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Anomalous Hall effects beyond Berry magnetic fields in a Weyl metal phase
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Applying time-varying magnetic fields to Weyl metals, a pair of Weyl points becomes oscillating. This
oscillating monopole and antimonopole pair gives rise to ac Berry magnetic fields, responsible for the emergence
of Berry electric fields, which have not been discussed before at least in the context of Weyl metals. Introducing
this information into Boltzmann transport theory, we find anomalous Hall effects beyond Berry magnetic fields
as a fingerprint of Berry electric fields.
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I. INTRODUCTION

Recently, Weyl metals [1–3] are of interest not only in
condensed-matter physics but also in particle physics, involved
with their topologically identified nontrivial properties [4].
Their anomalous metallic properties originate from a pair of
Weyl bands, separated in momentum space, where each Weyl
band describes emergent relativistic Weyl electrons. The band
structure itself may be regarded to be a three-dimensional
version of a graphene. Interestingly, the pair of Weyl points
can be identified with a magnetic monopole and antimonopole
pair in momentum space. Accordingly, the Berry curvature,
or more accurately the Berry magnetic field, is assigned by
this monopole pair, which turns out to play an essential role in
anomalous transport phenomena of Weyl metals [5–27].

The present paper starts from an idea that the relative
position of the monopole pair can be controlled by external
magnetic fields [4]. Applying time-varying magnetic fields to
Weyl metals, we investigate the role of an oscillating monopole
pair in the transport. This oscillating monopole pair is expected
to cause ac Berry magnetic fields [28]. If such Berry magnetic
fields are governed by Berry-Maxwell equations, the Maxwell
equation in momentum space, Berry electric fields would be
generated. In this paper we investigate the role of the emergent
Berry electric field in the transport of Weyl metals beyond the
Berry magnetic field.

Based on Boltzmann transport theory with a topologically
modified Drude model, which takes into account the novel
information of the Berry electric field, we find that the
oscillating monopole pair gives rise to anomalous Hall cur-
rents. These anomalous Hall currents should be distinguished
from “conventional” anomalous Hall currents described by
Berry magnetic fields. We classify these Hall currents in
all possible situations. We reveal that these anomalous Hall
effects are involved with an extended chiral anomaly given
by a field theory, where a time-varying chiral gauge field
appears to describe an “oscillating” relative-distance vector
of the monopole pair in the anomaly equation.

II. CHIRAL GAUGE FIELD AS THE GRADIENT OF AN
AXION ANGLE OF THE TOPOLOGICAL-IN-ORIGIN

E · B TERM

The chiral anomaly [29] is an essential ingredient in anoma-
lous transport phenomena of Weyl metals [9]. It is encoded into

an inhomogeneous topological-in-origin θ term [30], given by

Z =
∫

Dψαa exp

[
−

∫ β

0
dτ

∫
d3r

×
{
ψ†

αa

(
(∂τ − μ)Iαβ ⊗ Iab − ivD(∂ r − i A) · σ αβ ⊗ τ z

ab

+ mIαβ ⊗ τ x
ab

)
ψβb + θ (r)

2π

α

2π
E · B

}]
. (1)

Here, ψαa is a four-component Dirac spinor with spin α and
orbital a. σ αβ and τ ab are two-by-two Pauli matrices, acting
on spin and orbital spaces, respectively. vD is a velocity, m

is a mass parameter, and μ is a chemical potential. A is an
electromagnetic vector potential, regarded to be externally
applied. E = − 1

c
∂τ A and B = ∇ × A are externally applied

electric field and magnetic field, respectively. θ (r) is an axion
angle, and α is a fine structure constant.

One can represent this effective theory in terms of four-by-
four Dirac gamma matrices, given by

γ 0 = Iαβ ⊗ τ x
ab, γ k = −iσ k

αβ ⊗ τ
y

ab. (2)

Then, the partition function reads

Z =
∫

Dψ exp

[
−

∫ β

0
dτ

∫
d3r

{
ψ̄(iγ 0(∂τ − μ)

− ivDγ · (∂ r − i A) + m)ψ + θ (r)

2π

α

2π
E · B

}]
(3)

with ψ̄ = ψ†γ 0.
In order to determine the angle parameter, we recall the

chiral anomaly equation [29]

∂μ(ψ̄γ μγ 5ψ) = α

4π2
E · B. (4)

This equation states that the classically conserved chiral
current is not preserved any more in the quantum level,
described by applied electromagnetic fields. Replacing the
topological-in-origin E · B term with the chiral current based
on this anomaly equation and performing the integration by
parts, we rewrite the effective action as follows:

Seff =
∫ β

0
dτ

∫
d3r{ψ̄(iγ 0(∂τ − μ)

− ivDγ · (∂ r − i A − iγ 5c) + m)ψ}. (5)
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Here, c is a chiral gauge field, given by

c = ∇rθ (r), (6)

where γ 5 = iγ 0γ 1γ 2γ 3 = Iαβ ⊗ τ z
ab is the chiral matrix.

It turns out that the band structure of this effective action
describes that of a Weyl metal phase, where the distance
between a pair of Weyl points is given by 2c in the case of
m = 0 [4].

III. MAXWELL EQUATIONS IN MOMENTUM SPACE

In order to describe the dynamics of electromagnetic fields
in Weyl metals, we start from the following effective action
for electromagnetic fields [30]:

SEM =
∫

dtd3r
{

1

8π
(E2 − B2) + θ

2π

α

2π
E · B

− 1

c
j · A − ρ�

}
. (7)

Here, both electric and magnetic fields are given by

E = −∇� − 1

c
∂t A, B = ∇ × A, (8)

respectively, where A and � are electromagnetic vector and
scalar potentials. The topological-in-origin E · B term breaks
time-reversal symmetry generally speaking, encoding chiral
anomaly. α is a fine structure constant, as introduced before.
j and ρ represent electrical current and charge density,
respectively. Dynamics of these matter fields are described
by Eq. (5).

