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Majorana quasiparticles of an inhomogeneous Rashba chain

Maciej M. Maśka,1,* Anna Gorczyca-Goraj,1 Jakub Tworzydło,2 and Tadeusz Domański3,†
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We investigate the inhomogeneous Rashba chain coupled to a superconducting substrate, hosting the Majorana
quasiparticles near its edges. We discuss its subgap spectrum and study how robust the zero-energy quasiparticles
are against the diagonal and off-diagonal disorder. Studying the Z2 topological invariant we show that disorder-
induced transition from the topologically nontrivial to trivial phases is manifested by characteristic features in
the spatially resolved quasiparticle spectrum at zero energy. We provide evidence for the nonlocal nature of the
zero-energy Majorana quasiparticles that are well preserved upon partitioning the chain into separate pieces.
Even though the Majorana quasiparticles are not completely immune to inhomogeneity, we show that they can
spread onto other (normal) nanoscopic objects via the proximity effect.
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I. INTRODUCTION

Quasiparticles induced at the edges of spinless (p-wave)
superconducting samples in one or two dimensions have the
exotic character of zero-energy bound states [1–3]. These
emergent Majorana-type objects have been predicted in vari-
ous systems, such as topological insulators [4,5], semiconduct-
ing nanowires [6,7], ferromagnetic chains coupled to s-wave
superconducting reservoirs [8], etc. Their possible realizations
have been also considered in topological superconductors with
electrostatic defects [9], Josephson-type junctions [10], quan-
tum dot chains [11–13], noncentrosymmetric superconductors
[14], ultracold atom systems [15], and many others. Intensive
studies of the Majorana quasiparticles have been reviewed by
several authors [16–21].

The most convincing experimental evidence for the zero-
energy Majorana modes have been provided so far by the
tunneling measurements using the nanoscopic chains proxim-
ity coupled to the s-wave superconducting reservoirs [22–25].
The Majorana quasiparticles are driven at the edges of such
chains by the strong spin-orbit coupling in the presence of the
Zeeman splitting, when the induced pairing evolves into the
topologically nontrivial p-wave superconductivity of identical
spin electrons on the neighboring sites [6,7].

Empirical signatures of the zero-energy quasiparticles
have been seen in the subgap spectroscopy. The first in-
dication was an enhancement of the zero-bias differential
conductance of the tunneling current flowing through the
end states of InSb nanowire placed between the conducting
(Au) electrode and the classical (Nb) superconductor [22].
The same effect has been later on reported in STM-type
configuration, by measuring the spatially resolved differential
conductance of magnetic (Fe) atom chain deposited on the
superconducting (Pb) substrate [23,24]. Similar STM setup
has been recently employed using the superconducting tip [25].
Another evidence for the Majorana modes has been reported in
Bi2Te3/NbSe2 heterostructure by means of the spin-resolved
Andreev spectroscopy [26].
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The purpose of our work is to study a stability of the zero-
energy Majorana modes in STM-type configuration (Fig. 1),
relevant to the experiments of Princeton [23] and Basel [24]
groups. In realistic situations the Rashba chain on a surface
of s-wave superconductor could be affected by inhomogeneity
of (i) atom energies (diagonal disorder), (ii) coupling to the
superconducting substrate (off-diagonal disorder), and (iii)
intersite hopping integral. It is hence important to study
how robust are the Majorana modes to various disorders.
Some aspects of the inhomogeneous Rashba chains have been
already addressed by several groups [27–40], emphasizing
that the Majorana quasiparticles are not completely immune
to the moderate and strong disorder [37]. Here we revisit
this issue in a systematic way. In particular, we (i) study
the boundary effects and their influence on spatial extent of
the zero-energy bound states, (ii) consider disordered-induced
transition from the topologically nontrivial to trivial states,
(iii) analyze stability of the Majorana quasiparticles upon
partitioning the chain into pieces, and (iv) present how
the Majorana quasiparticles spread on other side-attached
nanoobjects (quantum impurities) via the proximity effect.

The paper is organized as follows. In Sec. II we formulate
the microscopic model and discuss the subgap spectrum of a
finite-length Rashba chain. In Sec. III we consider stability of
the Majorana states in the inhomogeneous chain against the
random atom energies and coupling to the superconducting
substrate. Next, in Sec. IV, we consider an interplay between
the single impurities and the Majorana states. Finally, in
Sec. V, we summarize our results, and then we present some
technical details in Appendixes A–D.

