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A robust molecular-dynamics simulation method for calculating dislocation core energies has been developed.
This method has unique advantages: It does not require artificial boundary conditions, is applicable for mixed
dislocations, and can yield converged results regardless of the atomistic system size. Utilizing a high-fidelity bond
order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of
the angle β between the dislocation line and the Burgers vector. These calculations show that, for the face-centered-
cubic aluminium explored, the dislocation core energy follows the same functional dependence on β as the
dislocation elastic energy: Ec = Asin2β + Bcos2β, and this dependence is independent of temperature between
100 and 300 K. By further analyzing the energetics of an extended dislocation core, we elucidate the relationship
between the core energy and the core radius of a perfect versus an extended dislocation. With our methodology,
the dislocation core energy can accurately be accounted for in models of dislocation-mediated plasticity.
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I. INTRODUCTION

With low hydrogen solubility and a high strength-to-weight
ratio, aluminium alloys are attractive for both hydrogen energy
and transportation applications, respectively, that require
high resistance to hydrogen embrittlement and light weight.
Dislocation dynamics (DD) simulations [1] provide a tool for
studying the mechanical properties of metals and alloys. One
key input for DD simulations that is often overlooked is the
core energy of dislocation lines and its variation with the char-
acter angle β formed between the line and the Burgers vector.
The core energy contributes to the dislocation line tension
and alters the behavior of dislocation lines as they bow out to
bypass obstacles and react to form junctions. Unfortunately,
dislocation cores cannot be described by linear elasticity
theory, and hence their study requires a computational tool
with atomistic resolution. Despite the pioneering work by Cai
et al. [2,3] and Li et al. [4], much remains poorly understood
concerning the nature of dislocation cores and their energies.

Dislocation core energies can be calculated using quantum-
mechanical or empirical atomistic simulations under con-
tinuum [5–8], free [9], or periodic [1–4,10–15] boundary
conditions. Continuum boundary conditions are challenging
to use when dislocation configurations are unknown a priori,
such as in face-centered-cubic (fcc) metals (e.g., aluminium)
where perfect dislocations dissociate into partial dislocations
separated by a stacking fault. Periodic boundary condi-
tions usually are implemented using a so-called quadruple
dislocation configuration [10] where positive and negative
dislocations (lying in z) alternate in sign in both the x and the y

directions so that a negative dislocation can recover the crystal
periodicity destroyed by the preceding positive dislocation in
both x and y directions. Although the quadruple configuration
requires an orthorhombic computational cell to include four
dislocations, it can be replicated with a nonorthorhombic cell
containing only two dislocations [10,16]. A potential difficulty
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with this method is that, because positive and negative
dislocations are on the same slip plane (x direction), they can
glide and annihilate. This configuration cannot be used unless a
barrier, such as the Peierls stress is sufficiently strong to pin the
dislocations in place. A more general dislocation configuration
that enables an offset of dislocations on different slip planes
may solve this problem [2–4,16]. Dislocation core energies
of aluminium have also been calculated using the generalized
stacking fault energy obtained from density functional theory
[17]. Because core relaxation is not treated directly in this
model, however, it is unclear how this method compares with
the direct atomistic simulation approach.

Recently, we have used molecular dynamics (MD) to
calculate core energies of edge dislocations under periodic
boundary conditions [18]. In our approach, we eliminate the
alternation of dislocations in x, which prevents annihilation
by glide. The purpose of the present paper is threefold:
(a) Further extend this method to mixed dislocations and
generate a complete set of aluminium dislocation core energies
over the full range of possible character angles; (b) establish a
generic analytical equation for the dislocation core energy in
aluminium; and (c) further our understanding of the physics of
dislocation cores in fcc metals. For our calculations, we utilize
a high-fidelity Al-Cu bond order potential [19].

II. METHODS

The overall approach we will use for computing the core
energy is similar to the other methods discussed above. Using
atomistic simulations, we will compute the total energy per unit
length of dislocation � of a multipolar dislocation system. This
line energy can be expressed in terms of two contributions as

�(β) = Ec(β) + Eel(β), (1)

where Ec and Eel , respectively, are the core and elastic energies
per unit length of the dislocation and β is the character angle.
Using elasticity theory, the elastic energy can be computed
analytically in isotropic theory [18] and numerically using
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FIG. 1. Geometry for β = 90◦ (edge) dislocation dipoles (dislo-
cation spacing Sx equals system dimension Lx).

anisotropic theory (using the MADSUM code [2,20]), allowing
for the core energy to be uniquely determined from MD
simulations for a given character angle. We use both isotropic
and anisotropic theories for these calculations. This is because
most discrete dislocation dynamics codes use isotropic theory
to compute dislocation interactions and the analytical expres-
sions of isotropic theory allow us to rationalize our results.