Applying the variational principle to this effective action
with respect to electromagnetic vector and scalar potentials,
we obtain modified Maxwell equations to describe axion
electrodynamics [30]:

∇ · E = 4πρ + α

π
(∇θ · B),

∇ × B − 1

c
∂t E = 4π

c
j − α

π

(
(∇θ × E) + 1

c
(∂tθ )B

)
,

∇ × E + 1

c
∂t B = 0, ∇ · B = 0. (9)

If we redefine both electric and magnetic fields as E =
E − α

π
θ B and B = B + α

π
θ E, respectively, these equations

are reduced to conventional Maxwell equations to describe
Maxwell electrodynamics. In other words, the topological-in-
origin E · B term gives rise to mixing between electric and
magnetic fields.

In order to understand the axion electrodynamics, we should
find how both the electrical current and charge density are
represented in terms of electric and magnetic fields, referred
to as constituent equations. An essential point is that the
conventional Ohm’s law does not work in Weyl metals [9–27].
Novel constituent equations should be uncovered. Actually,
they can be found, based on Boltzmann transport theory for
Weyl metals:

∂tfχ + ṙχ · ∇rfχ + ṗχ · ∇ pfχ = −fχ − feq

τeff
. (10)

Here, fχ = fχ ( p; r,t) is a distribution function of chiral
fermions near a chiral Fermi surface, given by the chirality
χ = ±, where p is a momentum, the Fourier transformed
coordinate of a relative distance between a particle-hole pair,
and r and t are center-of-mass coordinates of the particle-hole
pair [31]. feq = feq( p) is an equilibrium distribution function.
τeff is an effective relaxation time in terms of disorder scattering
between intra-Fermi surfaces of the same chirality and that
between inter-Fermi surfaces of the opposite chirality.

The effective velocity of ṙχ and the effective force of ṗχ

are described by

ṙχ = vχ + χ ċ × Bχ + ṗχ × Bχ (11)

and

ṗχ = eE + e

c
ṙχ × B, (12)

respectively. If the second and third terms are neglected in
Eq. (11), these two equations are referred to as the Drude
model. Here, vχ is the group velocity. The equation for ṗχ

describes the Lorentz force. On the other hand, the third term
in Eq. (11) gives rise to the contribution of anomalous velocity,
where Bχ is Berry magnetic field [32,33]. The second term
is our main discovery, describing the Berry electric field. This
contribution will be derived in the next section.

Resorting to this topologically modified Boltzmann trans-
port theory, one can find constituent equations for charge
density and electric current as follows:

ρ =
∑

χ

ρχ ≡ e
∑

χ

∫
d3 p

(2π )3
Gχfχ,

(13)

j =
∑
χ

jχ ≡ e
∑

χ

∫
d3 p

(2π )3
Gχ ṙχfχ ,

where the phase-space measure is modified as

Gχ = 1 + e

c
B · Bχ . (14)

We recall
∑

χ χ = 0.
It is not surprising to observe that both Berry magnetic and

Berry electric fields in the topologically modified Drude model
satisfy Maxwell equations in momentum space, described by

∇ p · B = 2π
∑

χ

χδ( p + χ c),

∇ p × E − 1

C ∂tB = −2π

C
∑

χ

ċδ( p + χ c), (15)

∇ p × B + 1

C ∂tE = 0, ∇ p · E = 0.

Here, both Berry magnetic and electric fields are given by the
sum of all chiral charges:

B =
∑

χ

Bχ , E =
∑

χ

Eχ . (16)

The vector field c in momentum space corresponds to the
distance between a pair of Weyl points, given by Eq. (6).
The chirality is identified with a magnetic monopole in
momentum space. The right-hand side in the second equation
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of the Berry-Maxwell equation Eq. (15) describes a monopole
current in momentum space. The third and fourth equations
may be regarded to be vector-field identities, referred to as
the Bianchi identity [34]. Here, we do not find quantities
that correspond to the electrical current and charge density
of Maxwell equations. An interesting quantity C is proposed
to play the role of the speed of light in momentum space,
i.e., the propagating speed of Berry electromagnetic waves
in momentum space. Derivation of the speed of the Berry
electromagnetic wave is in progress [35].

In order to figure out Berry-Maxwell equations, we start
from a Lorentz invariant solution for the Berry magnetic field,
given by [36]

Bχ = χ

2

p + χ c
| p + χ c|3γ 2[1 − β2 sin2 �χ ]3/2

. (17)

where

cos �χ = −χ
ċ
|ċ| · p + χ c

| p + χ c| , (18)

γ = 1√
1 − β2

, β = |ċ|
C . (19)

This expression is reduced to

Bχ ≈ Bχ + δBχ , (20)

taking into account β � 1. We obtain Bχ = χ

2
p+χ c

| p+χ c|3 in the

O(β0) order and δBχ = β2( 3
2 sin2 �χ − 1)Bχ in the O(β2)

order. There do not appear to be any Berry magnetic fields in
the O(β1) order.

We introduce the O(β1) order as follows:

Eχ ≈ − 1

C χ ċ × Bχ , (21)

identified with Berry electric field. Then, the curl of the Berry
electric field Eq. (21) in the second equation of Eq. (15) is
given by

∇ p × Eχ = −χ
ċ
C∇ p · Bχ + χ

ċ
C · ∇ pBχ (22)

in the O(β1) order. The time derivative of the Berry magnetic
field Eq. (17) is

1

C ∂tBχ = χ
ċ
C · ∇ pBχ + O(β3). (23)

As a result, we confirm that the second equation of Eq. (15)
holds up to the O(β1) order.