II. MICROSCOPIC MODEL

Scanning tunneling microscope (STM) configuration
[23,24] (displayed in Fig. 1) can be modeled by the following
Hamiltonian,

Ĥ = Ĥtip + Ĥchain + ĤS + V̂hybr, (1)

where Ĥtip describes the normal tip, Ĥchain refers to the
atomic chain, and ĤS stands for the s-wave superconducting
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FIG. 1. Schematic view of the STM setup, in which the atomic
chain (hosting the Majorana quasiparticles) is deposited on the s-wave
superconducting substrate and is probed by the charge current of the
normal (conducting) tip.

substrate. For specific considerations we describe the atomic
chain by the tight-binding model Ĥchain = ∑

i,σ εi d̂
†
i,σ d̂i,σ +∑

i,j,σ tij d̂
†
i,σ d̂j,σ + ĤRashba + ĤZeeman, where the second

quantization operator d̂
(†)
i,σ annihilates (creates) an electron at

ith site with energy εi and spin σ , and the intersite hopping
integral is denoted by tij . We assume the magnetic field
B = (0,0,B) and the spin-orbit vector α = (0,0,α). We express
the Rashba interaction and the Zeeman terms by

ĤRashba = −α
∑
i,σ,σ ′

[d̂†
i+1,σ (iσ y)σσ ′ d̂i,σ ′ + H.c.], (2)

ĤZeeman = gμBB

2

∑
i,σ,σ ′

d̂
†
i,σ (σ z)σσ ′ d̂i,σ ′ . (3)

We treat the STM tip as the free fermion gas
ĤN =∑

k,σ ξkN ĉ
†
kσN ĉkσN and describe the isotropic super-

conductor by the BCS model ĤS =∑
k,σ ξkS ĉ

†
kσS ĉkσS −∑

k �sc(ĉ†k↑S ĉ
†
−k↓S + ĉ−k↓S ĉk↑S). The operators ĉ

(†)
kσβ refer to

the itinerant electrons with momentum k, spin σ , and energy
ξkβ = εk − μβ (where β = N,S). Hybridization between the
atoms and both external reservoirs is described V̂hybr =∑

k,σ,β (Vi,kβ d̂
†
i,σ ĉkσβ + V ∗

i,kβ ĉ
†
kσβ d̂i,σ ), where Vi,kβ are the

tunneling matrix elements.

A. Deep subgap regime

Since the zero-energy modes are formed inside the super-
conducting energy regime (−�sc,�sc) it is convenient to intro-
duce the characteristic couplings �i,β = 2π

∑
k |Vi,kβ |2 δ(ω −

ξkβ) and treat them as constant quantities. In the weak coupling
limit, �S � �, the superconducting reservoir induces the
electron pairing at each of the atoms (see Appendix A for
details):

ĤS +
∑
k,σ

(Vi,kS d̂
†
i,σ ĉkσS + H.c.) ≡ �id̂

†
i,↑d̂

†
i,↓ + H.c. (4)

The proximity-induced pairing potential is �i = �i,S/2. The
atomic chain can be hence formally described by the following
low-energy Hamiltonian [18]

Ĥ
(prox)
chain =

∑
i,σ

εi d̂
†
i,σ d̂i,σ +

∑
i,j,σ

tij d̂
†
i,σ d̂j,σ + ĤRashba

+ ĤZeeman +
∑

i

�i(d̂
†
i,↑d̂

†
i,↓ + d̂i,↓d̂i,↑). (5)

In a homogeneous system (εi = μ, tij = tδ|i−j |,1, �i = �)
the zero-energy quasiparticles of (5) exist in the topologically
nontrivial superconducting state, in a region restricted by the
boundaries [6,7,41]

(μ ± 2t)2 + �2 − V 2
Z = 0, (6)

where VZ = gμBB/2 is the Zeeman energy. Majorana-type
quasiparticles of the inhomogeneous systems (for various
kinds of disorder) are discussed in Sec. III.

Obviously this heuristic scenario (5) does not capture
any electronic states existing outside the energy gap of
bulk superconductor |ω| > �sc. To take them into account
one should properly treat the dynamic effects [27,42] ap-
pearing in the energy-dependent self-energy (mentioned in
Appendix A). Other possibility would be to study the Rashba
chain along with the piece of superconducting substrate by
the Bogoliubov–de Gennes approach [43]. Such states would
eventually induce a continuous background of the high-energy
spectrum, and could show up in the tunneling characteris-
tics at e|V | � �sc. The Rashba chain weakly coupled to
superconducting substrate subgap states is at low energies
reliably reproduced by the static approximation (5) [18]. Our
present study is focused here on stability of the zero-energy
quasiparticles; therefore we skip the high-energy effects.

