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While first-principles density functional theory (DFT)-based models have been effective in capturing the
physics of ferroelectric phase transitions in BaTiO3, PbTiO3, and KNbO3, quantitative estimates of the transition
temperatures (TC) suffer from errors that are believed to originate from the errors in estimating lattice constants
obtained within the local density approximation (LDA) and generalized gradient approximation (GGA) of DFT.
The recently developed strongly constrained and appropriately normed (SCAN) meta-GGA functional has been
shown to be quite accurate in the estimation of lattice constants. Here, we present a quantitative analysis of
the estimates of ferroelectric ground-state properties of eight perovskite oxides and transition temperatures of
BaTiO3, PbTiO3, and KNbO3 obtained with molecular dynamics simulations using an effective Hamiltonian
derived from the SCAN meta-GGA-based DFT. Relative to LDA, we find an improvement in the estimates of
TC , which arises from the changes in the calculated strain-phonon, anharmonic coupling constants, and strength
of ferroelectric instabilities, i.e., frequencies of the soft modes. We also assess the errors in TC originating
from approximately integrating out the high-energy phonons during construction of the model Hamiltonian
through estimates of the effects of fourth-order couplings between the soft mode and higher-energy modes of
BaTiO3, PbTiO3, and KNbO3. We find that inclusion of these anharmonic couplings results in deeper double-well
energy functions of ferroelectric distortions and further improvement in the estimates of transition temperatures.
Consistently improved estimates of lattice constants and transition temperatures with the SCAN meta-GGA
calculations augur well for their use in simulations of superlattices or heterostructures of perovskite oxides, in
which the effects of lattice matching are critical.
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I. INTRODUCTION

Ferroelectrics are an important class of materials that
exhibit a spontaneous macroscopic electric polarization that is
switchable with application of an electric field, and hence have
a wide range of technological applications [1,2]. Perovskite
oxides are the most interesting of ferroelectric materials and
have been studied frequently [3,4] since the discovery of
barium titanate in 1945 [5]. Perovskite oxides have a chemical
formula ABO3, with the A cation at the corner of the cube,
and with the B and O atoms located at the body-centered and
face-centered positions, respectively. There is a remarkable
diversity in the structural instabilities and phase transitions that
these perovskites undergo: ferroelectric transitions (associated
with polar distortion) in BaTiO3, PbTiO3, and KNbO3,
antiferroelectric transition (involving nonpolar distortion) in
PbZrO3, and antiferrodistortive transition (associated with
tilting of oxygen octahedra) in SrTiO3 [4,6]. These phase
transitions and competing instabilities have singularly impor-
tant consequences to their properties relevant to technological
applications. First-principles density functional theoretical
(DFT) calculations have been used extensively in microscopic
studies of structural transitions via identifying the responsible
phonon mode for structural transition, studying the stability of
the intermediate phases, and predicting transition temperatures
(TC) [4,7–9]. It has been established that harmonic and
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anharmonic couplings between phonons and strain-phonon
coupling constants are the most crucial parameters that govern
the phase transitions in perovskites [4,8,10]. Accuracy in the
determination of these parameters and subsequent estimation
of transition temperatures is naturally limited by the DFT
errors in the estimation of lattice constants.

Earlier all-electron calculations using the full potential lin-
earized augmented plane-wave (FLAPW) method within local
density approximation (LDA) predicted the cubic phases of
KNbO3 to be stable (in contradiction to experimental results),
and PbTiO3 and BaTiO3 to be unstable at the optimized lattice
constant [4,11]. The discrepancies between experimental and
theoretical results (using LDA) for cubic KNbO3 have been
removed by implementing ultrasoft pseudopotentials [4]. But,
LDA is well known to underestimate the lattice constant by
1–2% as it neglects the effects of inhomogeneity in electron
density [4,12]. Such overbinding of the structure predicted
within LDA results in underestimation of the difference in
energies of cubic and distorted structures [13]. This is because
the ferroelectric instability is a strong function of cell volume
of those materials [13,14].

While ab initio molecular dynamics (MD) or Monte Carlo
(MC) simulations would be effective in the estimation of the
temperature-dependent transition properties, the size (length
scale) of a system needed to capture the phase transition
and corresponding computational cost make them presently
impractical. Instead, an approximate approach is adopted
that uses an effective Hamiltonian, which focuses on the
low-energy structural configurations in MD or MC simulations
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[7,8]. Thus, there are two sources of errors in the first-
principles description of ferroelectric transitions: (a) those
arising from the choice of DFT functional and (b) those arising
from the truncation of the set of configurations through the
effective Hamiltonian.

As an example, the too-shallow potential well in BaTiO3

underestimates the transition temperature (TC) determined
using a parametrized effective Hamiltonian based on LDA
[7]. However, this problem was resolved by applying a
negative pressure to the system [7]. Also, the value of TC of
PbTiO3 using interaction parameters (calculated using LDA)
at the experimental lattice constant is underestimated [8].
On the other hand, the generalized gradient approximation
(GGA) mostly overestimates the lattice constants and gives
supertetragonal structures of PbTiO3 and BaTiO3 [14]. By
including the density gradient, GGAs can predict accurate
structures or energies, but not both together [15,16]. This sug-
gests an important avenue for further functional development
which can correctly capture structural properties, i.e., lattice
constant, anharmonic coupling between phonon modes, and
strain-phonon coupling parameters, which are relevant to the
structural transition. The GGA functional proposed by Wu and
Cohen (WC-GGA) has been known to accurately calculate the
ferroelectric properties of BaTiO3 and PbTiO3 [17]. However,
the WC-GGA fails to precisely determine the properties of
atoms and molecules, as it was constructed for solids (slowly
varying electron density) [17].

The recently developed nonempirical strongly constrained
and appropriately normed semilocal density functional
(SCAN) has been shown to estimate accurate structures and
energetics of diversely bonded molecules and materials (for
slowly as well as rapidly varying electron densities) and to
improve the band gap, which was underestimated by LDA
and GGA [18–21]. The SCAN meta-GGA satisfies all of
the 17 known exact constraints (about 6 for exchange, 6
for correlation, and 5 for the sum of the two) appropriate to
semilocal functionals by including the orbital kinetic energy
densities [18]. The calculations are computationally more
expensive using SCAN meta-GGA than normal GGA or LDA,
but SCAN is more efficient than hybrid functionals due to its
semilocal nature.

Here, we present the ground-state properties of eight
perovskites, i.e., BaTiO3, CaTiO3, SrTiO3, PbTiO3, KNbO3,
NaNbO3, PbZrO3, and BaZrO3, using the SCAN meta-GGA
functional and notice a significant improvement of lattice
constants and band gaps of eight oxides compared to earlier
theoretical results using LDA [4]. We then estimate TC of
BaTiO3, PbTiO3, and KNbO3 using the parametrized effective
Hamiltonian based on the SCAN meta-GGA functional,
calculate the lowest-order coupling between soft mode and
higher-energy modes, and determine the consequences of
approximations in construction of the effective Hamiltonian
for finite-temperature properties.

II. METHODS

First-principles calculations based on density functional
theory have been performed here on eight perovskites using
the SCAN meta-GGA exchange-correlation functional as
implemented in theVASP code [18,22,23]. For calculations, we

use projector augmented wave (PAW) potentials containing a
contribution from kinetic energy density of the core electrons
[24]. We have considered eight oxides, i.e., BaTiO3, SrTiO3,
PbTiO3, CaTiO3, KNbO3, NaNbO3, PbZrO3, and BaZrO3,
for determining ground-state properties. We use 5s and 5p

states of Ba, 3s state (3s and 3p states) of K (Ca), 4s and
4p states of Sr, Zr, and Nb, 2p state of Na, and 5d state of
Pb as valence states. An energy cutoff of 560 eV has been
used to truncate the plane-wave basis used to represent wave
functions. Integrations over the Brillouin zone were sampled
on an 8 × 8 × 8 uniform mesh of k points.