In order to check out the third equation of Eq. (15), we
consider c̈ = 0 for simplicity and ċ = |ċ|ẑ without loss of
generality. The curl of the Berry magnetic field Eq. (17) is
given by

∇ p × Bχ = ∇ p × δBχ

= −3

2
β2χ

pz + χcz

| p + χ c|5 [(px + χcx)ŷ

− (py + χcy)x̂]. (24)

The time derivative of the Berry electric field Eq. (21) is

1

C ∂tEχ = 3

2
β2χ

pz + χcz

| p + χ c|5 [(px + χcx)ŷ − (py + χcy)x̂].

(25)

As a result, we find that the third equation of the Berry-
Maxwell equation Eq. (15) holds up to the O(β2) order.

IV. DERIVATION OF THE TOPOLOGICALLY MODIFIED
DRUDE MODEL

In order to prove the topologically modified Drude model,
in particular, the emergence of the Berry electric field, we start
from an effective Hamiltonian for a Weyl metal phase, given
by

Hχ = χσ ·
(

p + χ c + e

c
A
)

+ e�. (26)

χ = ± is a chiral charge. σ is a two-by-two Pauli matrix. p
is a momentum. c is a chiral gauge field, given by Eq. (6). A
and � are electromagnetic vector and scalar potentials with
an electric charge e and the speed of light c. This effective
Hamiltonian gives rise to the transition amplitude:

〈f |e−iHχ (tf −ti )|i〉 =
∫ rf

r i

Dr
∫

D p exp

[
i

∫ tf

ti

dt

{
p · ṙ

−χσ ·
(

p + χ c + e

c
A
)

− e�

}]
,

(27)

where h̄ = 1.
In order to describe low-energy dynamics of electrons near

a Fermi surface, we do not need to know the information of
high-energy electrons deep inside the Fermi surface, generally
speaking. However, we are not allowed to neglect high-
energy dynamics of electrons in a Weyl metal phase when
we deal with a pair of chiral Fermi surfaces. In particular,
the topological information involved with the pair of Weyl
points should be taken into account, integrating over such
high-energy electrons. In order to understand the low-energy
dynamics near a pair of chiral Fermi surfaces, we should
integrate over high-energy electron fields near the pair of Weyl
points.

The integration of high-energy electrons can be performed,
rewriting the effective Weyl Hamiltonian in terms of a
diagonalized basis:

U
†
p̃σ · p̃U p̃ = | p̃|σ 3, (28)

where p̃ ≡ p + χ c. U p̃ is a two-by-two unitary matrix,
expressed by U p̃ = (u p̃ v p̃), where two-component column
vectors are determined by

(σ · p̃)u p̃ = | p̃|u p̃, (σ · p̃)v p̃ = −| p̃|v p̃, (29)

respectively.
In order to describe the low-energy dynamics of electrons

near a pair of chiral Fermi surfaces, we neglect off-diagonal
terms and take the 11 component for χ = + and 22 component
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for χ = −. In other words, we consider [13,15]{
U

†
p̃′ exp

[
− iσ ·

(
p̃ + e

c
A
)

�t

]
U p̃

}
11

≈ u
†
p̃′u p̃ exp

[
− i

| p̃| + | p̃′|
2

�t − i
e

c

ˆ̃p + ˆ̃p′

2
· A�t

− e

c

� p̃ × ˆ̃p
2| p̃| · A�t

]

≈ u
†
p̃′u p̃ exp

[
− i

2

(∣∣∣∣ p̃ + e

c
A

∣∣∣∣ +
∣∣∣∣ p̃′ + e

c
A

∣∣∣∣
)

�t

− i
e

c

B · ˆ̃p
2| p̃| �t

]

≈ u
†
p̃′u p̃ exp

[
− i

(
1 + e

c
B · B p

+
)
| p̃|�t

]
(30)

in the path-integral representation, where ˆ̃p ≡ p̃/| p̃| and
B p

+ = ˆ̃p
2| p̃| . Here, we used the Gordon identity, given by

u
†
p′

χ
σ iu pχ

= u
†
p′

χ

[
pi

χ + p′
χ

i

| pχ | + | p′
χ | − iεijk�p

j
χ

| pχ | + | p′
χ |σ

k

]
u pχ

,

(31)

up to the linear order in �pχ . We also assume the semiclassical
regime that the magnetic field is small enough for us to neglect
the Landau-level splitting. The Berry gauge field appears from

u
†
p̃+� p̃u p̃ ≈ exp(−iA+

p · � p̃)

= exp[−iA+
p · (� p + �c)], (32)

represented by

A+
p = iu

†
p̃∇ pu p̃. (33)

Similarly, we find{
U

†
p̃′ exp

[
iσ ·

(
p̃ + e

c
A
)

�t

]
U p̃

}
22

≈ v
†
p̃′v p̃ exp

[
− i

(
1 + e

c
B · B p

−
)
| p̃|�t

]
(34)

with B p
− = − ˆ̃p

2| p̃| . The Berry gauge field at χ = − results
from

v
†
p̃+� p̃v p̃ = exp[−iA−

p · (� p − �c)], (35)

given by

A−
p = iv

†
p̃∇ pv p̃ = iu

†
− p̃∇ pu− p̃. (36)

An effective action for the low-energy dynamics of chiral
fermions in a Weyl metal phase reads

Seff
χ =

∫ tf

ti

dt

{(
p + e

c
A
)

· ṙ − e� − Aχ
p · ( ṗ + χ ċ)

−
(

1 + e

c
B · Bχ

p

)
| p + χ c|

}
, (37)

where

Aχ
p = iu

†
χ p̃∇ puχ p̃ (38)

is the Berry gauge field, originating from the high-energy
dynamics near the Weyl point. It is trivial to check out
Bχ

p = ∇ p × Aχ
p. Here, a novel ingredient beyond the previous

study is a coupling term −χAχ
p · ċ.