A. Edge dislocations (β = 90◦)

The geometry of the method for edge dislocations is shown
in Fig. 1. The system has dimensions of Lx, Ly, and Lz in the x,
y, and z directions, respectively. When the system is aligned in
the [11̄0] x and [111] y directions, an edge dislocation dipole
with a Burgers vector [11̄0]a/2 and a dislocation line parallel to
the [1̄1̄2]z direction can be created by removing a (11̄0) plane
or equivalently two (22̄0) planes as indicated by the white
line in Fig. 1. The height of the dipole d equals the height of
the missing planes. Under periodic boundary conditions, the
dislocations form an infinite array along x and y. Each dislo-
cation has infinite length in the z direction, and the dislocation
spacing in the x direction Sx equals the system dimension Lx.

Using this atomistic configuration, we compute the total en-
ergy of the system with and without a dislocation dipole present
using time-averaged MD simulations (discussed below). Note
that the number of atoms in the dislocation-containing system
Nd may not equal the number of atoms in the dislocation-free
system N0 due to the missing planes of the edge component
of dislocations. Fortunately, each atom in the dislocation-
free system is identical, and as a result, the energy of the
dislocation-free system can be scaled by a factor of Nd/N0

to match the number of atoms in the dislocation-containing
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FIG. 2. Geometry for screw and mixed dislocations: (a) Three-
dimensional configuration, (b) top view of β = 0◦ (screw) and
β = 60◦ (mixed) dislocation slip plane, and (c) top view of β = 30◦

dislocation slip plane.

system. Under this condition, the energy due to the dipole array
is the difference in the energies (after the scaling) between
these two configurations. As shown in the Appendix, the dipole
array energy can be expressed analytically using isotropic
linear elasticity theory for a chosen core radius r0. As discussed
in Sec. III C, fitting the MD data to this analytical equation then
allows us to determine the core energy [18].

B. Screw (β = 0◦) and mixed dislocations (0◦ < β < 90◦)

The method described above cannot be applied to screw
and mixed dislocations because the shear deformation of the
screw component destroys the crystal periodicity. As shown
in Fig. 2(a), if the dipole distance is exactly half of the
system dimension, i.e., d = Ly/2, we can always create a
dislocation dipole symmetrically as long as the two half
regions (the dark and light regions) are displaced equally by
± 1

2 b. Note that we found this symmetrical condition necessary
to ensure the correct results. By then introducing multiple
dislocation dipoles, we can always satisfy periodic boundary
conditions; however, the number of dipoles necessary depends
on the character angle of the dislocation lines. As an example,
Fig. 2(b) shows a common slip plane for β = 0◦ (screw)
and 60◦ dislocations where the dislocation line aligns with
z [1̄10], the screw Burgers vector of b0 = [11̄0]a/2 forms a
β = 180◦ (or equivalently β = 0◦) angle, and the β = 60◦
Burgers vector of b60 = [01̄1]a/2 forms a β = 120◦ (or
equivalently β = 60◦) angle. The plane stacking in the x

[112̄] direction is ABCDEFABCDEF . . . . It can be seen that
an arbitrary C plane can recover to another C plane if
it is shifted by 2b60. Hence, periodic boundary conditions
can be maintained for the β = 60◦ dislocation if we create
four dislocation diploes in the computational cell as shown
in Fig. 2(a). Likewise, an arbitrary E plane can recover
to another E plane if it is shifted by b0. Hence, periodic
boundary conditions can be used for the screw dislocation
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if we create two dislocation dipoles. Similarly, the β = 30◦
dislocation shown in Fig. 2(c) can also be simulated under pe-
riodic boundary conditions by creating four dislocation dipoles
per cell. Using similar arguments, the character angles 10.89◦,
19.11◦, 40.89◦, 49.11◦, 70.89◦, and 79.11◦ can be simulated
using 28 dislocation dipoles. These observations allow our
method to be extended to screw and mixed dislocations.