MD simulations for studying the phase transitions of
BaTiO3, PbTiO3, and KNbO3 (considering the effective
Hamiltonian from Ref. [7]) are performed using the FERAM

code [7,25,26]. At each temperature in our simulation within
the canonical ensemble, temperature is kept fixed using the
Nosé-Poincare thermostat [27]. The time step was set to
�t = 2 fs. We use a supercell of system size Lx × Ly × Lz =
16 × 16 × 16 and temperature step ±5 K in heating-up and
cooling-down simulations. We use 20 000 thermalization steps
and 40 000 steps for averaging properties of the system at each
temperature. The initial configuration used in cooling-down
simulations of all three compounds is a paraelectric state
with 〈uα〉 = 0.0 (α = x,y,z) and 〈u2

α〉 − 〈uα〉2 = (0.12 Å)2.
In the heating-up simulation, we choose ferroelectric states of
three compounds (〈uz〉 = 0.33 Å and 〈ux〉 = 〈uy〉 = 0.0 for
PbTiO3, and 〈uα〉 = 0.11 Å for BaTiO3 and KNbO3) as initial
configurations.

III. RESULTS AND DISCUSSION

A. Ground-state properties

1. Structural and electronic properties

We optimized the lattice parameters of the cubic per-
ovskite structures of eight ABO3 compounds, i.e., BaTiO3,
SrTiO3, CaTiO3, PbTiO3, KNbO3, NaNbO3, PbZrO3, and
BaZrO3, using the SCAN meta-GGA functional. Our results
in comparison with LDA are shown in Fig. 1 [4]. The lattice
constants of cubic SrTiO3, CaTiO3, PbZrO3, and BaZrO3 are
overestimated slightly by 0.1–0.5% (see Fig. 1), whereas for
other compounds, lattice constants are underestimated at the
most by 0.8% relative to the experimental values [4]. Lattice
constants optimized using SCAN are better compared to the
earlier theoretical results obtained from calculations consid-
ering all-electron (FLAPW) and ultrasoft pseudopotentials with
LDA [4]. Lattice parameters of cubic BaTiO3, PbTiO3, and
SrTiO3 are overestimated by 0.2% from the values obtained
using the WC-GGA functional [7].

We then optimized lattice constants of the tetragonal phases
of BaTiO3 and PbTiO3 (as shown in Table I). The SCAN-based
calculated values of a of tetragonal phases of BaTiO3 and
PbTiO3 are within 0.025% of experimental values and are
better than earlier theoretical results using LDA, Perdew-
Burke-Ernzerhof (PBE)-GGA, and hybrid functionals [14].
The generalized gradient approximation (GGA) in the PBE
parametrized form overestimates lattice constants and gives
supertetragonal structures of BaTiO3 and PbTiO3 (see Table I).
In addition, the differences in the z components of atomic
positions between cubic and tetragonal phases of BaTiO3
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FIG. 1. Optimized lattice constants of eight cubic oxides using
the SCAN meta-GGA functional in comparison with experimental
and earlier theoretical (using LDA) lattice parameters [4]. Lattice
constants (experimental and SCAN meta-GGA) of cubic KNbO3 and
BaTiO3 are close to each other.

(ferroelectric distortion) are slightly overestimated compared
to experimental values and are better than earlier theoretical
results using LDA, PBE-GGA, and hybrid functionals [14].
For PbTiO3, the level of agreement between experiment and
our estimates of these differences in atomic positions is not
that good. This overestimation of atomic displacements is
caused by the slight overestimation of c/a ratios of PbTiO3 (see
Table I). We analyzed this in depth and found that the energy
surface of PbTiO3 is very flat (shallow) and small energy
differences result in large changes in structural parameters.
However, our estimates of c/a ratios of tetragonal BaTiO3 and
PbTiO3 are better than those of other functionals (LDA, PBE-
GGA, and hybrid) [14]. Our results for BaTiO3 and PbTiO3 are
comparable to the earlier results obtained using the WC-GGA
functional and treating Ti and O atoms at the all-electron level
with Hartree-Fock (HF) pseudopotentials for Pb and Ba [14].
For KNbO3, the c/a ratio (1.034) is slightly overestimated
with SCAN compared to the experimental value (1.017) [28].
In addition, we optimized lattice parameters of orthorhombic

(a, b, and c) and rhombohedral (a and α) structures of
BaTiO3 and KNbO3 using the SCAN meta-GGA func-
tional (see Table II). Our SCAN meta-GGA-based esti-
mates of lattice parameters of orthorhombic and rhom-
bohedral phases are within 0.4% of experimental val-
ues [29–31]. The agreement with experiment is much
better than that obtained with PBE-GGA and WC-GGA
functionals [32].

Elastic constants of cubic perovskites have been determined
from the stress-strain relationship. The elastic constants of
BaTiO3 using SCAN are comparable to the value obtained
using LDA (see Table III). The values of the bulk modulus
of KNbO3 and PbTiO3 are 197 and 203 GPa, respectively,
which agree to about 2% with the values obtained earlier
using LDA [4]. For SrTiO3, elastic constants are within
16% of the experimental values [33]. It has been observed
experimentally that C11, C12, and C44 of SrTiO3 are strong
functions of temperature, and decrease by 4% when the
temperature drops from 30 ◦C to −160 ◦C [34]. The de-
pendence of elastic constant on temperature has also been
noticed experimentally for BaTiO3 and PbTiO3 [35]. As
first-principles-based DFT calculations do not include the
effect of temperature, we consider this deviation of elastic
constants from the experimental values as acceptable. The
exchange-correlation functional influences mostly C11 and C12

parameters for all materials. SCAN-based estimates of C11 are
overestimated compared to experimental values, whereas other
elastic constants are close to experimental values (see Table III)
[33,36].

Our calculated direct band gaps at the X point (of PbTiO3

and PbZrO3) and at the � point (of other compounds) of cubic
perovskites (at optimized lattice constant) in comparison with
earlier theoretical and experimental results are presented in
Fig. 2 [4,33,37–41]. SCAN gives a better estimation of band
gaps of perovskites and other materials [20,21] compared to
LDA [4,18,19]. LDA underestimates the band gaps by 40–
50%. The band gaps in SCAN are also underestimated, but are
modestly improved over LDA.

Next, we determine the effect of the exchange-correlation
functional on vibrational properties which have impor-
tant consequences for the finite-temperature properties of
perovskites.

TABLE I. Optimized tetragonal lattice parameters (in Å) and z component of atomic displacements (from cubic to tetragonal phase) for
BaTiO3 and PbTiO3 using the SCAN meta-GGA functional in comparison with earlier theoretical and experimental results [14]. Atomic
displacements are given as a fraction of the c parameter.