B. Intrinsic inhomogeneity of atomic chain

Let us briefly analyze the in-gap quasiparticles of the
uniform chain consisting of N atoms. We have determined
numerically the eigenvalues and eigenvectors of the proxi-
mized atomic chain (5) for N = 70, using the following model
parameters: εi/t = −2.1, α/t = 0.15, and �i,S/t = 0.2.
These parameters are chosen to guarantee that the system is in
a topologically nontrivial regime, unless the critical disorder
is achieved.

In the popular Kitaev model the Majorana bound states
appear at the very last sites of a one-dimensional chain
characterized by the uniform intersite triplet pairing. In reality,
however, a magnitude of the induced p-wave pairing would
be affected by the finite atomic length. To get some insight
into such effects we investigate the pairing amplitudes of
both the singlet 〈d̂i,↓d̂i,↑〉 and equal-spin channels 〈d̂i,σ d̂i+1,σ 〉,
respectively. Figure 2 shows their spatial variation for the
chosen model parameters. The internal chain sites are char-
acterized by nearly constant (uniform) value of the pairing
amplitude, whereas at the edges there appear some deviations.
The maximal amplitude of 〈d̂i,↓d̂i,↑〉 corresponds to i ∼ 3
(and i ∼ N − 3). The other peripheral chain atoms i = 1,2
are characterized by the clearly reduced pairing amplitude.
This intrinsic inhomogeneity has noticeable implications on
the induced p-wave pairing and such aspect distinguishes
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FIG. 2. The spatially resolved induced pairings �↑↓ = 〈d̂i,↓d̂i,↑〉,
�↑↑ = 〈d̂i,↑d̂i+1,↑〉, and �↓↓ = 〈d̂i,↓d̂i+1,↓〉 obtained for the same
model parameters as in Fig. 16 and gμBB/2 = 0.27t . �↑↑ denotes
the magnitude of the order parameter 〈d̂i,↑d̂i+1,↑〉 calculated in the
case when the spin-orbit interaction is nonzero only close to the ends
of the chain (on sites from 1 to 15 and from 56 to 70). For the sake
of visibility the intersite equal-spin pairing amplitudes are multiplied
by 5.

our approach from the Kitaev toy model [1]. Practically,
such effects could be verified by means of the spin-polarized
Andreev spectroscopy [26].

Spatial profile of the Majorana quasiparticles is essentially
dependent on the anomalous spectral densities Fijσσ ′(ω) =
− 1

π
Im〈〈d̂i,σ ; d̂j,σ ′ 〉〉 at zero energy. Figure 3 shows them for

the s-wave (where j = i and σ �= σ ′) and the p-wave (where
j = i + 1 and σ = σ ′) pairing channels. In both cases the

FIG. 3. Off-diagonal spectral densities Fijσσ ′ (ω) at ω = 0 for
different pairings. The inset shows a comparison of the zero-energy
local density of states for different sizes of the part of the chain where
the spin-orbit interaction is switched off. The solid black line (“full”)
represents the reference chain with the spin-orbit interaction on all
lattice sites. Lines described as “15,” “10,” and “5” show the local
density of states (LDOS) in cases when the interaction is present
only on 15, 10, and 5 outermost sites, respectively. Note that the line
marked as “15” differs from the reference line only in the central
region.

FIG. 4. Subgap spectrum of the atomic chain for each site
i ∈ 〈1,70〉 with the line broadening imposed by �N = 0.1�S .

anomalous spectral functionFijσσ ′ (ω=0) does not vanish only
in such regions where the Majorana states exist. The induced
amplitudes (for each pairing channel shown in Fig. 2) have
been calculated from 〈d̂i,σ d̂j,σ ′ 〉 = ∫

dωFijσσ ′(ω) f (ω,T ),
where f (ω,T ) = [1 + exp(ω/kBT )]−1 is the Fermi-Dirac
distribution function.