It is straightforward to read the low-energy effective
Hamiltonian for a pair of chiral Fermi surfaces from the
effective action Eq. (37) as follows:

Hχ = −e

c
A · ṙ + e� + Aχ

p · ( ṗ + χ ċ)

+
(

1 + e

c
B · Bχ

p

)
| p + χ c|. (39)

Hamiltonian equations of motion ṙχ = ∂Hχ

∂ pχ
and ṗχ =

− ∂Hχ

∂ rχ
give rise to the topologically modified Drude model

Eqs. (11) and (12) with an emergent Berry electric field,
where

r → rχ , p → pχ (40)

have been considered. The group velocity in Eq. (11) is given
by

vχ = ∇ p

{(
1 + e

c
B · Bχ

p

)
| p + χ c|

}
. (41)

This completes the derivation of the topologically modified
Drude model.

V. CURRENT CONSERVATION LAW AND CHIRAL
ANOMALY

Solutions of the topological Drude model are given by

Gχ ṗχ = eE + e

c
(vχ + χ ċ × Bχ ) × B + e2

c
(E · B)Bχ ,

Gχ ṙχ = vχ + χ ċ × Bχ + eE × Bχ + e

c
(vχ · Bχ )B.

(42)

It is interesting to observe the symmetric structure between
these two solutions, where the correspondence is

eE ←→ vχ + χ ċ × Bχ ,
e

c
B ←→ Bχ . (43)

Inserting these solutions into the Boltzmann equation Eq. (10),
it is straightforward to find the current conservation equation

∂tρχ + ∇r · jχ = e

∫
d3 p

(2π )3
(∂tGχ )fχ + χ

4π2

e3

c
(E · B)

+ e2

c
χ

∫
d3 p

(2π )3
[∇ p · {(ċ × Bχ ) × B}fχ ],

(44)

where both electric charge density and current density are
defined in Eq. (13).

The first term in the right-hand side is

e

∫
d3p

(2π )3
(∂tGχ )fχ = e2

c
χ

∫
d3p

(2π )3
fχ ċ · ∇ p(B · Bχ ).

(45)
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The third term in the right-hand side is

e2

c
χ

∫
d3 p

(2π )3
[∇ p · {(ċ × Bχ ) × B}fχ ]

= 1

4π2

e2

c
B · ċ − e2

c
χ

∫
d3 p

(2π )3
fχ ċ · ∇ p(B · Bχ ). (46)

As a result, we obtain a modified current conservation law,
given by

∂tρχ + ∇r · jχ = χ

4π2

e3

c
E · B + 1

4π2

e2

c
B · ċ. (47)

Actually, this current conservation law has been known for
a long time in the context of quantum field theory. An effective
action for a Weyl metal phase is given by

SWM =
∫

d4xψ̄iγμ[∂μ − iAμ − iγ5cμ(t)]ψ. (48)

Here, ψ is a four-component Dirac spinor. γ μ is a four-by-
four Dirac gamma matrix to satisfy the Clifford algebra with
μ = 0,1,2,3 and xμ = (t,x,y,z). γ5 is a chiral matrix.

Based on Fuzikawa’s path-integral method [29], one can
find modified anomaly equations in the presence of the chiral
gauge field:

∂μ〈ψ̄γ μγ5ψ〉 = 1

16π2
εμναβ(FμνFαβ + fμνfαβ)

= 1

2π2
E · B (49)

and

∂μ〈ψ̄γ μψ〉 = − 1

16π2
εμναβ(Fμνfαβ + fμνFαβ)

= 1

2π2
ċ · B, (50)

where Fμν = ∂μAν − ∂νAμ and fμν = ∂μcν − ∂νcμ are field
strength tensors for electromagnetic and chiral gauge fields, re-
spectively [37,38]. Here, 〈ψ̄γ μγ5ψ〉 = j+ − j− is the chiral
current and 〈ψ̄γ μψ〉 = j+ + j− is the electromagnetic U(1)
current, where jχ is given by Eq. (13). We recall that the chiral
gauge field is (0,c(t)), resulting in the last equation Eq. (50).
Since the electromagnetic U(1) current is not conserved, one
may suspect the validity of this result. However, this originates
from the definition of the electromagnetic current. An essential
point is that the right-hand side in this anomaly equation is
given by a total derivative term. Redefining the electromagnetic
U(1) current from 〈ψ̄γ μψ〉 to Jμ = 〈ψ̄γ μψ〉 − 1

2π2 c · Bδμτ ,
we obtain the current conservation law ∂μJμ = 0. This
conserved current satisfies the Maxwell equation, real to be
observed in experiments [39].

VI. ROLE OF THE EMERGENT BERRY ELECTRIC FIELD
IN TRANSPORT

A. Anomalous Hall currents driven by the Berry electric field

An essential question is on the role of the Berry electric
field in anomalous transport of a Weyl metal phase. Resorting
to the framework of Boltzmann transport theory, we resolve
this issue. Solving the Boltzmann equation, we obtain the

distribution function up to the linear order in the electric field
as follows:

fχ (t, p) ≈ f eq
χ ( p) − ∂f

eq
χ (ε)

∂ε

×
( ∫ ∞

−∞
dωeiωt τeff

1 − iωτeff
ṗχ (ω)

)
· vχ (t) (51)

where

f eq
χ ( p) = 1

eβ(Gχ ( p)| p+χ c|−μ) + 1
, (52)

∂f
eq
χ ( p)

∂ε
≡ ∂

∂ε

(
1

eβ(ε−μ) + 1

)∣∣∣∣
ε=Gχ ( p)| p+χ c|

. (53)

Here, f
eq
χ ( p) is an equilibrium distribution function, and its

derivative with respect to energy is ∂f
eq
χ ( p)
∂ε

. Then, the electric
current reads

jχ = e

∫
d3 p

(2π )3
Gχ ṙχf eq

χ ( p) + e

∫
d3 p

(2π )3

(
− ∂f

eq
χ (ε)

∂ε

)

×Gχ ṙχ

(∫ ∞

−∞
dωeiωt τeff

1 − iωτeff
ṗχ (ω)

)
· vχ (t).