The approach described above requires adding more dislo-
cation to the simulation cell, causing the size of the atomistic
system to increase. With this approach, all simulation cells are
orthorhombic. Although it is possible to reduce the number of
dislocations by making the axes of the cell nonorthorhombic
[1], we have opted for orthorhombic cells because there is
less possibility for artifacts due to improper enforcement of
periodicity and/or pressure-free boundary conditions.

C. Time-averaged MD simulations

We have found that, although molecular statics (MS) energy
calculations based on the conjugate gradient method can give
low relative errors, they produce large total errors that increase
as the system dimension increases [18]. This is not satisfactory
for calculating dislocation energies, which are related to total
energies of (dislocated and perfect) systems if the length along
dislocation is fixed. Time-averaged properties of long-time
MD simulations, on the other hand, are found to converge
satisfactorily regardless of the system dimensions [18]. This
sounds surprising at a first sight but can be understood because
the time-averaged MD calculations not only average out the
thermal noises, but also are analogous to performing ensemble
averages of many MS simulations with different perturbations
of initial configurations. Additionally, MS pertains only to 0 K
whereas finite temperature effects are incorporated in MD.
Moreover, finite temperature systems are less likely to become
trapped in metastable states, making them more robust for
determining the minimum energy core configuration.

The majority of our simulations are performed at 300 K
whereas selected other temperatures also are used to explore
the temperature effects. All properties presented in this paper
are time averaged from 4-ns MD simulations using a time
step of 0.004 ps. After discarding the first 0.8 ns to allow for
equilibration, the system energy and dimension are averaged
over all the time steps for the remaining 3.2 ns. Unless
otherwise indicated, our simulations use a zero pressure
N -P -T (constant number of atoms, pressure, and temperature)
ensemble with the dimension in the dislocation line direction
(z) further fixed to match the plane strain assumption used in
the classical dislocation theories. We also perform simulations
that allow the z dimension to change but the same results are
obtained as will be shown below. MD code LAMMPS [21,22] is
used for all of our simulations.

III. RESULTS AND DISCUSSION

A. Edge dislocations (β = 90◦)

Two series of simulations are performed. In the first
series, the crystal contains 72 (22̄0) planes in x, 174 (111)
planes in y, 30 (2̄2̄4) planes in z, and the dislocation dipole
distance d varies from 3 to 171 (111) planes. The same
series of simulations are repeated for both 300- and 100-K
temperatures. The resulting total dislocation line energies
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FIG. 3. Edge dislocation line energy as a function of (a) disloca-
tion dipole distance d and (b) dislocation spacing Sx (= Lx). Error
bars represent the standard deviation of MD data. Note that in (a), the
solid and dashed lines differ only by the constant core energy.

(including both the core and the elastic energies) and their
standard deviation are shown as a function of the dipole height
in Fig. 3(a). The thin black solid line in the figure corresponds
to an isotropic fit to few representative MD data (marked
by the brown stars in both Figs. 3 and 4) using Eq. (A1)
after selecting an appropriate core radius of r0 = 10 Å.
Additionally, we show the fit using anisotropic elasticity
theory (with C11 = 118.4, C12 = 62.6, and C44 = 33.5 GPa)1

as a thick orange solid line. We defer a discussion on the
fitting process and the effects of the core radius until later.

1These elastic constants differ slightly from the 0 K constants
of the interatomic potential (C11 = 114.9, C12 = 62.6, and C44 =
31.6 GPa). We used slightly different values in order to achieve an
optimal fit with the MD results which were obtained at 300 K.

054112-3



ZHOU, SILLS, WARD, AND KARNESKY PHYSICAL REVIEW B 95, 054112 (2017)

(a) 30o, 60o dislocations

1.0

di
sl

oc
at

io
n 

lin
e 

en
er

gy
 Γ

 (e
V

/Å
)

6.0

dislocation spacing Sx (Å)
5502 3025

0.5

0.0

1.5

5451

Ly = 2d ~ 407 Å

(b) 10.89o, 19.11o, 40.89o, 49.11o, 70.89o, 79.11o dislocations

2.0

2.5

4035

3.0

3.5

4.0

5.0

10.89o

70.89o

49.11o
4.5

5.5

50

19.11o

40.89o

79.11o

1.0

di
sl

oc
at

io
n 

lin
e 

en
er

gy
 Γ

 (e
V

/Å
)

4.0

dislocation spacing Sx (Å)
50 7060

0.5

0.0

1.5

00104

Ly = 2d ~ 1220 Å

(c) 0.0o (screw) dislocation

2.0

2.5

9080

3.0

3.5

only points fitted

2.0

di
sl

oc
at

io
n 

lin
e 

en
er

gy
 Γ

 (e
V

/Å
)

4.0

dislocation spacing Sx (Å)
00105 907060

1.0

0.0

3.0

0804

Ly = 2d ~ 407 Å

continuum
MD, z flexible
MD, z fixed

60o

30o

FIG. 4. Line energies as a function of dislocation spacing Sx for
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and (c) 0◦ dislocations. Error bars represent the standard deviation of
MD data.