Since the spectral functions Fijσσ ′(ω = 0) vanish away
from the Majorana states, we presume that electron pairing
would be necessary only at the chain edges. We checked
such a possibility by switching off the spin-orbit interaction
(responsible for p-wave pairing) on internal sites of the chain.
Our results (see inset in Fig. 3) prove that as long as the
region of the absent spin-orbit interaction does not coincide
with the Majorana quasiparticles, their profile is not really
much affected. For instance, the red dashed line in the inset
in Fig. 3 (corresponding to the spin-orbit interaction present
only in 15 sites at the chain edges) is nearly identical with
the result for uniform system. By further expanding the
region of absent spin-orbit interaction, the Majorana states
become eventually damped. Simultaneously we observe small
oscillations of ρ(ω = 0) appearing in part of the atomic chain
where the spin-orbit coupling is absent. This is consistent with
the results reported in Ref. [38], for the Rashba chain with
nonuniform spin-orbit coupling. By switching off the spin-
orbit coupling in a half of the chain, the Majorana quasiparticle
of the noninteracting half evolved into the finite-energy Shiba-
Andreev states. Our system can be regarded as two pieces of
such chains, interconnected by the noninteracting parts with
two Majorana quasiparticles preserved at the opposite edges.
Another relative situation will be discussed in Sec. IV, where
we consider a gradual partitioning of the atomic chain.

The boundary effects have also influence on a profile of
the Majorana quasiparticles [44,45]. In Fig. 4 we present
the spatially resolved local density of states (LDOS). The
Majorana quasiparticles spread over nearly 10 peripheral
atoms and (for the chosen model parameters) their maximal
intensity occurs at sites i = 4 and i = 66. This fact nicely
coincides with the real experimental data, reported by the
Princeton group [23]. The strongest zero-bias enhancement
of the subgap STM tunneling corresponds to the point 2 in
Fig. 4 of the report by Yazdani [46]. Its distance from the
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(a) (b)

(c) (d)

FIG. 5. Local DOS at ω = 0 as a function of the model parameters: (a) magnitude of the induced pairing �, (b) the chemical potential
μ, (c) magnetic field B, and (d) the spin-orbit coupling α. The values of the other (fixed) parameters are given above each panel. The white
dashed lines show boundaries of the topological region given by Eq. (6). Note that independent of the model parameters the LDOS maximum
is always shifted from the nanowire edge.

chain edge is roughly ∼8 Å, so the Majorana feature is indeed
centered near the fourth iron atom.

We have checked that such maximum of the local density
of states rather weakly depends on the model parameters
[provided that the system is in the topologically nontrivial
regime given by Eq. (6)]. Spatial profile of the zero-energy
Majorana quasiparticles and their dependence on �, μ, B, and
α are presented in Fig. 5. We clearly notice that the maximal
intensity roughly appears either at the fourth or third atom
from the chain edge.

LDOS at zero energy is also sensitive to the localization
length of the Majorana quasiparticles and the interference
between different components of the composite wave function
[47–50],


M (x) ∼ sin(kF x)e−x/ξ , (7)

where kF depends on microscopic parameters, such as the
chemical potential or the Zeeman splitting. The localization
length ξ itself, however, is not sufficient to explain the position
of the LDOS maximum. For example, the actual maximum
slightly departs from the chain edge upon increasing �

[see Fig. 5(a)], whereas the localization length is expected
to scale in the opposite way ξ ∝ 1/� [42]. This suggests

that the boundary effects within the low-energy effective
model (5) describe the realistic situation, without any need for
fine-tuning to reproduce the experimentally observed shape of
the Majorana bound states.

III. DISORDERED RASHBA CHAIN

In this section we investigate whether the Majorana quasi-
particles can sustain such forms of the inhomogeneity as the
random site energies εi (we call it “diagonal disorder”) and
the spatially varying coupling �i,S to s-wave superconducting
substrate that affects the pairing potential �i (we call it
“off-diagonal disorder”).

A. Random site energies

We have chosen the energies εi = ε + ξi δ with a random
number ξi ∈ 〈−1,1〉 and the magnitude δ ranging from
small to large values [38]. We have next determined the
spectral function and averaged it roughly over ∼104 different
configurations {ξi}, depending on δ. The main panel in Fig. 6
displays spatial variation of the averaged spectral function at
zero energy ω = 0 for representative values of δ, ranging from
the weak to strong disorder.
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FIG. 6. Evolution of the zero-energy subgap quasiparticle spec-
trum ρi(ω = 0) driven by the diagonal disorder. Inset shows the local
density of states obtained at ω = 0 for i = 4, where the Majorana
quasiparticle has the highest probability (solid blue line) and the
density of states averaged over all sites of the chain (rescaled to the
same maximum value, dashed red line).