Compound Property LDA [14] PBE [14] WC-GGA [14] B3LYP [14] SCAN Expt. [14]

BaTiO3 a 3.954 4.013 3.982 3.996 3.985 3.986
c/a 1.006 1.035 1.012 1.066 1.027 1.010
dT i

z 0.011 0.018 0.013 0.019 0.016 0.015
dOI

z −0.014 −0.039 −0.022 −0.057 −0.029 −0.023
d

OII

Z −0.009 −0.022 −0.013 −0.031 −0.017 −0.014

PbTiO3 a 3.872 3.834 3.870 3.819 3.881 3.88
c/a 1.041 1.221 1.086 1.277 1.110 1.063 (300 K)
dT i

z 0.037 0.062 0.044 0.076 0.029 0.040
dOI

z 0.090 0.189 0.121 0.223 0.118 0.112
d

OII

Z 0.106 0.178 0.133 0.198 0.120 0.112
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TABLE II. Optimized lattice parameters of orthorhombic and rhombohedral phases of BaTiO3 and KNbO3 using the SCAN meta-GGA
functional in comparison with earlier theoretical and experimental results [29–32].

Compound Phase Lattice parameters PBE-GGA WC-GGA [32] SCAN Expt. [29–31]

BaTiO3 Rhombo a (Å) 4.073 4.029 4.003
α (◦) 89.76 89.83 89.84

Ortho a (Å) 4.110 4.047 4.041
b (Å) 3.996 3.983 3.982
c (Å) 4.113 4.051 4.065

KNbO3 Rhombo a (Å) 4.071 4.041 4.032 4.016
α (◦) 89.81 89.85 89.82 89.83

Ortho a (Å) 4.111 4.141 4.055 4.080
b (Å) 3.988 3.980 3.969 3.973
c (Å) 4.119 4.179 4.057 4.116

2. Vibrational properties

For the five-atom unit cell of cubic phase of perovskites,
there are 12 optical phonon modes at the � point. Out of 12
optical modes, three triply degenerate phonon modes have �15

symmetry and one triply degenerate mode has �25 symmetry.
The eigenvector of the phonon mode with �25 symmetry
involves atomic displacements along the z direction as vA

z =
0, vB

z = 0, vOI
z = 1√

2
, vOII

z = − 1√
2
, and vOIII

z = 0. Phonon
modes with �15 symmetry are relevant to the ferroelectric

TABLE III. Elastic constants (in GPa) of cubic perovskites
using the SCAN meta-GGA functional in comparison with earlier
theoretically calculated values using LDA [4] and experimentally
measured values [33,36].

Method

Compound Elastic constant SCAN LDA [4] Expt. [33,36]

BaTiO3 C11 328 329 206
C12 118 117 140
C44 131 130 126

SrTiO3 C11 374 389 316
C12 113 105 101
C44 120 155 119

CaTiO3 C11 399 407
C12 110 96
C44 104 102

PbTiO3 C11 340 335 229
C12 135 146 101
C44 108 100 100

KNbO3 C11 427 465 232
C12 83 67 90
C44 103 96 75

NaNbO3 C11 472 482 230
C12 84 70 90
C44 77 78 76

PbZrO3 C11 332 371
C12 94 86
C44 67 67

BaZrO3 C11 325 335
C12 88 95
C44 93 89

transition [4]. One of the eigenvalues of the phonon modes
with �15 symmetry of the cubic phase becomes negative (for
the five-atom unit cell as experimental ground state), which
indicates that the cubic phase is unstable. We have compared
the optical phonon frequencies (see Table IV) obtained at the
optimized lattice constant with earlier theoretical calculations
based on LDA, GGA, and hybrid functionals and experimen-
tally measured frequencies [14,42,43]. Our estimated zone-
center optical phonon frequencies (TO1, TO2, TO3, and TO4)
of BaTiO3 and SrTiO3 using SCAN are in excellent agreement
(within 3% for BaTiO3 and 8% for SrTiO3) with experimental
values and are better compared to earlier estimates calculated
using LDA, GGA, and hybrid functionals [14]. For PbTiO3,
our calculated phonon frequencies differ by 19% from earlier
theoretical results (using LDA, GGA, and hybrid functionals)
[14]. Phonon frequencies of cubic PbTiO3 cannot be readily
compared with experimental values, as the literature is not
available. SCAN predicts phonon frequencies much closer
to the experimental values for cubic KNbO3 compared to
earlier LDA calculations [42]. Moreover, our predicted phonon
frequencies (of BaTiO3, SrTiO3, and KNbO3) are better
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FIG. 2. Direct band gaps of eight perovskites in comparison with
earlier theoretical results using LDA [4] and experimentally measured
band gaps [33,37–41]. Experimentally measured band gaps of cubic
KNbO3 and NaNbO3 are nearly equal.
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TABLE IV. Predicted zone-center optical phonon frequencies (in cm−1) of BaTiO3, PbTiO3, SrTiO3, and KNbO3 at theoretical lattice
constants in comparison with earlier theoretically calculated and experimentally measured frequencies [14,42,43].

Functional

Compound Symmetry LDA [14,43] WC-GGA [14] B1-WC [14] PBE [43] HSE [43] LDA-LAPW [42] SCAN Expt. [14,42,43]

BaTiO3 �15 (TO1) 75i 128i 145i 196i

�15 (TO2) 193 186 195 182 182
�15 (TO3) 480 469 482 478 482
�25 (TO4) 286 282 299 297 306

PbTiO3 �15 (TO1) 127i 132i 146i 147i

�15 (TO2) 145 141 138 140
�15 (TO3) 515 510 513 530
�25 (TO4) 219 211 231 227

SrTiO3 �15 (TO1) 80 115i 74i 86 91 (297 K)
�15 (TO2) 177 147 162 173 169 (297 K)
�15 (TO3) 563 512 533 553 544 (297 K)
�25 (TO4) 226 234 250 244 265 (297 K)

KNbO3 �15 (TO1) 143i 197i 247i

�15 (TO2) 188 170 207 198
�15 (TO3) 506 473 483 521
�25 (TO4) 243 272 280

than earlier theoretically calculated values using different
functionals [14,42,43].

We now examine the eigenvalues of unstable phonon modes
(TO1) with �15 symmetry (see Table V). We find that the
value of the harmonic coupling parameter κ is positive (see
Table V) for cubic BaZrO3, which assumes the cubic phase
at all temperatures, and is consistent with the earlier LDA
result and experimental findings [4]. The positive value of κ

for SrTiO3 is consistent with the antiferrodistortive transition
associated with the phonon mode at q �= 0. In contrast, earlier
LDA results gave a negative value of κ for SrTiO3 [4], while
another LDA calculation with high plane-wave kinetic energy

cutoff (50 Ry) predicts a positive value (0.096 eV/Å
2
) of κ of

SrTiO3. For other compounds, the value of κ is found to be
negative, which is in agreement with earlier theoretical results
using LDA (see Table V). Overall, our calculated values of κ

are more negative for BaTiO3, KNbO3, and NaNbO3 compared
to earlier LDA results, whereas they are more positive for
other compounds, which are relevant for defining the potential
energy surface [4].

The eigenvector of the soft mode of the cubic structure
and its amplitude in the ferroelectric phase of BaTiO3 (see
Table VI) are comparable to the eigenvector obtained earlier

TABLE V. Harmonic (κ in eV/Å
2
), anharmonic (α and γ in eV/Å

4
), and strain-phonon coupling parameters (B1xx , B1yy , and B4yz in

eV/Å
2
) in comparison with earlier theoretically calculated values using LDA [4]. κ is the harmonic and α and γ are the anharmonic coupling

coefficients (estimated by fitting the fourth-order polynomial in soft-mode amplitude) in the on-site energy.