It can be seen from Fig. 3(a) that the statistical errors of all
of our MD data are near zero within the numerical resolution

demonstrated in the figure. A related consequence of the zero
errors is that all of our MD data fall right on top of the
continuum line, despite the fact that many MD data are not
used in the fitting. This strongly validates our MD approach for
calculating dislocation energies, which also corroborates well
our derived isotropic continuum expressions for periodic dis-
location arrays Eqs. (A1)–(A5) in the Appendix. Interestingly,
the isotropic curve matches the anisotropic curve perfectly,
justifying the validity of the isotropic approach for aluminium
analysis. One important observation from Fig. 3(a) is that the
temperature does not impact the core energy. This is because
differences in entropies and thermal energies between perfect
and dislocated systems are both negligible [23].

For reference, the thin black dashed line in Fig. 3(a)
is the isotropic continuum result without the core energy.
The difference between the thin dashed and the solid lines,
corresponding to the constant core energy, is a significant
fraction of the overall line energy for the range of dipole
configurations considered. Clearly the error caused by ignoring
the core energy is significant, demonstrating that our approach
is a sensitive method for studying dislocation energies.

Figure 3(a) shows that the dislocation energies are symmet-
ric with respect to dipole height d. This is because when d goes
to zero, the dislocations in the dipole annihilate, leading to a
low energy. When d is large (close to Ly), dislocations and their
other dipole counterparts (periodic images) also annihilate,
leading to a low energy. Capturing this phenomenon is one
strong validation of our MD data.

The second series of simulations examines the dislocation
energy as a function of the lateral spacing Sx of the dislocation
dipoles. For this series, the crystal contains 174 (111) planes in
y, 30 (2̄2̄4) planes in z, the dislocation dipole distance d equals
87 (111) planes, and the x dimension of the system varies from
120 to 240 (22̄0) planes. The same method is used to calculate
the dislocation energies. The corresponding results are shown
in Fig. 3(b) as a function of dislocation lateral spacing Sx(=
Lx). Again, Fig. 3(b) indicates that the MD results fit the
continuum model (both isotropic and anisotropic) very well.

B. Mixed (0◦ < β < 90◦) and screw (β = 0◦) dislocations

Mixed dislocations with regular angles β = 60◦ and 30◦
and nonregular angles β = 10.89◦, 19.11◦, 40.89◦, 49.11◦,
70.89◦, and 79.11◦, as well as the screw dislocation with
β = 0◦, are all studied. For β = 60◦, the crystal contains 174
(111) planes in y, 16 (22̄0) planes in z, the dislocation dipole
distance d equals 87 (111) planes, and the x dimension of
the system varies from 216 to 456 (224̄) planes. For β = 30◦,
the crystal contains 174 (111) planes in y, 30 (224̄) in z, d

equals 87 (111) planes, and the x dimension varies from 120
to 240 (2̄20) planes. Four dislocation dipoles are created in the
computational cell as shown in Fig. 2(a) so that the lateral
dislocation spacing Sx equals Lx/4. The crystals used for
dislocations with β = 10.89◦, 49.11◦, and 70.89◦ contain 174
(111) planes in y, 54 ( 9

7
36
7 − 45

7 ) planes in z, 87 (111) planes
for the dislocation dipole height d, and various x dimensions
from 1050 to 2625 (− 45

7
30
7

15
7 ) planes. The only difference

among the 10.89◦, 49.11◦, and 70.89◦ dislocations is that
they have different Burger vectors b = [011̄]a/2, [1̄01]a/2,
and [1̄10]a/2, respectively. For dislocations with β = 19.11◦,
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40.89◦, and 79.11◦ angles, the crystals contain 174 (111)
planes in y, 45 ( 45

7 − 30
7 − 15

7 ) planes in z, 87 (111) planes
for the dislocation dipole height d, and various x dimensions
from 1512 to 3024 ( 9