(54)

In this study we focus on the adiabatic regime, defined by

ωτeff � 1. (55)

Then, the distribution function can be simplified as

fχ (t, p) ≈ f eq
χ ( p) + τeff[ ṗχ (t) · vχ (t)]

(
− ∂f

eq
χ (ε)

∂ε

)
.

(56)

Accordingly, the electric current is given by

jχ = e

∫
d3 p

(2π )3
Gχ ṙχf eq

χ ( p)

+ eτeff

∫
d3 p

(2π )3

(
− ∂fχeq( p)

∂ε

)
Gχ ṙχ ṗχ (t) · vχ (t).

(57)

As a result, we obtain an electrical current in a Weyl metal
phase:

j = jAHE + jCME + jLMC + � jBE. (58)

Here,

jAHE = e2
∫

d3 p
(2π )3

∑
χ=±

(E × Bχ )f eq
χ ( p) (59)

describes an anomalous Hall effect, resulting from the Berry
magnetic field [23–25,32,33]:

jCME = e2

c

∫
d3 p

(2π )3

∑
χ=±

(vχ · Bχ )Bf eq
χ ( p) (60)

gives rise to the chiral magnetic effect [10–16], which can
occur when the chiral chemical potential exists. These two
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types of currents are dissipationless in nature, where even high-
energy electrons deep inside a pair of chiral Fermi surfaces are
involved:

jLMC = eτeff

∫
d3 p

(2π )3

(
− ∂f

eq
χ ( p)

∂ε

)
G−1

χ vχ

·
{
eE + e

c
vχ × B + e2

c
(E · B)Bχ

}{
vχ

+ eE × Bχ + e

c
(vχ · Bχ )B

}
(61)

results in the longitudinal negative magnetoresistivity, which
occurs when the electric current is driven along the direction
of the pair of Weyl points. Although this electric current is a
Fermi-surface contribution, the chiral anomaly plays a central
role in this transport coefficient, regarded to be a fingerprint of
a Weyl metal phase [5–9,17–22].

Other current contributions turn out to result from the Berry
electric field. They are classified in the following way:

� jBE = � j (1)
BE + � j (2)

BE + � j (3)
BE + � j (4)

BE, (62)

where

� j (1)
BE = e

∑
χ

∫
d3 p

(2π )3
χ ċ × Bχf eq

χ ( p) (63)

is a dissipationless current, given by the total electrons inside
both chiral Fermi surfaces, and

� j (2)
BE = eτeff

∑
χ

∫
d3 p

(2π )3

(
− ∂f

eq
χ ( p)

∂ε

)
G−1

χ vχ

·
{
eE + e

c
vχ × B + e2

c
(E · B)Bχ

}
χ ċ × Bχ , (64)

� j (3)
BE = eτeff

∑
χ

∫
d3 p

(2π )3

(
− ∂f

eq
χ ( p)

∂ε

)

×G−1
χ

{
vχ + eE × Bχ + e

c
(vχ · Bχ )B

}

× e

c
χ

(
(ċ × Bχ ) × B

)
· vχ (65)

and

� j (4)
BE = eτeff

∑
χ

∫
d3 p

(2π )3

(
− ∂f

eq
χ ( p)

∂ε

)

×G−1
χ χ ċ × Bχ

e

c
(χ (ċ × Bχ ) × B) · vχ (66)

are dissipative currents with the effective scattering time, given
by chiral fermions near the pair of chiral Fermi surfaces. We
emphasize that all these currents are proportional to ċ.

We observe symmetry properties under the variable change
of p → − p as follows:

f eq
χ (− p) = f

eq
−χ ( p), (67)

∂f
eq
χ (− p)

∂ε
= ∂f

eq
−χ ( p)

∂ε
, (68)

Bχ (− p) = B−χ ( p), (69)

Gχ (− p) = G−χ ( p), (70)

vχ (− p) = −v−χ ( p). (71)

Applying these symmetry properties to electric currents driven
by the Berry electric field, we find that many terms vanish
identically. First, we obtain � j (1)

BE = 0 and � j (4)
BE = 0. Both

the second and third contributions are also simplified as
follows:

� j (2)
BE = eτeff

∑
χ

∫
d3 p

(2π )3

(
− ∂f

eq
χ ( p)

∂ε

)
G−1

χ vχ

·
{
eE + e2

c
(E · B)Bχ

}
χ ċ × Bχ (72)

and

� j (3)
BE = eτeff

∑
χ

∫
d3 p

(2π )3

(
− ∂f

eq
χ ( p)

∂ε

)

×G−1
χ vχ ·

{
(B · ċ)Bχ − (B · Bχ )ċ

}
e2

c
χ E × Bχ ,

(73)

respectively. In the following discussion we will consider these
transport coefficients up to the first order in β, described by
Bχ and Eχ introduced before.