Coupling coefficients

Compound Functional κ α γ B1xx B1yy B4yz α′ γ ′

BaTiO3 SCAN −1.92 112.73 −158.93 −225.76 −18.04 −20.93 57.92 −36.54
LDA [4] −1.68 110.32 −163.07 −210.32 −19.29 −7.72 60.68 −42.75

SrTiO3 SCAN 0.49 21.37 −22.06 −64.64 −39.94 46.41 16.89 −44.47
LDA [4] −0.086 51.72 −65.85 −136.04 5.78 −10.61 32.06 −3.45

CaTiO3 SCAN −0.47 4.14 1.89 −49.97 −30.01 −10.81 2.59 2.52
LDA [4] −1.11 7.93 −2.07 −56.92 5.78 −9.65 4.48 21.03

PbTiO3 SCAN −0.77 6.79 −4.41 −66.37 −2.99 −23.25 1.59 1.79
LDA [4] −1.24 15.17 −15.51 −75.25 0.00 −2.89 7.58 8.62

KNbO3 SCAN −3.14 110.67 −149.97 −257.21 15.53 −3.28 57.58 −14.82
LDA [4] −1.49 130.32 −211.34 −290.40 31.84 −0.96 63.43 −38.27

NaNbO3 SCAN −1.53 28.27 −31.37 29.14 −44.96 6.66 24.82 −22.07
LDA [4] −1.19 57.92 −88.26 −164.98 48.24 0.00 32.06 −14.14

PbZrO3 SCAN −1.36 2.41 −0.17 33.67 5.49 −18.52 1.45 −3.75
LDA [4] −1.51 3.79 −4.48 −21.22 6.75 −0.96 3.10 −1.03

BaZrO3 SCAN 1.82 1.69 2.41 16.98 29.62 19.39 0.55 −1.52
LDA [4] 0.75 5.52 0.00 −45.34 6.75 −10.61 3.10 18.62
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TABLE VI. Computed eigenvectors [ξ atom
z (unitless)] and amplitudes of the soft modes of eight perovskites in comparison with earlier LDA

results [4,44].

Compound Method ξA
z ξB

z ξ
O1,2
z ξO3

z Amplitude (bohr)

BaTiO3 SCAN 0.15 0.77 −0.18 −0.56 0.24
LDA [4] 0.20 0.76 −0.21 −0.53 0.25

PbTiO3 SCAN 0.65 0.43 −0.40 −0.27 0.56
LDA [4] 0.57 0.51 −0.41 −0.27 0.54

KNbO3 SCAN 0.12 0.80 −0.21 −0.50 0.30
LDA [4] 0.18 0.80 −0.31 −0.37 0.22

SrTiO3 SCAN 0.52 0.57 −0.39 −0.30 0.0
LDA [44] 0.49 0.60 −0.41 −0.27

CaTiO3 SCAN 0.74 0.27 −0.42 0.17 0.38
LDA [44] 0.68 0.36 −0.44 −0.17

NaNbO3 SCAN 0.35 0.70 −0.38 −0.31 0.38
LDA[44] 0.43 0.64 −0.43 −0.21

PbZrO3 SCAN 0.81 0.09 −0.41 −0.09 1.06
LDA [44] 0.77 0.15 −0.44 −0.04

BaZrO3 SCAN 0.75 0.23 −0.43 −0.13 0.0
LDA [44] 0.70 0.27 −0.46 −0.05

using LDA [4], although the lattice constants obtained using
the two functionals are quite different. On the other hand, the
displacement of the Pb atom associated with the soft mode
is large compared to the value obtained using LDA, although
amplitudes of soft modes using the two different functionals
are similar [4]. Eigenvectors of the soft modes of NaNbO3 and
CaTiO3 obtained using the two functionals (SCAN and LDA)
are slightly different from each other [4]. For other compounds,
eigenvectors and amplitudes of the soft modes are comparable
with the results estimated earlier using LDA [4]. Our calculated
eigenvector of the soft mode of BaTiO3 is similar to the
eigenvector obtained using the WC-GGA functional [7].

Anharmonic coupling coefficients α and γ in the on-site
energy are determined from the expressions for energy as a
function of soft-mode amplitude (u) along the [001] and [111]
directions (up to fourth-order terms in u) [4]:

E001(u) = κu2 + αu4, (1a)

E111(u) = 3κu2 + (9α + 3γ )u4. (1b)

The energies of unstrained cubic PbTiO3 and BaTiO3 as a
function of soft-mode displacements are shown in Fig. 3. When
strain is not applied, the rhombohedral phase has minimum
energy for BaTiO3 and PbTiO3 (as shown in Fig. 3), consistent
with earlier LDA results [4]. The depth of the double well (as
shown in Fig. 3) is larger for PbTiO3 compared to BaTiO3 as
the values of α and γ (obtained using SCAN) of PbTiO3 are
small (see Table V).

We compute strain-phonon coupling parameters to find the
ground state of each oxide. Strain-phonon coupling parameters
(B1xx , B1yy , and B4yz) of the eight perovskites are determined
by calculating the change in the values of κ with strain.
Changes in the eigenvalues of an x-polarized soft mode (κx)
with the applications of strains along the x (η1) and y (η2)
directions give B1xx and B1yy , respectively (as shown in
Fig. 4). To find the value of B4yz, we calculate the change
in the value of κ of the soft-mode distortion along the
[111] direction with the change of shear strain (η4). We

FIG. 3. Variations of total energies of unstrained (a) BaTiO3 and
(b) PbTiO3 as a function of polar structural distortions (u) along the
[001] and [111] directions, respectively, from SCAN.
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FIG. 4. Eigenvalue (κx) of x-polarized soft mode (with �15

symmetry) of BaTiO3 as functions of strains applied along (a) the
x (η1) and (b) the y (η2) directions, from SCAN.

notice that strain-phonon coupling parameters are sensitive
to the exchange-correlation functional (see Table V). B1yy and
B4yz coupling parameters of BaTiO3 and PbTiO3 mostly get
affected by the exchange-correlation functional. For NaNbO3,
PbZrO3, and BaZrO3, B1xx even changes its sign with the
change of exchange-correlation functional. We consider these
calculated parameters to obtain the ground state of every
compound, as discussed below.

Using the fourth-order expansion of energy as a function
of soft-mode amplitude and strain, the energy differences
between cubic (EC), tetragonal (ET ), orthorhombic (EO), and
rhombohedral (ER) phases are [4]

EC − ET = − κ2

4α′ , (2a)

EC − EO = − κ2

4α′ + γ ′ , (2b)

EC − ER = − κ2

4(α′ + γ ′/3)
. (2c)

Here, α′ and γ ′ are the renormalized anharmonic coupling
constants (as given in Eqs. (11b), (12b), and (13b) in Ref.

0
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LDA (King-Smith and Vanderbilt)
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KNbO3 NaNbO3 PbTiO3

PbZrO3

FIG. 5. Calculated energy difference (using fourth-order expan-
sion of energy as a function of soft-mode amplitude) between cubic
(EC) and tetragonal (ET ) phases of perovskites in comparison with
earlier theoretical results using LDA [4]. For CaTiO3, we employ the
result of another theoretical calculation using LDA from Ref. [44].

[4]) which depend on elastic constants, strain-phonon cou-
pling parameters, and bare anharmonic coupling constants (α
and γ ).