7
36
7 − 45

7 ) planes. The Burgers vectors
for the 19.11◦, 40.89◦, and 79.11◦ dislocations correspond to
b = [1̄10]a/2, [1̄01]a/2, and [011̄]a/2, respectively. Unlike
the 60◦ and 30◦ regular angle dislocations, the nonregular
angles 10.89◦, 19.11◦, 40.89◦, 49.11◦, 70.89◦, and 79.11◦
require 28 dislocation dipoles to be used in the computational
cell to maintain periodic boundary conditions. As a result, Sx =
Lx/28. Following the same method as described above, total
dislocation line energies are calculated as a function of Sx, and
the results are shown in Fig. 4(a) for the regular angles (30◦ or
60◦) and in Fig. 4(b) for the nonregular angles. Again, the MD
results are very well characterized by the continuum model.

The β = 0◦ case imposes challenges for fcc metals due to
the annihilation of screw dislocations by cross slip. Through
extensive iterations, we find that when the y dimension is
increased above 522 (111) planes to reduce the attraction
between opposite dislocations and when the temperature
is reduced below 10 K to trap dislocations in metastable
locations, the combination of both conditions can prevent
cross slip. Fortunately, the use of a low temperature does not
impact the results as has been shown in Fig. 3(a). Hence, we
perform simulations at 10 K for the β = 0◦ case using crystals
that contain 522 (111) planes in y, 16 (22̄0) planes in z, a
dipole height d of 261 (111) planes, and various x dimensions
from 108 to 228 (224̄) planes. The results obtained for the 0◦
dislocations are shown in Fig. 4(c). Again, the data points fall
right on top of the continuum line.

The MD simulations discussed above use a fixed z dimen-
sion assumed in the dislocation elastic theories (plane strain).
We have also performed similar MD simulations where the
z dimension is allowed to relax, and the results are included
in Fig. 4(a). Interestingly, the flexible z condition produces
exactly the same results as the fixed z condition.

C. Dislocation core energies

To compute the core energy using anisotropic theory, we
use the cubic elastic constants given above in conjunction
with the MADSUM code [2,20]. In the isotropic theory, the
continuum expression for the energy of periodic dislocation
arrays Eq. (A1) involves four parameters: dislocation core
radius r0, core energy Ec, and elastic constants G and ν.
These parameters can be obtained by fitting to the MD data.
However, the magnitude of the core radius r0 is not unique.
Conventionally, the only requirement for r0 is that any region
outside r0 satisfies linear elasticity theory. Obviously, there
exists a minimum value rmin

0 so that any r0 � rmin
0 can be taken

as a valid core radius. This is because elasticity theory breaks
down very near the dislocation core, causing the elastic energy
to go to infinity as the core radius goes to zero. Hence, the core
radius must be large enough to exclude this unphysical region.
On the other hand, the core energy is really just a correction
to the linear elastic theory at a given reference core radius r0.
As a result, any value of r0 (including r0 = 0) can be taken as
a valid core radius if the core energy is allowed to be negative.
Here we define the minimum value rmin

0 so that any r0 � rmin
0

will always lead to positive core energies for all values of β.

TABLE I. Dislocation core energies Eiso
c and Eaniso

c (eV/Å)
obtained from isotropic and anisotropic elasticity theories for a core
radius of r0 = 10 Å.

Dislocation angle β Eiso
c Eaniso

c

00.00◦ 0.295 0.170
10.89◦ 0.291 0.197
19.11◦ 0.296 0.233
30.00◦ 0.306 0.271
40.89◦ 0.298 0.254
49.11◦ 0.308 0.267
60.00◦ 0.314 0.297
70.89◦ 0.320 0.293
79.11◦ 0.316 0.294
90.00◦ 0.315 0.318

Through trial-and-error fitting, rmin
0 is determined to be 2.0 and

2.5 Å for isotropic and anisotropic theories, respectively.
Unlike the curves shown in Figs. 3 and 4 that are fitted

to few MD data points, we now fit all MD data to yield
the most precise fit. Table I shows our fitted dislocation
core energies with r0 = 10 Å obtained for different character
angles using both anisotropic and isotropic theories. Fits for
different core radii all result in identical isotropic elastic

constants of G = 0.1830 eV/Å
3

(29.3 GPa) and ν = 0.3874,

very close to the values of G = 0.169 eV/Å
3

(27 GPa) and
ν = 0.34 commonly cited for aluminium [24],2 confirming
the robustness of our results. Comparing the isotropic and
anisotropic core energies, we find that, despite the nearly
isotropic behavior of aluminium, the core energies predicted
by the two theories are different. For the given core radius,
anisotropic theory gives that the core energy varies by nearly a
factor of 2 from β = 0◦ to 90◦ whereas in isotropic theory
the core energy is nearly independent of character angle.
Note, however, different core energies do not mean that the
two theories are inconsistent. In fact, the two theories yield
exactly the same total dislocation energies as shown in Fig. 3.
The differences just mean that the two theories have different
allocations of the total dislocation energies to the core and the
elastic components.