With increasing δ the subgap spectrum is gradually filled
in. To illustrate this behavior we present in inset to Fig. 6
the spectral function ρi(ω = 0) at site i = 4 (solid blue line),
where the Majorana quasiparticle has the largest probability.
We observe that near some critical amplitude δ∗ ∼ 0.7 our
system undergoes a qualitative changeover, above which
ρ4(ω = 0) asymptotically tends to a value common for the
entire atomic chain. The dashed red line in inset to Fig. 6
shows the density of states averaged over entire chain. We
can notice that for a weak disorder the averaged zero-energy
density remains almost intact. It means that in the presence of
the weak disorder the bound states survive at ω = 0, but they
can be shifted from the chain edges. For stronger disorder the
total zero-energy density is reduced, indicating that the subgap
quasiparticles move to finite energies.

To further clarify such changeover we show in Fig. 7 con-
comitant evolution of the averaged spectral function ρi(ω = 0)
at the internal site i = N/2 (where for δ = 0 the zero-energy
quasiparticles are absent). With increasing disorder (but below
δ∗) the zero-energy states gradually build up. We argue that
they originate from the Majorana states that are pinned by
disorder on internal sites (as explained in Sec. IV). With further
increase of δ (above δ∗) the zero-energy spectral function
slowly diminishes. This tendency is caused by evolution
from the nontrivial to trivial superconducting phases. Such
changeover is smooth, regardless of the atomic chain size N

(see the solid lines in Fig. 7). Additional indication that strong
disorder triggers the trivial superconducting state is provided
by evolution of ρi(ω) at finite energy ω = 0.03t , corresponding
to the soft gap regime (see Appendix B). The black dashed
line in Fig. 7 indeed shows that strong disorder closes the soft
gap, which is evidenced by saturation of ρi(ω = 0.03t) for
large δ, inducing the ordinary Andreev-Shiba states. A similar
scenario, where the Majorana quasiparticles are destroyed by
critical disorder, holds true also for more realistic multiband
systems (see Appendix D). Additional evidence that the

(a)

(b)

FIG. 7. The quasiparticle spectrum ρi(ω) at the central site
i = N/2 averaged over 104 realizations of the random site energies.
The solid lines in panel (a) show the density of states at ω = 0 for
several N , as indicated. The black dashed line presents ρi(ω0) at
small (yet finite) energy ω0 = 0.03t for N = 70. Panel (b) presents
the determinant of the reflection matrix averaged over 103 disorder
realizations versus the disorder δ. Sign of this determinant changes
between the topologically trivial and nontrivial phases, as discussed in
Sec. III C. The vertical stripe marks a range of δ in which the averaged
det(R) changes the sign, depending on the chain length varying from
N = 50 to N = 200. We can notice that the sign change of det(R)
nearly coincides with the maximum of ρi(ω = 0).

critical disorder magnitude δ∗ corresponds to transition to the
topologically trivial phase is provided in Sec. III C.

There is a significant advantage of studying the local
density of states away from the Majorana edge states. As
illustrated in Fig. 6, the magnitude of the Majorana states
smoothly decreases almost to zero with increasing disorder
without any characteristic points that could be used to pinpoint
the topological transition. However, in the corresponding
evolution of the zero-energy states away from the chain edges
(Fig. 7), such a feature is well pronounced and can be easily
identified.

Figure 8 illustrates the zero-energy p-wave spectral density
versus δ obtained for various N . This result confirms that above
δ∗ the Majorana quasiparticles disappear as a consequence of
the suppressed equal-spin pairing and δ∗ can be regarded to be
characteristic point for a crossover to the nontrivial pairing.

It is interesting that for δ < δ∗ the spectral function ρi(ω=0)
scales with the system size N , whereas only minor statistical
fluctuations show up above δ∗. While for any finite disorder all
the states are localized (what is seen by means of the inverse
participation ratio method, not presented here), it may suggest
that at δ∗ the localization length changes abruptly. The critical
character of δ∗ is even more pronounced in the geometrically
averaged local density of states (see Appendix C).
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FIG. 8. Suppression of the p-wave superconducting phase in-
duced by the disorder, where F↑↑(ω = 0)|max is the maximum of the
p-wave spectral density along the chain. The red vertical strip has the
same meaning as in Fig. 7(b).

B. Random coupling to superconducting substrate

In analogy to the random site energies (discussed in previ-
ous subsection) we have studied the inhomogeneous coupling
between the chain atoms and superconducting substrate �i,S =
�S + ξi δ. Physically such situation may occur when the wave
functions of atoms randomly overlap with the wave functions
of itinerant electrons in superconducting substrate. This kind
of disorder (that appears in off-diagonal Green’s function of the
Nambu representation) is known to have detrimental influence
on superconductivity of bulk materials [51].