In order to figure out the direction of electrical currents
in terms of applied electric fields, magnetic fields, and the
direction of ċ, we separate each vector quantity such as E,
Bχ , ċ, etc., into two components as follows: Parallel and
perpendicular to B, respectively,

B = B||, c = c||(∵ c||B),

E = E|| + E⊥, ċ = ċ|| + ċ⊥,

Bχ = χ

2

p|| + χ c||
Rχ (θ )3

+ χ

2

p⊥
Rχ (θ )3

≡ Bχ ||(p,θ ) + Bχ⊥(p,θ,φ), (74)

where

Rχ (θ ) ≡ | p + χ c| =
√

(p cos θ + χ c||)2 + p2 sin2 θ (75)

with p = (p sin θ cos φ,p sin θ sin φ,p cos θ ). θ and φ are
inclination and azimuth, respectively, in the polar coordinate,
where B̂|| is identified with ẑ. Accordingly, we have

f eq
χ ( p) = f eq

χ (p,θ ),

∂f
eq
χ ( p)

∂ε
= ∂f

eq
χ (p,θ )

∂ε
, (76)

Gχ ( p) = Gχ (p,θ ) = 1 + e

c
B||Bχ ||(p,θ ).

We introduce a modified group velocity as follows:

ṽχ ( p) ≡ G−1
χ ( p)vχ ( p)

= G−1
χ | p + χ c|e

c
(B · ∇ p)Bχ + p + χ c

| p + χ c| . (77)

We also decompose this modified group velocity into

ṽχ ≡ ṽχ ||(p,θ ) + ṽχ⊥(p,θ,φ), (78)
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where

ṽχ ||(p,θ ) = G−1
χ (p,θ )χ

e

c

| p⊥|2 − 2| p|| + χ c|||2
2R4

χ (p,θ )
B||

+ p|| + χ c||
Rχ (p,θ )

,

ṽχ⊥(p,θ ) =
(

− 3

2
G−1

χ (p,θ )χ |B|||e
c

( p|| + χ c||) · B||
R4

χ (p,θ )|B|||

+ 1

Rχ (p,θ )

)
p⊥. (79)

As a result, both contributions for electrical currents are given
by

� j (2)
BE = eτeff

∑
χ

∫
d3p

(2π )3

(
− ∂f

eq
χ ( p)

∂ε

)
e2

c
χ

×
{

(Bχ ||E||)(ṽχ ||Bχ || + ṽχ⊥Bχ⊥)(ċ⊥ × B||)

+ c

e
(ṽχ ||E||)(ċ⊥ × Bχ ||) + c

e
(ṽχ⊥E⊥)(ċ|| × Bχ⊥)

+ e

c
(ṽχ⊥E⊥)(ċ⊥ × Bχ⊥)

}
(80)

and

� j (3)
BE = eτeff

∑
χ

∫
d3p

(2π )3

(
− ∂f

eq
χ ( p)

∂ε

)
e2

c
χ

×{(ṽχ⊥Bχ⊥)(Bχ ||ċ||)(E⊥ × B||)

− (ṽχ⊥ċ⊥)(B||Bχ ||)(E|| × Bχ⊥)

− (ṽχ⊥ċ⊥)(B||Bχ ||)(E⊥ × Bχ⊥)}, (81)

where we have utilized the following properties:

Bχ⊥(p,θ,φ + π ) = −Bχ⊥(p,θ,φ),

Bχ ||(p,π − θ ) = B−χ ||(p,θ ),

Bχ⊥(p,π − θ,φ) = −B−χ⊥(p,θ,φ),

ṽχ⊥(p,θ,φ + π ) = −ṽχ⊥(p,θ,φ),

ṽχ ||(p,π − θ,φ) = −ṽ−χ ||(p,θ,φ),

ṽχ⊥(p,π − θ,φ) = ṽ−χ⊥(p,θ,φ),

f eq
χ (p,π − θ ) = f

eq
−χ (p,θ ),

∂f
eq
χ (p,π − θ )

∂ε
= ∂f

eq
−χ (p,θ )

∂ε
,

Rχ (p,π − θ ) = R−χ (p,θ ),

Gχ (π − θ ) = G−χ (θ ). (82)

It is more convenient to reexpress these currents in the
following way:

� j (2)
BE + � j (3)

BE ≡ jB,E + jE, (83)

considering the B|| dependence. Here, jB,E and jE are

jB,E = eτeff

∑
χ

∫
d3p

(2π )3

(
− ∂f

eq
χ ( p)

∂ε

)
e2

c
χ

×{(Bχ ||E||)(ṽχ ||Bχ || + ṽχ⊥Bχ⊥)(ċ⊥ × B||)

+ (ṽχ⊥Bχ⊥)(Bχ ||ċ||)(E⊥ × B||)

− (ṽχ⊥ċ⊥)(B||Bχ ||)(E|| × Bχ⊥)

− (ṽχ⊥ċ⊥)(B||Bχ ||)(E⊥ × Bχ⊥)} (84)

and

jE = eτeff

∑
χ

∫
d3p

(2π )3

(
− ∂f

eq
χ ( p)

∂ε

)
χe

×
{

(ṽχ ||E||)(ċ⊥ × Bχ ||) + (ṽχ⊥E⊥)(ċ|| × Bχ⊥)

+ (ṽχ⊥E⊥)(ċ⊥ × Bχ⊥)

}
, (85)

respectively.
Based on these equations, we determine the direction of an

anomalous current associated with the Berry electric field. For
simplicity, we assume

B(t) = B0 + δB(t) (86)

with |B0| � |δB(t)|. Note that ċ ∝ δ Ḃ(t) since c ∝ B.
First, we consider the case of B0 ‖ E ‖ ċ. Then, we obtain

jB,E = jE = 0. (87)

Second, we consider the case of B0 ‖ E ⊥ ċ. Then, we find

jB,E = eτeff

∑
χ

∫
d3p

(2π )3

(
− ∂f

eq
χ ( p)

∂ε

)
e2

c
χ

×{(Bχ ||E||)(ṽχ ||Bχ || + ṽχ⊥Bχ⊥)(ċ⊥ × B0)

− (ṽχ⊥ċ⊥)(B0Bχ ||)(E|| × Bχ⊥)}, (88)

parallel with (ˆ̇c × Ê), and

jE = eτeff

∑
χ

∫
d3p

(2π )3

(
− ∂fχeq( p)

∂ε

)
χe

× (ṽχ ||E||)(ċ⊥ × Bχ ||), (89)

parallel with (ˆ̇c × Ê). We emphasize that these anomalous
Hall currents are in the order of O[{δB(t)}0], which should
be distinguished from conventional anomalous Hall currents
in the order of O[{δB(t)}1]. These are novel anomalous Hall
currents beyond the Berry magnetic field.