We find that the value of γ is typically negative, as
shown in Table V. The introduction of strain switches the
sign of γ in some cases, which highlights the importance of
strain-phonon coupling. If κ is less than zero, the stability of
tetragonal and rhombohedral ground states requires γ ′ to be
greater-than and less-than zero, respectively [using Eqs. (2a)–
(2c)]. Negative values of γ ′ of BaTiO3, KNbO3, NaNbO3,
and PbZrO3 mean that the ground state is rhombohedral,
which is consistent with earlier theoretical results using LDA
[4]. For PbTiO3 and CaTiO3, the tetragonal state is the
ground state as γ ′ is positive (consistent with earlier LDA
results [4]). In addition, cubic phases of SrTiO3 and BaZrO3

have minimum energy as κ is positive. The experimentally
observed ground states for SrTiO3, CaTiO3, and NaNbO3 are
the tetragonal (antiferrodistortive transition associated with
oxygen octahedra rotation), orthorhombic (with 20 atoms in
the unit cell), and monoclinic (20 atoms per unit cell) phase,
respectively [4]. Hence, these cannot be explained using the
fourth-order expansion of energy, which considers only the
soft mode at the � point.

The calculated energy differences between the cubic and
tetragonal phases [using Eq. (2a)] of BaTiO3, PbTiO3, and
KNbO3 are 16 meV/unit cell (12 meV/unit cell, LDA),
95 meV/unit cell (58 meV/unit cell, LDA) and 43 meV/unit
cell (8 meV/unit cell, LDA), respectively (as shown in Fig. 5).
For BaZrO3, the energy difference between the cubic and
tetragonal phase is 1.3 eV/unit cell, which is much larger
compared to the value (45 meV/unit cell) obtained using the
parameters from earlier theoretical calculations using LDA [4].
For comparison of the energy difference between the cubic
and tetragonal phases of CaTiO3, we use parameters from
another calculation (with LDA) with a high plane-wave kinetic
energy cutoff (50 Ry) [44]. SCAN produces deeper potential
wells (energy as a function of soft-mode amplitude and strain)
for all compounds, in comparison with earlier theoretical
results using LDA [4,44]. The depths of the potential well
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along the [110] and [111] directions [using Eqs. (2b) and
(2c)] are 19 meV/unit cell and 20 meV/unit cell for BaTiO3

and 46 meV/unit cell and 47 meV/unit cell for KNbO3,
respectively. Our calculated energy differences (orthorhombic
and rhombohedral) are larger compared to the depth obtained
using LDA-based parameters (BaTiO3: 14 meV/unit cell and
15 meV/unit cell; KNbO3: 9 meV/unit cell and 10 meV/unit
cell). As the depths of double-well energy surfaces are believed
to be underestimated in the LDA framework, the description
of total-energy surfaces is improved by the accurate estimation
of lattice constants using SCAN.

B. Finite-temperature properties

We now investigate the effect of the exchange-correlation
functional on finite-temperature properties, i.e., transition
temperatures of three compounds (BaTiO3, PbTiO3, and
KNbO3) whose ferroelectric transitions are associated with
the soft mode at the � point.

1. Effective Hamiltonian

To predict the finite-temperature properties using MD
simulation, we use an effective Hamiltonian [7,25]:

H eff =M∗
dipole

2

∑
R,α

u̇2
α(R) + M∗

acoustic

2

∑
R,α

ẇ2
α(R) + V self ({u})

+ V dpl({u}) + V short({u}) + V elas,homo(η1,...,η6)

+ V elas,inho({w}) + V coup,homo({u},η1,...,η6)

+ V coup,inho({u},{w}) − Z∗ ∑
R

E · u(R), (3)

where u and w are the local soft-mode amplitude vector (soft-
mode displacement vector) and acoustic mode displacement
vector (lattice Wannier mode [45]) of the unit cell at position
R, respectively (α = x,y,z). η1, . . . ,η6 are the homogeneous
strain components. M∗

dipole and M∗
acoustic are effective masses

associated with polar soft and acoustic modes, respectively.
Z∗ is the Born effective charge associated with the soft mode,
and E is the external electric field.

The third term in Eq. (3) represents local-mode self-energy
[V self (u)] [7]:

V self ({u}) =
∑

R

κ2u
2(R) + αu4(R) + γ

[
u2

x(R)u2
y(R)

+u2
y(R)u2

z(R) + u2
z(R)u2

x(R)
]

+ k1u
6(R) + k2

{
u4

x(R)
[
u2

y(R) + u2
z(R)

]
+u4

y(R)
[
u2

z(R) + u2
x(R)

]
+u4

z(R)
[
u2

x(R) + u2
y(R)

]}
+ k3u

2
x(R)u2

y(R)u2
z(R) + k4u

8(R), (4)

where u2(R) = u2
x(R) + u2

y(R) + u2
z(R).

Equations (1a) and (1b) can be obtained from Eq. (4) by
taking u(R) = (0,0,u) and u(R) = (u,u,u) and replacing κ2 to
κ and truncating the polynomial in u at the fourth-order terms.
The fourth and fifth terms in Eq. (3) represent long-range
dipole-dipole interaction and short-range harmonic interaction

between optical displacements [u(R)] up to third nearest
neighbors. Terms containing acoustic mode displacement vec-
tor [w(R)] have been integrated out by minimizing Eq. (3) with
respect to [w(R)] [25]. The sixth and eighth terms in Eq. (3)
are the elastic energy and coupling between homogeneous
strain and optical mode (u), which have been determined here
by using the coupling constants [elastic constant (Cαβγ δ) and
strain-phonon coupling (Biαβ) parameters], as discussed in the
earlier section. We did not include the effect of external electric
field.

The short-range and long-range interaction parameters
determine the energy (or frequency) of the soft mode at
high-symmetry points other than �. We determine phonon
spectra at X, M, and R points of the Brillouin zone of BaTiO3,
PbTiO3, and KNbO3 to calculate the short-range interaction
parameters. These phonon calculations (at X, M, and R points)
were performed with (1 × 1 × 2), (

√
2 × √

2 × 1), and (
√

2 ×√
2 × √

2) supercells containing 10 atoms each, respectively.
In addition, we calculate phonon modes at the center of
the � axis (q = (110) π

2a
) by considering the 2

√
2 × 1 × √

2
supercell with 20 atoms for PbTiO3. We should note that
these calculations use the cubic structure of these compounds.
The long-range dipole-dipole interaction is proportional to
Z∗2/ε∞, where Z∗ is the mode effective charges associated
with the soft mode and ε∞ is the dielectric constant [10]. Our
calculated values of Z∗ are 10.16 (BaTiO3), 9.37 (PbTiO3),
and 11.52 (KNbO3), M∗ are 37.5 amu (BaTiO3), 102.6
amu (PbTiO3), and 65.4 amu (KNbO3), and ε∞ are 6.27
(BaTiO3), 7.95 (PbTiO3), and 5.492 (KNbO3). While the
SCAN meta-GGA estimates of Z∗2/ε∞ are within 10%
of the LDA estimates, they are closer (within 5%) to the
Wu-Cohen-functional-based estimates available for KNbO3

and BaTiO3 [7,32]. We consider local modes with Ti- and
Nb-centered atomic displacements (at �, X, M, and R points)
to study the phase transitions in BaTiO3 and KNbO3 [45].
However, Pb-centered local modes (at �, X, M, and R points)
have been used here to study the phase transition in PbTiO3

[8]. For studying phase transitions, we use the eigenvalues
of doubly degenerate modes with X5 (X′

5 mode for PbTiO3)
and M ′

5 (M ′
5 mode for PbTiO3) symmetries, nondegenerate

modes with X1 (X′
2 mode for PbTiO3) and M ′

3 (M ′
2 mode

for PbTiO3) symmetries, and triply degenerate mode with R′
25

(R15 mode for PbTiO3) symmetry of KNbO3 and BaTiO3. We
also take into account one Pb-based optical phonon mode at
the (110) π

2a
point of PbTiO3. The local (κ2) and short-range

interaction parameters (j1, . . . ,j7) are determined by using the
eigenvalues (ω) of these selected phonon modes and solving
the linear equations as given in Refs. [7,8,10].