Figure 9 shows the results obtained for several amplitudes
δ (in units of t) of the off-diagonal disorder imposed on the
reference value �S/t = 0.2. We roughly observe a similar
tendency as in Fig. 6, but a more careful examination indicates
that nonuniform coupling �i,S is slightly less influential on the
Majorana quasiparticles [38].

FIG. 9. Evolution of the subgap quasiparticle spectrum ρi(ω = 0)
caused by the random coupling �i,S .

C. Topological quantum number

So far we have analyzed evolution of the local density of
states at ω = 0, providing indirect evidence for the disorder-
induced destruction of the Majorana bound states. We argued
that transfer of the averaged spectral density ρ(ω) from the
chain ends to its internal lattice sites (below some critical δ∗)
was caused by pinning of the Majorana states by disorder.
For stronger δ > δ∗ the Majorana states disappeared and the
quasiparticle peaks moved to finite (nonzero) energies. In
consequence the averaged ρ(ω = 0) decreased and its maximal
value (located at the central chain sites) indicated a smooth
transition to the topologically trivial superconducting phase.
In order to check whether this interpretation of transition from
the topologically nontrivial to trivial regions (at δ∗) is correct
we shall analyze it here by determining the Z2 topological
quantum number.

The topological quantum number Q can identify whether
the chain is in the topologically trivial (Q = 1) or nontrivial
(Q = −1) state. Kitaev [1] has shown that for a translationally
invariant nanowire this quantity can be expressed as Q =
sign Pf[A(0)]Pf[A(π )], where A(k) is the Hamiltonian in
momentum space transformed to the Majorana basis. In the
disordered systems, however, skew-symmetric matrices A(k)
are very large so it is cumbersome to calculate Q from the
above formula.

In Refs. [52,53] it has been shown that the topological
number Q can be determined from the scattering matrix S of
the chain

S =
(

R T ′
T R′

)
, (8)

where R and T (R′ and T ′) are 4 × 4 reflection and transmis-
sion matrices, respectively, at the left (right) end of the chain.
This matrix describes transport through the chain coupled to
left and right leads (

ψ−,L

ψ+,R

)
= S

(
ψ+,L

ψ−,R

)
, (9)

where ψ±,L/R are the right or left moving modes (±) at the left
or right edge (L/R) at the Fermi level. Then, the topological
quantum number is given by

Q = sign det(R) = sign det(R′). (10)

The scattering matrix S can be obtained from multiplication
of the individual transfer matrices of all the lattice sites.
This procedure has been described in detailed in Ref. [8].
Since the product of numerous transfer matrices is numerically
unstable, we converted them into a composition of the unitary
matrices, involving only eigenvalues of unit absolute value.
This stabilization method has been proposed in Ref. [54].
Figure 10 shows det(R) as a function of the chemical potential
μ and magnetic field B for the uniform Rashba chain (without
any disorder).

Difference between the boundaries of the topologically
nontrivial regime given by Eq. (6) and the actual change
of sign of det(R) results from the finite length of Rashba
chain. By comparing the main plot with the inset in Fig. 10
(corresponding to 500-site chain) we clearly observe that
topological properties for the model parameters (chosen in
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FIG. 10. det(R) as a function of the chemical potential μ and
magnetic field B for a clean chain composed of 70 lattice sites.
The rest of the model parameters are the same as assumed in the
calculations. The white dashed lines show the boundaries of the
topologically nontrivial regime given by Eq. (6). The arrow indicates
the parameters used in the study of the disorder-induced destruction
of the Majorana end states. The inset shows the same for a 500-site
chain.

Sec. II) are only slightly smeared by the finite-size effects. In
such regime the topologically nontrivial state remains intact
also in presence of the weak disorder (δ < δ∗). This can be
seen in Fig. 11, where we display det(R) averaged over 104

disorder realizations for δ = 0.25t and δ = 0.5t , respectively.
A criterion based on the topological number Q was used

by us to establish the magnitude of disorder, above which
the Majorana bound states disappear. Figure 7(b) shows that
such topological transition indeed takes place around δ∗. This
confirms that maximum of ρ(ω = 0) in the central part of
the Rashba chain coincides with the crossover between the
topologically distinct phases. Above δ∗ the system enters
the topologically trivial phase, where the bound quasiparticle
states are lifted to finite (nonzero) energies, leading to
suppression of ρ(ω = 0). A closer look at Fig. 7(b) reveals
that det(R) in the changeover regime is getting steeper with
increasing length of the chain and that the point where it
changes its sign is moving towards stronger disorder. The
critical disorder δ∗ in the limit of an infinite chain is indicated
by the point where all the lines representing det(R) for different
chain lengths cross each other. This point is very close to the
maximum of ρ(ω = 0).