Third, we consider the case of B0 ⊥ E||ċ. Then, we have

jB,E = jE = 0. (90)

Of course, there exists a conventional anomalous Hall current,
described by Eq. (59), since the applied electric field E is
orthogonal to the applied magnetic field B0.

Fourth, we consider the case of B0 ⊥ E with B0||ċ. Then,
we obtain

jB,E = eτeff

∑
χ

∫
d3p

(2π )3

(
− ∂f

eq
χ ( p)

∂ε

)
e2

c
χ

× (ṽχ⊥Bχ⊥)(Bχ ||ċ||)(E⊥ × B0), (91)
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TABLE I. Anomalous Hall currents jE [Eq. (85)] and jB,E

[Eq. (84)] driven by the Berry electric field.

Direction of jE Direction of jB,E

B0||E B0||ċ
B0 ⊥ ċ ċ × E ċ × E

B0 ⊥ E ċ||E
ċ||B0 ċ × E ċ × E

ċ ⊥ E & ċ ⊥ B0 B0 B0

parallel with (Ê × ˆ̇c), and

jE = eτeff

∑
χ

∫
d3p

(2π )3

(
− ∂f

eq
χ ( p)

∂ε

)
χe

× (ṽχ⊥E⊥)(ċ|| × Bχ⊥), (92)

parallel with −(Ê × ˆ̇c). Here, we also point out the existence
of the conventional anomalous Hall current, which does not
depend on ċ||. These anomalous Hall currents are driven by
the emergent Berry electric field. Finally, we consider the case
of B0 ⊥ E, E ⊥ ċ, and B0 ⊥ ċ. Then, we obtain

jB,E = eτeff

∑
χ

∫
d3p

(2π )3

(
− ∂f

eq
χ ( p)

∂ε

)
e2

c
χ

×{−(ṽχ⊥ċ⊥)(B0Bχ ||)(E⊥ × Bχ⊥)}, (93)

parallel with (−B̂0), and

jE = eτeff

∑
χ

∫
d3p

(2π )3

(
− ∂f

eq
χ ( p)

∂ε

)
χe

× (ṽχ⊥E⊥)(ċ⊥ × Bχ⊥)

}
, (94)

parallel with (−B̂0). We recall that the conventional anomalous
Hall current is given along the direction of B0 × E. On the
other hand, these anomalous Hall currents are driven in parallel
with the applied magnetic field B0, quite surprisingly.

All these situations are summarized in Table I.
Here, we considered the overall magnitude of these anoma-

lous Hall currents in the “adiabatic regime” where the time
it takes the distribution to relax is small compared to the
period of the magnetic field driving the chiral Fermi surfaces.
Amplitude of the current is proportional to the relaxation time
and to the rate of change of the distance between the two
chiral Fermi surfaces that goes as the frequency of the drive
in the steady state. In this respect one may be concerned that

the overall size of these effects is suppressed in the adiabatic
regime by the ratio of the relaxation time to the period of
the drive. However, there exists another aspect to enhance
the present anomalous Hall effect. As shown explicitly in
mathematical formulas, the Berry magnetic field contributes
to this anomalous Hall effect. An essential point is that
the Berry magnetic field becomes enhanced near the band
touching point. Combining this Berry-flux enhancement with
the contribution of finite density of states, there can exist
parameter regimes to overcome the suppression effect.

B. Explicit expressions for j E and j B,E near zero temperature

We perform momentum integrals explicitly in Eq. (85)

( jE) and Eq. (84) ( jB,E). We have ( − ∂f
eq
χ ( p)
∂ε

) ≈ δ[εχ ( p) − μ]

near zero temperature in these equations, implying that these
anomalous Hall currents are Fermi-surface contributions. In
order to perform momentum integrals in Eqs. (84) and (85),
we introduce

Gχ ( p) = 1 + e

c
B0 · χ

2

p
| p|3 = 1 + χA

cos θ

p2
, (95)

ṽχ || =
(

G−1
χ ( p)χA

sin2 θ − 2 cos2 θ

p2
+ cos θ

)
ẑ, (96)

ṽχ⊥ =
(

−3χG−1
χ ( p)A

cos θ

p2
+1

)
sin θ

(
cos φx̂+sin φŷ

)
,

(97)

Bχ || = χ

2

cos θ

p2
ẑ, Bχ⊥ = χ

2
sin θ

cos φx̂ + sin φŷ

p2
, (98)

εχ ( p) = Gχ ( p)p, (99)

δ(εχ ( p) − μ) = p

A
δ

(
cos θ − χ

p(μ − p)

A

)
(100)

with p + χ c → p, where p = p sin θ cos φx̂ +
p sin θ sin φŷ + p cos θ ẑ is taken into account. Here,
we choose B0 = B0ẑ. A = eB0

2c
is an externally applied

magnetic field.
Performing tedious but straightforward calculations, we

obtain

� j total = jE + jB,E = e2τeff

(2π )2

[
(ċ⊥ × E||)F1

(
μ2

A

)

+ (ċ|| × E⊥)F2

(
μ2

A

)
+ (ċ⊥ × E⊥)F3

(
μ2

A

)]
,

(101)

where

F1(x) ≡ 1 − x

8
+ x3

1680
− 1

840

√
1 − 4

x
(x − 4)(x2 + 6x − 180)�(x − 4) + 1

1680

√
1 + 4

x
(x + 4)(x2 − 6x − 180), (102)