To reiterate, our results are strongly validated from numer-
ous aspects: (1) the convergence to a single core energy at
different dislocation spacings for a given character angle and
a given core radius, (2) the convergence to a single set of
isotropic elastic constants for all dislocation spacings, orien-
tations, and core radii, and (3) the strong match between MD
results and both the isotropic and the anisotropic continuum
results.

D. Analytical expression of core energy as a function of angle β

Using our MD results and isotropic elasticity theory, we can
derive an analytical expression for the dislocation core energy

2Note that while aluminium is elastically anisotropic like most
crystalline solids, it exhibits a relatively weak anisotropy ratio of
A = 1.2 in both experiments and our potential [19].
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at any character angle and with any core radius. To do so, we
make the following assumption: Increases in the core energy
as the core radius increases beyond the minimum core radius
are due to elastic energy. Hence, the core energy can be written
as

Ec(r0,β) = Eref
c (β) + Gb2

4π

(
cos2β + sin2β

1 − ν

)
ln

r0

r ref
0

. (2)

The first term is the core energy at a reference core radius
r ref

0 (r ref
0 � rmin

0 ), and the second term is the change in elastic
energy attributed to the core upon changing the core radius
from r ref

0 to r0 (r0 � rmin
0 ) [25]. Note that the same reasoning

could be applied using anisotropic elasticity, however an
analytical expression is not readily available. To complete
this expression, we need to develop an analytical form for
the core energy Eref

c (β) at a chosen reference core radius r ref
0 .

In principle, Eref
c (β) should depend on crystal structure. For

example, in body-centered-cubic materials, screw dislocations
have nonplanar cores whereas edge dislocations have planar
cores so that these two types of dislocations could have
different core energies [26]. Examining our data, however,
we find that the Eref

c (β) can be expressed in the same form as
the elastic energy [25],

Eref
c (β) = A sin2β + B cos2β. (3)

For example, if we choose a reference radius of r ref
0 = 30 Å,

then the parameters A = 0.5294 and B = 0.4528 eV/Å, which
correspond respectively to the edge and screw dislocation core
energies derived from the MD simulations described above.
In Fig. 5 we plot our core energy data for five core radii
between 2 and 50 Å with curves generated using Eqs. (2) and
(3) at r ref

0 = 30 Å. The figure indicates that the core energies of
aluminium very well satisfy Eqs. (2) and (3) for all character
angles and core radii; this constitutes the major result of the
present paper. We are currently implementing this finding in
dislocation dynamics simulation models.

(a) 90o dislocation from MD

bII = [121]a/6bI = [211]a/6

b = [110]a/2

λ ~ 14 Å

(b) bI and bII at λ = 0

(c) bI and bII at λ = 2rpt

λ = 2rpt

(d) bI and bII at λ > 2rpt

λ = 0

y  [111]

x  [110]

λ > 2rpt

FIG. 6. Dissociated core configuration of a β = 90◦ (edge)
dislocation. (a) Front view of the MD configuration, (b) schematic of
the perfect dislocation, (c) schematic of the two partials separated by
rmin
pt , and (d) schematic of the two partials separated by λ.

E. Effects of dislocation core structures

We have used elastic energy expressions for perfect dis-
locations to compute the core energy of a dislocation in a
fcc solid that has dissociated into two partial dislocations
bounding a stacking fault. Furthermore, we have found that the
minimum core radius for this analysis is much smaller than the
separation distance between these partial dislocations (shown
below). With analysis of the core structure of an isolated
dislocation, we can gain further insight into the physics of
extended dislocation cores.