IV. SINGLE IMPURITIES

Another interesting situation can be caused by single
impurities existing either in the Rashba chain or attached to it.
We briefly address such problem in this section.

A. Splitting of the Rashba chain

Let us consider a single internal defect that can effectively
produce additional pair of the Majorana quasiparticles. To be
specific, we assume a reduced hopping integral t ′ between one
pair of the internal sites in the Rashba chain. For numerical
calculations we imposed the reduced hopping t ′ between 35th

(a)

(b)

FIG. 11. The same as in Fig. 10, but in the presence of disorder
with δ = 0.25t (a) and δ = 0.5t (b), respectively. Value of det(R) is
averaged over 104 realizations of disorder. The white area separating
the red and blue regions correspond to the borderline (where det(R)
changes sign) between the topologically distinct phases.

and 36th sites of the atomic chain, consisting of 70 atoms. We
checked that a particular position of the reduced interatomic
hopping is not crucial as long as it is well in between the
Majorana quasiparticles.

In Fig. 12 we illustrate emergence of the Majorana
quasiparticles driven by the suppressed hopping integral t ′ < t

(which can be regarded as a particular kind of the local defect).
In the limit t ′ → 0 the Rashba chain is decomposed into
separate segments and during this process one pair of the finite-
energy (Andreev) states gradually evolves into the zero-energy
Majorana states. Although this phenomenon is rather obvious,
it is quite astonishing that the Majorana states, already existing
at the edges of uniform chain, are completely unaffected by the
chain partitioning. We assign this unique behavior to nonlocal
character of the edge Majorana states. This effect is similar
to what we presented in Sec. II B, investigating the Majorana
quasiparticles of the atomic chain in absence of the spin-orbit
coupling on its interior part. Similar internal pairs of the
Majorana quasiparticle states have been predicted on interface
between the chain segments, where the spin-orbit coupling
α changes sign [35]. The reduced hopping t ′ considered here
seems to be quite realistic because it could explain origin of the
bright spots observed near the locally deformed Fe-atom chain
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(a)

(b)

(c)

(d)

FIG. 12. The spatially and energy-dependent spectral function
ρi(ω) of the atomic chain, where the hopping integral between the
internal 35th and 36th sites is reduced to t ′/t = 1, 0.6, 0.2, and 0
(from top to bottom).

FIG. 13. Constant-height zero-bias AFM image of the Fe chain
used in the Basel experiment. The red lines drawn on top of the image
show that there are sections shifted in the direction perpendicular to
the chain. This defect image is part of Fig. 2(c) from Ref. [24] used
and modified in accordance with the Creative Commons Attribution
license.

in the Basel group experiment (Fig. 13). To verify this, one
should inspect the spatially resolved differential conductance
measured around such defect.

B. Diagonal and off-diagonal impurity

Similar effects can be also achieved if we place either the
diagonal or off-diagonal impurity in one of the internal Rashba
chain sites. In practice, however, such internal impurity has to
be extremely distinct from all remaining constituents of the
chain. Our numerical calculations showed that the impurity
potential has to be very large (δ > 10t) to effectively break
the chain into separate pieces, generating an additional pair of
the Majorana quasiparticles. This situation is hardly probable
in realistic systems; therefore we discard it from present
considerations.

C. Side-attached normal impurity

Let us finally analyze what happens when a (normal)
quantum impurity is coupled to the Rashba chain at the sites
which host the Majorana quasiparticle. A similar issue has been
previously addressed, considering the impurity coupled to the
very end of Kitaev chain [43,50,55,56]. In a finite-size Rashba
chain, the maximum probability of the Majorana quasiparticles
does not coincide with the very last sites, but they are located
around the fourth site from the atomic edge (as reported
experimentally [46]). For this reason we expect the strongest
influence of the Majorana quasiparticle on the normal quantum
impurity when the latter is side attached to the fourth site of
the Rashba chain.