The total harmonic interaction (long- and short-range)
matrix �̃quad(k) is analyzed using FERAM [7,26] to get the
model phonon dispersion of BaTiO3 (see Fig. 6), which is
similar to the dispersion obtained in earlier simulations using
WC-GGA-based parameters [7]. The short-range interaction
gives the most unstable mode at the X point [see Fig. 6(a)].
The dipole-dipole long-range interaction term results in a
cell-doubling state due to the strongest instability at the M
point [25]. The long-range dipole-dipole interaction splits the
longitudinal and transverse optical phonon modes at the �

point [see Fig. 6(b)] and the splitting in ω is proportional
to Z∗2/ε∞. However, the competing short- and long-range
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FIG. 6. Half of the eigenvalues of (a) short-range interaction
matrix and (b) total (long- and short-range) interaction matrix
(Eqs. (12) and (13) in Ref. [25]) along the high-symmetry directions
of BaTiO3.

interactions together give the strongest instability at the �

point. The short-range interaction parameters of BaTiO3,
PbTiO3, and KNbO3 are given in Table VII. For BaTiO3,
the short-range interaction parameters are comparable to the
parameters based on earlier calculations using WC-GGA.
As LDA underestimates lattice constants, the local (κ2) and
short-range interaction parameters (j2, j5, and j7) calculated
earlier using LDA are different from our estimates. The
short-range interaction parameters of PbTiO3 obtained using
SCAN are similar to the values obtained using LDA at the
experimental lattice constant (partly justifying this approxima-
tion in Ref. [8]) [8,46]. For KNbO3, local (κ2) and short-range
interaction parameters (j1, j2, and j4) are different from earlier
theoretical results using WC-GGA [26].

2. MD simulations

Using a SCAN-based parametrized effective Hamiltonian
[truncating the local-mode self-energy up to fourth-order
terms in u in Eq. (4)] [10,25], we perform heating-up and

TABLE VII. Calculated local and short-range interaction param-

eters (in eV/Å
2
) of BaTiO3, PbTiO3, and KNbO3 in comparison

with earlier theoretical results determined using LDA [7,8,46] and
WC-GGA [7,26] functionals.

Compound Parameter SCAN LDA [7,8,46] WC-GGA [7,26]

BaTiO3 κ2 8.31 5.52 8.53
j1 −2.54 −2.65 −2.08
j2 −0.82 3.906 −1.12
j3 0.78 0.90 0.68
j4 −0.52 −0.79 −0.61
j5 0.0 0.56 0.0
j6 0.32 0.36 0.27
j7 0.0 0.18 0.0

PbTiO3 κ2 1.36 1.17
j1 −1.36 1.17
j2 4.84 −1.35
j3 0.45 4.98
j4 −0.11 0.22
j5 0.60 −0.018
j6 −0.09 −0.083
j7 −0.05 −0.204

KNbO3 κ2 10.06 11.42
j1 −5.06 −3.27
j2 1.87 −1.15
j3 1.09 1.10
j4 0.07 −0.66
j5 0.0 0.0
j6 0.43 0.30
j7 0.0 0.0

cooling-down molecular dynamics simulations for BaTiO3,
PbTiO3, and KNbO3 to estimate TC . We define TC for the phase
transition P ↔ Q to be the mean of the transition temperatures
for P → Q and Q → P. Simulated lattice parameters of these
compounds as a function of temperature are presented in Fig. 7.
For BaTiO3 and KNbO3, we find three transitions: from cubic
(C) to tetragonal (T), from tetragonal (T) to orthorhombic (O),
and from orthorhombic (O) to rhombohedral (R), which are
consistent with the experimental observations [42,47]. We find
a single structural transition from the cubic to tetragonal phase
in PbTiO3.

Our predicted transition temperatures of BaTiO3 (see
Table VIII) are TC (C ↔ T) = 213 K, TC (T ↔ O) = 141 K,
and TC (O ↔ R) = 111 K [see Fig. 7(a)]. The TC of BaTiO3

are underestimated by up to 65% with respect to the ex-
perimental transition temperatures [47]. However, our TC

are 45% higher than earlier results obtained using LDA at
zero pressure [7]. The accurate determination of total-energy
surfaces using SCAN gets reflected in the estimates of the
transition temperatures. The rhombohedral to orthorhombic
transition temperature is improved compared to earlier LDA
and WC-GGA results at zero pressure [7]. The TC of the
transitions from the orthorhombic phase to tetragonal phase
and the tetragonal to cubic phase are 29% lower than the
TC obtained with parameters obtained using the WC-GGA
functional at zero pressure [7]. The c/a ratio of the tetragonal
phase obtained using the SCAN-based parametrized effective
Hamiltonian is 1.009 at 150 K, which agrees very well with
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TABLE VIII. Estimated Tc of BaTiO3, PbTiO3, and KNbO3 in comparison with earlier theoretical [7,8,46] and experimental
TC [26,42,47–49].

Compound Exchange-correlation functional R ↔ O O ↔ T T ↔ C

BaTiO3 SCAN 111 K 141 K 213 K
SCAN (including anharmonic coupling between phonons) 230 K 278 K 375 K

LDA, 0.0 GPa [7] 95 K 110 K 137 K
LDA, −5.0 GPa [7] 210 K 245 K 320 K

WC-GGA, 0.0 GPa [7] 102 K 160 K 288 K
WC-GGA, −2.0 GPa [7] 117 K 218 K 408 K

WC-GGA, −0.005T GPa [7] 103 K 187 K 411 K
Expt. [47] 183 K 278 K 403 K

KNbO3 SCAN 160 K 225 K 540 K
SCAN (including anharmonic coupling between phonons) 160 K 230 K 565 K

LDA (experimental lattice constant) [48] 210 K 260 K 370 K
WC-GGA [26], 0.0 GPa 177 K 310 K 660 K

WC-GGA [26], −0.001T GPa 175 K 323 K 703 K
Expt. [42] 210 K 488 K 701 K

PbTiO3 SCAN 630 K
SCAN (including anharmonic coupling between phonons) 675 K

LDA (experimental lattice constant) [8,46] 635 K
Expt. [49] 763 K

the experimental value (1.01) [14]. Earlier MD simulations
using the WC-GGA-based parameters gave the c/a ratio
of the tetragonal phase (1.017 at 155 K) higher than the
experimental value [7,14]. It has been observed from earlier
results that the tetragonal to cubic transition temperature
changes drastically by the application of negative pressure,
whereas the two other TC do not depend strongly on pressure.
As our calculated strain-phonon coupling parameters are

distinct from those in earlier works (B1xx = −185.33 eV/Å
2

and B1yy = −3.28 eV/Å
2
) using the WC-GGA functional, the

transition temperatures estimated with these two functionals
are different [7].