F2(x) ≡ −1

2
+ x

4
− x3

210
+ 1

210

√
1 − 4

x
(x − 4)(2x2 + 12x − 45)�(x − 4) − 1

420

√
1 + 4

x
(x + 4)(2x2 − 12x − 45), (103)

F3(x) ≡ 1

2
− x

8
+ x3

240
− 1

120

√
1 − 4

x
x(x − 4)(x + 6)�(x − 4) + 1

240

√
1 + 4

x
x(x + 4)(x − 6), (104)
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FIG. 1. Direction of the anomalous Hall currents driven by the
Berry electric field for the case of B0||E ⊥ ċ.

and �(x) = {0 x < 0
1 x > 0. An interesting point is that the argument

x in the special functions is given by the ratio between the
external magnetic field A and the chemical potential μ. We
remember to set h̄ = 1 and vDirac = 1 in the above derivation.
Recovering these constants in the magnetic field A, we find
μ2

A
= 2μ2

eB0v
2
Dirach̄

in the SI unit. For example, if we consider

Bi1−xSbx at B0 = 1 T, vDirac = 105 m/s, and μ = 0.02 eV,

we obtain μ2

A
= ( 0.02eV

2.57×10−2eV )
2

≈ 0.6.

These special functions are simplified as follows: In the
x � 1 limit we obtain

F1(x) ≈ −1 + 5

8x
+ 6

5x2
+ 7

12x3
, (105)

F2(x) ≈ 2 − 1

2x
− 3

5x2
− 1

6x3
, (106)

F3(x) ≈ − 1

8x
− 3

5x2
− 5

12x3
, (107)

and in the x � 1 limit we have

F1(x) ≈ − 6

7
√

x
+ 1, (108)

F2(x) ≈ 6

7
√

x
− 1

2
, (109)

F3(x) ≈ 1

2
−

√
x

5
. (110)

Considering the case of B0||E ⊥ ċ, we find

� j total ≡ j1 = e2τeff

(2π )2
(ċ⊥ × E||)F1

(
μ2

A

)
. (111)

FIG. 2. x vs F1(x).

FIG. 3. Direction of the anomalous Hall current driven by the
Berry electric field for the case of B0 ⊥ E and B0||ċ.

See Fig. 1 for the direction of these anomalous Hall currents.
The behavior of F1(x) is shown in Fig. 2. In the μ2 � A limit
we obtain

j1 ≈ e2τeff

(2π )2
(ċ⊥ × E||)

[
− 1 + 5

8

A

μ2
+ 6

5

(
A

μ2

)2]
, (112)

and in the μ2 � A limit we have

j1 ≈ e2τeff

(2π )2
(ċ⊥ × E||)

[
− 6

7

(
A

μ2

)1/2

+ 1

]
. (113)

One may be concerned with the divergence of these anomalous
Hall currents in the μ2 � A limit (Fig. 2). However, this does
not happen. We note that our Boltzmann transport theory does
not apply to the μ → 0 limit.

Considering B0 ⊥ E and B0||ċ, we find

� j total ≡ j2 = e2τeff

(2π )2
(ċ|| × E⊥)F2

(
μ2

A

)
. (114)

See Fig. 3 for the direction of this anomalous Hall current. The
behavior of F2(x) is shown in Fig. 4. In the μ2 � A limit, we
obtain

j2 ≈ e2τeff

(2π )2
(ċ|| × E⊥)

[
2 − 1

2

A

μ2
− 3

5

(
A

μ2

)2]
, (115)

and in the μ2 � A limit we have

j2 ≈ e2τeff

(2π )2
(ċ|| × E⊥)

[
6

7

(
A

μ2

)1/2

− 1

2

]
. (116)

Considering B0 ⊥ E, E ⊥ ċ, and B0 ⊥ ċ, we find

� j total ≡ j3 = e2τeff

(2π )2
(ċ⊥ × E⊥)F3

(
μ2

A

)
. (117)

FIG. 4. x vs F2(x).
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FIG. 5. Direction of the anomalous Hall current driven by the
Berry electric field for the case of B0 ⊥ E, E ⊥ ċ, and B0 ⊥ ċ.

See Fig. 5 for the direction of this anomalous Hall current. The
behavior of F3(x) is shown in Fig. 6. In the μ2 � A limit, we
obtain

j3 ≈ e2τeff

(2π )2
(ċ⊥ × E⊥)

[
− 1

8

A

μ2
− 3

5

(
A

μ2

)2]
, (118)

and in the μ2 � A limit we have

j3 ≈ e2τeff

(2π )2
(ċ⊥ × E⊥)

[
1

2
− 1

5

(
μ2

A

)1/2]
. (119)

If we consider the case of |ċ⊥ × E||| = |ċ|| × E⊥| = |ċ⊥ ×
E⊥|, we see relative magnitudes of F1(μ2

A
), F2(μ2

A
), and F3(μ2

A
),

shown in Fig. 7. As a result, we expect

| j2| > | j1| > | j3|. (120)

VII. CONCLUSION

The Berry electric field is a novel ingredient in a Weyl
metal phase. When the distance between a pair of Weyl points

FIG. 6. x vs F3(x).

FIG. 7. x vs |F1(x)| (red), |F2(x)| (blue), and |F3(x)| (black).

changes as a function of time, the Berry electric field arises.
In this situation both the Berry magnetic field and Berry
electric field are governed by the Berry-Maxwell equation
[Eq. (15)]. This Berry electric field should be introduced
into the topologically modified Drude model Eq. (11). As a
result, we revealed the existence of anomalous Hall effects
proportional to the Berry electric field, which should be
distinguished from conventional anomalous Hall currents
given by the Berry magnetic field. Current directions of such
anomalous Hall effects are classified systematically in all
possible cases.
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