The front view (x-y) of the atomic configuration with β =
90◦ (edge) dislocation is examined in Fig. 6(a). As expected,

the perfect dislocation with a
⇀

b = [11̄0]a/2 Burgers vector

splits into two partials with Burgers vectors of
⇀

bI = [21̄1̄]a/6

and
⇀

bII = [12̄1]a/6. Because aluminium has a large stacking
fault energy of ηsf = 133 mJ/m2 [19], a relatively small
separation distance of λ ≈ 14 Å between the two partials is
observed. However, this separation distance is significantly
larger than the minimum core radius discovered above.

To better understand how the energetics of the dissociated
structure relates to our results, we compute the energy
change when a perfect edge dislocation dissociates into two
partials (similar to the approach used in Ref. [27]). Since
we are focusing on the core structure, we only consider an
isolated extended dislocation in an infinite medium (rather than
periodic arrays of dislocations, such as we did above). The line
energy of a perfect edge dislocation in isotropic elasticity can
be stated as [25]

�pf = Ec,pf (rpf ,β = 90◦) + Gb2

4π (1 − ν)
ln

R

rpf

, (4)

where the subscript pf denotes a perfect dislocation,
Ec,pf (rpf ,β = 90◦) is the core energy associated with the
core radius rpf , and R is the outer cutoff radius. The energy
change 	� when the two partials move apart is the work
performed by the stress fields of the partials plus the energy
of the stacking fault. To compute these quantities, we consider
two stages of separation. First, the separation distance of the
two partials increases from λ = 0 to λ = 2rpt as shown in
Figs. 6(b) and 6(c), where rpt is the core radius of a partial
dislocation so that 2rpt is the overlap region of the two partial
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dislocation cores. During this stage of separation we lump all
of the work performed into a change in the core energy, leading
to an energy change in [18]

	�1 = (2Ec,pt + 2rptηsf ) − Ec,pf , (5)

i.e., the core energy of the perfect dislocation Ec,pf is replaced
by the core energies of two partials 2Ec,pt plus a stacking fault
energy (ηsf refers to the stacking fault energy per unit of area).
The work performed to further separate the two partials from
λ = 2rpt to λ > 2rpt as shown in Figs. 6(c) and 6(d) can be
obtained from linear elasticity [18]. Adding in the energy from
the stacking fault then gives an energy change in

	�2 = Gb2

8π

(
1

3
− 1

1 − ν

)
ln

λ

2rpt

+ (
λ − 2rpt

)
ηsf . (6)

Hence, the total energy difference between the dissociated
dislocation Fig. 6(d) and the perfect dislocation Fig. 6(b) can
be expressed as

	� = 	�1 + 	�2 = 2Ec,pt − Ec,pf

+ Gb2

8π

(
1

3
− 1

1 − ν

)
ln

λ

2rpt

+ ληsf . (7)

If we assume rpt = 1.0, b = 2.8634 Å and use the cor-
responding parameters mentioned above, the elastic and
stacking fault components give Gb2

8π
( 1

3 − 1
1−ν

)ln λ
2rpt

+ ληsf =
−0.0345 eV/Å. The negative value drives the dissociation of
the perfect dislocation.

The total line energy of the extended dislocation is now
� = �pf + 	�. Using Eqs. (4) and (7) and after some
manipulation, we have that

� = 2Ec,pt + Gb2

8π

[(
1

3
− 1

1 − ν

)
ln

λ

2rpt

+ 2

1 − ν
ln

rpt

rpf

]

+ ληsf + Gb2

4π (1 − ν)
ln

R

rpt

. (8)

Only the last term contributes to the long-range elastic
component of the line energy, so we recognize that the core
energy we have computed and given in Table I corresponds to
the remaining terms,

Ec = 2Ec,pt + Gb2

8π

[(
1

3
− 1

1 − ν

)
ln

λ

2rpt

+ 2

1 − ν
ln

rpt

rpf

]
+ ληsf . (9)

This analysis demonstrates the connection between the line
energy expression for a perfect dislocation and the line energy
expression for an extended dislocation. Note that comparing
the long-range elastic interaction terms in Eqs. (4) and (8)
shows that rpf is equivalent to rpt , meaning that the minimum
core radius we have obtained with our atomistic computations
actually corresponds to the minimum core radius of the partial
dislocations rather than the overall extended dislocation. This

explains why we find a minimum core radius that is much
smaller than the separation distance between the partials.