Our estimated three transition temperatures (see Table VIII)
of KNbO3 (O ↔ R = 160 K, T ↔ O = 225 K, and C ↔ T =
540 K) using the SCAN-based parameters [see Fig. 7(b)] are
underestimated compared to the experimental TC (O ↔ R =
210 K, T ↔ O = 488 K, and C ↔ T = 701 K) with the largest
error for the T ↔ O transition [42]. Values of TC (T ↔ O)
and TC (O ↔ R) calculated here are slightly underestimated
compared to earlier LDA results at the experimental lattice
constant [48]. However, our calculated TC (C ↔ T) is much
larger compared to earlier LDA results at the experimental
lattice constant [48]. On the other hand, our predicted transition
temperatures are lower than the calculated TC using the
WC-GGA functional at zero pressure [26]. The optimized
lattice parameter of cubic KNbO3 using SCAN is similar to the
earlier computed value using the WC-GGA functional [26].
However, the inclusion of higher-order (greater than 4) on-
site anharmonic coupling parameters and drastically different

strain-phonon coupling parameters (B1xx = −220.45 eV/Å
2

and B1yy = 31.35 eV/Å
2
) in earlier WC-GGA calculations

result in different values of TC compared to our estimated
values [26]. We must note that application of negative pressure
(using the WC-GGA-based effective Hamiltonian for BaTiO3

and KNbO3) does not affect the two lowest structural transition

temperatures (O ↔ R and T ↔ O), whereas only TC (C ↔
T) is a strong function of pressure [7,26]. The WC-GGA
functional has been constructed with a particular focus on
ferroelectric materials [7,17]. On the other hand, the SCAN
meta-GGA functional is universal as it is applicable for
all diversely bonded materials but might fail to precisely
determine one specific property of a particular type of material.
However, SCAN removes the typical error in estimating TC

arising from the underestimation of lattice constant.
For PbTiO3, we find a cubic to tetragonal phase transition

at 630 K [see Fig. 7(c)], which is slightly lower than the
experimental TC = 763 K (see Table VIII). However, our
predicted TC is close to earlier calculated TC (635 K) based
on LDA parameters at the experimental lattice constant [49].
The tetragonal c/a ratio at 0 K (obtained by extrapolating
lattice parameters) is 1.104, which is overestimated compared
to the experimental value (1.071 at 0 K) [14]. It is clear that
SCAN-based predictions of the transition temperatures of the
three oxides improve over those of LDA-based parameters
[8,46].

The discrepancies between our calculated TC and ex-
perimental TC have a contribution from the neglect of the
anharmonic coupling between the soft mode and higher-
energy phonon modes, as the error in the lattice constant
has been minimized using the SCAN meta-GGA functional.
The effect of including anharmonic coupling between soft and
higher-energy modes on finite-temperature properties will be
discussed in the following section.

C. Anharmonic coupling between phonons

We find that the depths of the double-well potentials of
BaTiO3, PbTiO3, and KNbO3 (along the [001] direction)
obtained directly from DFT calculations (Ecubic − Etetragonal =
25 meV/unit cell for BaTiO3, 123 meV/unit cell for PbTiO3,
and 47 meV for KNbO3) and from the effective Hamiltonian
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FIG. 7. Simulated temperature dependence of lattice parameters
of (a) BaTiO3, (b) KNbO3, and (c) PbTiO3 at zero pressure. Red
(dashed) and black (solid) lines represent heating and cooling curves,
respectively.

[Eq. (2a)] written as a fourth-order expansion (16 meV/unit
cell for BaTiO3, 95 meV/unit cell for PbTiO3, and 43 meV for
KNbO3) are different. This difference in energies highlights
the presence of anharmonic coupling between the soft mode
and other higher-energy optical phonon modes.

To identify higher-energy optical modes responsible for the
phase transition, we define a vector, given as

�S = �f − ( �f · êsoft)êsoft, (5)

where êsoft is the soft-mode eigenvector and �f is the fer-
roelectric distortion given as the atomic displacement vector
from the cubic to tetragonal phase. Phonon modes having �15

symmetry with frequencies 182 cm−1 (for BaTiO3), 140 cm−1

(for PbTiO3), and 207 cm−1 (for KNbO3) show strong overlap
(0.79 for BaTiO3, 0.55 for PbTiO3, and 0.52 for KNbO3)
with Ŝ. We find higher-energy optical phonon modes with �15

symmetry (478 cm−1 for BaTiO3, 530 cm−1 for PbTiO3, and
483 cm−1 for KNbO3) contributing sizably to the ferroelectric
distortion of the cubic phase.

To model the lowest-order coupling between these �15

modes, we write the total energy (along the [001] direction)
as a function of soft mode (u) and higher-energy modes v1

(182 cm−1 for BaTiO3, 140 cm−1 for PbTiO3, and 207 cm−1

for KNbO3) and v2 (478 cm−1 for BaTiO3, 530 cm−1 for
PbTiO3, and 483 cm−1 for KNbO3) by expanding it as a
symmetry-invariant Taylor series expansion up to eighth order
in u and second order in v1 and v2 with respect to the cubic
phase using ISOTROPY [50]:

E(u,v1,v2) = κu2 + α′u4 + k1u
6 + k4u

8 + κv1v
2
1 + e1u

3v1

+ f1u
2v2

1 + κv2v
2
2 + e2u

3v2 + f2u
2v2

2 . (6)

We have not considered the cubic coupling terms in higher-
energy phonon modes as their contributions to the energy are
less significant. e1 and e2 have been determined by projecting
forces (arising due to the freezing of the soft mode) on v1

and v2, as shown in Figs. 8(a) and 8(b), respectively. f1 and
f2 coupling terms have been evaluated by calculating the
eigenvalues of v1 and v2 modes as a function of amplitude of
the soft mode (u), shown in Figs. 8(c) and 8(d), respectively.
Such anharmonic coupling between the soft mode and higher-
energy optical phonon modes was ignored in the earlier model
Hamiltonian [Eq. (4)].

Minimizing the total energy [Eq. (6)] with respect to v1 and
v2, the resulting v1,min and v2,min are

v1,min ≈ −e1u
3

2kv1

(
1 − f1

κv1

u2

)
, (7a)

v2,min ≈ −e2u
3

2kv2

(
1 − f2

κv2

u2

)
. (7b)

The renormalized form of the total energy as a function of
u is obtained by substituting v1,min and v2,min in Eq. (6):

E(u) = κu2 + α′u4 +
(

k1 − e2
1

4κv1

− e2
2

4κv2

)
u6

+
(

k4 − e2
1f1

4κ2
v1

− e2
2f2

4κ2
v2

)
u8

= κu2 + α′u4 + k′
1u

6 + k′
4u

8. (8)
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FIG. 8. Projection of forces arising due to the freezing of the soft mode on the (a) v1 and (b) v2 modes of BaTiO3. Eigenvalues of the
(c) v1 and (d) v2 modes as a function of soft-mode amplitude (u).

The fourth-order coupling terms between phonon modes
modify the terms associated with sixth and eighth order in
soft-mode displacement.

The expressions for total energies as a function of u along
the [110] and [111] directions are [7]

E110(u) = κu2 +
(

α′ + 1

4
γ ′

)
u4

+
(

k′
1 + 1

4
k2

)
u6 + k′

4u
8, (9a)

E111(u) = κu2 +
(

α′ + 1

3
γ ′

)
u4

+
(

k′
1 + 2

9
k2 + 1

27
k3

)
u6 + k′

4u
8. (9b)

For BaTiO3, the values of the coupling constants are 3.95

eV/Å
2

(kv1 ), 6.85 eV/Å
2

(kv2 ), 107.91 eV/Å
4

(e1), 107.22

eV/Å
4

(e2), −92.74 eV/Å
4

(f1), 52.75 eV/Å
4

(f2), −325.24

eV/Å
6

(k1), and 2196.59 eV/Å
8

(k4). We have also determined

the sixth-order terms k2 (407.79 eV/Å
6
) and k3 (1286.21

eV/Å
6
) to define the potential energy surface for distortions

along the [110] and [111] directions [using Eqs. (9a) and (9b)].

