnant polarization and the coercive field is attributed to such
microstructural mechanism, and this trend was confirmed by
experimental observation on nanocrystalline BaMn3Ti4O14.25

polycrystal. This further substantiated our choice of the L value
in the kinetic equation. Finally, a higher loading speed will
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leave less time for the electric dipole to respond, thus leading to
a lower rate of change in the electric displacement with respect
to the applied field at the remnant state. It results in the decrease
in both the differential piezoelectric and dielectric coefficients
for poled nanoceramic as well as the decrease in the dielectric
constant observed in the low-amplitude simulation.

The transition from the extrinsic-dominated effect at large
grain sizes to the intrinsic-dominated mode at small grain
sizes is found to be very similar to the transition from
the low-frequency to the high-frequency loading. In the
extrinsic range, increasing the loading frequency has the same
effect as increasing the grain size. In the intrinsic range,
increasing the frequency has the same effect as decreasing the

grain size. The transition from the extrinsic to the intrinsic-
dominated mode was found to occur at 50 nm and 400 Hz,
respectively.
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