IV. CONCLUSIONS

A robust MD model has been developed to calculate the
core energies of mixed dislocations. This model does not
require continuum boundary conditions, is applicable for the
full character angle range of 0◦ � β � 90◦, produces strongly
convergent results, and is constructed from orthorhombic
systems under the plane strain condition consistent with the
classical dislocation theories. Based on a high-fidelity bond
order potential, we have used this model to study dislocation
core energies of aluminium as a function of dislocation angle
β. The following conclusions have been obtained:

(1) Although dislocations are dissociated, the apparent
(mathematical) dislocation core radius in aluminium is as small
as r0 = 2.0 Å with isotropic elasticity theory and 2.5 Å with
anisotropic elasticity theory, despite the fact that the extended
core has a width of greater than 14 Å. This is because the core
radius pertains to the partial dislocations in the core.

(2) Values of r0 > 2.0 Å can also be used. A larger radius in
general leads to a larger core energy. In particular, the increase
in core energy always equals the elastic strain energy of the
added volume due to the increase in the core radius.

(3) In isotropic elasticity theory, dislocation core energy
as a function of character angle satisfies an expression of
the form Ec(β) = Asin2β + Bcos2β, which is similar to the
elastic energy.

(4) Dislocation energies are independent of temperature
over the temperature range considered here (100–300 K).
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APPENDIX: DISLOCATION ENERGY UNDER PERIODIC
BOUNDARY CONDITIONS

Following the previous approach for edge dislocations [18],
the dislocation line energy � for periodic mixed dislocations
with a mixed angle β can be derived as

� = Ec + Gb2

4π (1 − ν)
cos2α + sin2βE0,edge + cos2βE0,screw

+ 2 sin2β

∞∑
i=1

Ei,edge + 2 cos2β

∞∑
i=1

Ei,screw, (A1)
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where

E0,edge = Gb2

4π (1 − ν)

{
ln

(
d

r0

)
+ ln

(
Ly − d

Ly

)
− ln

[
Ga

(
Ly + d

Ly

)]
− ln

[
Ga

(
2 − d

Ly

)]}
, (A2)

E0,screw = Gb2

4π

{
ln

(
d

r0

)
+ ln

(
Ly − d

Ly

)
− ln

[
Ga

(
Ly + d

Ly

)]
− ln

[
Ga

(
2 − d

Ly

)]}
, (A3)

Ei,edge = Gb2

8π (1 − ν)

{
4πiSx coth

(
πiSx

Ly

)
sin2

(
πd
Ly

)
Ly cosh

( 2πiSx

Ly

) − Ly cos
(

2πd
Ly

) + ln

[
cos2

(
πd

Ly

)
+ coth2

(
πiSx

Ly

)
sin2

(
πd

Ly

)]}
, (A4)

Ei,screw = Gb2

8π
ln

[
cos2

(
πd

Ly

)
+ coth2

(
πiSx

Ly

)
sin2

(
πd

Ly

)]
. (A5)

In Eqs. (A1)–(A5), Ec and r0 are the core energy and
core radius of an isolated dislocation, Ga is a Euler γ

function, coth and cosh are hyperbolic functions, G is the
shear modulus, ν is Poisson’s ratio, b is Burgers magnitude,
α is an angle measuring the dislocation dipole direction (in
particular, α = 0◦ means vertical dislocation dipole studied in
the present paper, and α = 90◦ means horizontal dislocation
dipole), Sx is dislocation separation distance in x, Ly is
periodic length in y, and d is dislocation dipole height. Note
that Eqs. (A1)–(A3) involve numerous changes compared to
the previous work [18]. First, the core radius r0 defined here
is equivalent to 2r0 defined previously [18]. Second, there is
a constant Gb2

4π(1−ν) cos2α in Eq. (A1) that is counted as elastic
contribution whereas in the previous work this constant term
is lumped into the core energy. These two modifications have

a zero impact on the model because they do not change the
total energy of dislocations; they only change the definition
of dislocation core radius and core energy. We modify these
definitions so that they are consistent with Hirth and Lothe
[25]. Finally, the second term in the curly braces “{ }” of
the right-hand side of Eqs. (A2) and (A3) is now expressed as
ln(Ly−d

Ly
) whereas it was expressed as ln( Ly−d

Ly−2r0
) in the previous

work [18]. The new expression is more rigorous, but the effect
is negligible because Ly � r0.

Even Eq. (A1) does not have a closed form; it converges
very fast so that the error is negligible if a few terms (say 20)
are included (in the present paper, we included 100 terms).
We also wish to point out that Fourier methods can also be
used to compute the energies of dipolar dislocation arrays
[28,29].
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