When the double-well energy functions (along the [111] and
[001] directions) are fitted with an eighth-order polynomial,

the values of α and γ change to 126.18 eV/Å
4

and −171.69

eV/Å
4
, respectively. However, the addition of sixth- and

eighth-order terms (without including coupling between soft
polar and higher-energy modes) does not affect the well depth
and transition temperatures. The calculated energy difference
between the cubic and tetragonal phases using Eq. (8) is
24 meV, which is closer to the value obtained from DFT
calculations (25 meV).

To investigate the effect of changing the depth of the
double-well potential energy on finite-temperature properties,
we calculate the transition temperatures of BaTiO3 considering
our generalized effective Hamiltonian [Eqs. (8), (9a), and
(9b)]. Our simulated three transition parameters (see Table
VIII) using the new parameters (k′

1 and k′
4) are 230 K (O ↔ R),

278 K (R ↔ T), and 375 K (T ↔ C), as shown in Fig. 9(a).
The tetragonal to cubic transition temperature increases by
57% from the value (217 K) obtained without including the
coupling between soft mode and higher-energy modes. The
simulated value of the c/a ratio at 300 K of the tetragonal
phase is 1.014, which is slightly overestimated compared to the
experimental value (1.010), as expected [14]. Here, we did not
include the anharmonic coupling between phonons to modify
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FIG. 9. Estimated TC of (a) BaTiO3, (b) KNbO3, and (c) PbTiO3

including the fourth-order coupling between soft and higher-energy
phonon modes. Heating and cooling curves are indicated by red
(dashed) and black (solid) lines, respectively.

the k2 and k3 parameters, which will precisely determine the
depth of the energy well along the [111] and [110] directions.
This leads to the slight overestimation of two lower TC .

Similarly, the depth of the potential well of the tetragonal
state in the model of KNbO3 increases by 9 meV [from the
value of 43 meV obtained using Eq. (2a)] after including
the effects of anharmonic coupling between soft-mode and

higher-energy phonons (kv1 = 3.27 eV/Å
2
, kv2 = 7.17 eV/Å

2
,

e1 = 0.2 eV/Å
4
, e2 = −139.2 eV/Å

4
, f1 = −135.5 eV/Å

4
,

f2 = −138.3 eV/Å
4
, k1 = −464.3 eV/Å

6
, k4 = 1658 eV/Å

8
,

k2 = 550 eV/Å
6
, and k3 = 1347 eV/Å

6
). It is slightly over-

estimated compared to the energy well depth calculated using
DFT calculations (47 meV). The values of α and γ changes

to 127 eV/Å
4

and −166 eV/Å
4
, respectively (which does not

affect the TC when anharmonic coupling between phonons
is not included), when the double-well energy functions are
fitted with an eighth-order polynomial. The calculated values
of TC of KNbO3 using our generalized model Hamiltonian
with SCAN-based parameters are TC (C ↔ T) = 565 K, TC

(T ↔ O) = 230 K, and TC (O ↔ R) = 160 K [see Table VIII
and Fig. 9(b)]. We notice an increase in the tetragonal to
cubic transition temperature by 25 K from the value (540 K)
calculated earlier here, while the other two TC almost remain
unaltered.

Furthermore, we have calculated anharmonic coupling
parameters between the soft mode and the other two optical
phonon modes (ωv1 = 140 cm−1 and ωv2 = 530 cm−1) with

�15 symmetry (κv1 = 2.70 eV/Å
2
, κv2 = 7.91 eV/Å

2
, e1 =

41.02 eV/Å
4
, e2 = 28.61 eV/Å

4
, f1 = −12.75 eV/Å

4
, f2 =

−18.27 eV/Å
4
, k1 = −1.97 eV/Å

6
, and k4 = 13.64 eV/Å

8
)

of PbTiO3. The value of α changes slightly (6.52 eV/Å
4
),

when the potential energy surface along the [001] direction
is fitted with an eighth-order polynomial and it does not
affect the well depth and transition temperature. The evaluated
energy difference between the cubic and tetragonal phases
using Eq. (8) is 151 meV, which is slightly overestimated
compared to the value (123 meV) obtained using the DFT
calculation. After including anharmonic couplings between
soft and higher-energy modes, we find an increase in TC

to 675 K [see Fig. 9(c)] from the value (630 K) calculated
earlier here (see Table VIII). The c/a ratio at 0 K (obtained
by extrapolating lattice parameters) is 1.053, which is in close
agreement with the experimental value (1.071 at 0 K), but some
errors are expected from approximately integrating out the
higher-energy optic phonons [14]. Overall, our model based
on the parameters calculated using SCAN precisely determines
the depth of the potential well along the [001] direction, and
gives a better estimation of the TC and c/a ratios of the
tetragonal phases of BaTiO3 and PbTiO3.

IV. SUMMARY

We demonstrated consistent improvement in the theoret-
ical prediction of structural parameters of the eight cubic
perovskite oxides using the SCAN meta-GGA functional
relative to LDA or GGA. In addition, estimates of band
gaps of perovskite oxides typically increase and modestly
improve over the earlier estimates of band gaps obtained with
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LDA. Accurate structural parameters given by the SCAN
meta-GGA functional allow estimation of more realistic
total-energy surfaces of cubic perovskites as a function of
soft-mode amplitude, which are relevant to the temperature-
dependent structural phase transition. Our predicted zone-
center optical phonon (stable modes) frequencies using the
SCAN meta-GGA functional are in better agreement with the
experimentally observed frequencies compared to the values
using other functionals. Elastic constants and eigenvectors
of soft modes are weakly dependent on the choice of
exchange-correlation energy functional. For BaTiO3, PbTiO3,
and KNbO3, the strain-phonon coupling parameter B4yz and
anharmonic coupling terms and eigenvalues of soft modes
get significantly altered by the SCAN meta-GGA exchange-
correlation functional. The depths of the double-well energy
surfaces of the polar distortions along the [001], [110], and
[111] directions determined using the SCAN meta-GGA
functional are notably enhanced relative to the depth obtained
earlier using LDA.

As a consequence of these improvements, estimates of TC

of all the structural transitions in BaTiO3 and PbTiO3 are
closer to experiment than those of the earlier LDA results. In
particular, analysis of temperature-dependent transitions can
be carried out with the SCAN meta-GGA-based energy surface
without having to use negative pressure to compensate for error
in lattice constants (e.g., in LDA). We have quantified the
consequences of truncation of the subspace of the effective
Hamiltonian using the lowest-order coupling between soft

and higher-energy optic modes with �15 symmetry to the
estimation of TC . The fourth-order anharmonic coupling
between the soft polar mode and higher-energy optical modes
in BaTiO3 and PbTiO3 causes the increase in the depth of
the potential well, and consequently enhances the estimated
TC (Figs. 7 and 9, and Table VIII). At the interfaces in
heterostructures or superlattices based on perovskite oxides,
details of the atomic-scale structure depend on the mismatch
between lattice constants, and electronic band offsets depend
on band gaps. Since estimates of both lattice constants and
band gap are consistently improved with SCAN meta-GGA
calculations, we expect SCAN meta-GGA to be very effective
in simulations of perovskite heterostructures.
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