On a formal level, we studied the model Hamiltonian (5)
supplemented with the term

Himp = εf

∑
σ

f̂ †
σ f̂σ + tf

∑
σ

(f̂ †
σ d̂j,σ + H.c.), (11)

describing the quantum impurity of energy εf attached to site
j = 4 of the topological wire. In Fig. 14 we present electronic
spectrum of the quantum impurity ρf (ω) obtained for several
couplings tf /t , as indicated. With increasing tf we observe the
appearance of the zero-energy state that absorbs more spectral
weight. This feature is caused by the proximity effect, which
can be considered as leakage of Majorana mode onto normal
quantum impurities [55,56]. As a minor remark, let us notice
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FIG. 14. The proximity effect showing up in the spectrum of the
normal quantum impurity (the red sphere in the top panel) that is
side-attached to the atomic chain, near the Majorana quasiparticle.

that the finite-energy (Andreev-Shiba) states do leak into the
normal quantum impurity as well.

Summarizing this section, we conclude that various types of
quantum impurities may play an important role for the Majo-
rana quasiparticles of the Rashba chain. The reduced hopping
integral or the strong local potential (both in the single particle
and pairing channels) can effectively break the chain into
pieces, so that an additional pair of Majorana quasiparticles
emerges. On the other hand, any nanoscopic object coupled to
the existing Majorana quasiparticle absorbs such exotic entity
in exactly the same way as the superconducting or magnetic
order spreading onto some neighboring normal regions.

V. SUMMARY

We studied the subgap electronic spectrum of the inhomo-
geneous Rashba chain deposited on s-wave superconducting
substrate, where the strong spin-orbit coupling combined
with the Zeeman effect induce the zero-energy Majorana
quasiparticles near its edges. We analyzed the spatial extent of
such quasiparticles due to intrinsic inhomogeneity caused by
the boundary effects.

We also investigated stability of the Majorana quasiparticles
against various types of the disorder that are likely to occur
in realistic STM-type configurations (schematically displayed
in Fig. 1). Despite a common belief that the Majorana
quasiparticles are robust to environmental influence, we have
shown that this is not truly the case. Our study reveals
that sufficiently strong disorder would be detrimental for
the Majorana quasiparticles, causing a transition from the
topologically nontrivial to trivial superconducting phases. This
conclusion is unambiguously supported by the value of the Z2

topological number, averaged over numerous (∼104) different
configurations with the fixed amplitude δ. We have shown
that such a qualitative changeover would be spectroscopically
manifested by a peak in the zero-energy spectrum in the
internal chain sites (Fig. 7). We demonstrated that this peak is

present not only in a simple single-band model, but also in a
more realistic multiband one.

Since it is difficult to measure the topological invariant,
this effect might be useful for empirical determination of
the critical disorder δ∗, signaling a transition between the
nontrivial and trivial phases. It would particularly well suited
for systems, where disorder can be modified in a controllable
way, e.g., in ultracold atoms [57].

Single quantum impurities have also very unusual inter-
play with the Majorana quasiparticle states. Under specific
conditions they can effectively induce additional pairs of
the Majorana states, when the strong impurity scattering
affects any internal site of the Rashba chain. This process
is analogous to partitioning the chain into separate pieces,
bringing to life new Majoranas. It is amazing, however, that the
existing (external) Majorana modes are practically left intact
by such partitioning. This unusual phenomenon is a signature
of their nonlocal origin that could be useful for constructing
the quantum bits out of Majorana quasiparticles. We also
have shown that Majorana quasiparticles can spread onto
nanoscopic objects coupled to them. Such proximity effect can
be helpful for designing some novel tunneling heterostructures
to indirectly probe the Majorana quasiparticles, for instance,
by the quantum interference.
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APPENDIX A: IN-GAP STATES
OF THE PROXIMIZED ATOM

To support relevance of the microscopic model (5) for the
deep subgap regime (|ω| � �) let us study influence of the
proximity effect on the single atom (Anderson-type impurity)
placed between the normal and superconducting reservoirs,
neglecting the intersite hopping tij = 0. Since all atoms behave
identically we can skip index i when studying the spectrum of a
given atom. To account for the proximity effect we have to treat
the particle and hole degrees of freedom on equal footing. This
can be done within the Nambu representation 
̂

†
d = (d̂†

↑,d̂↓),


̂d = (
̂†
d )† introducing the single-particle matrix Green’s

function G(τ,τ ′)=〈〈
̂d (τ ); 
̂†
d (τ ′)〉〉. The electronic spectrum

and the transport properties (see Appendix B) are given by its
diagonal and off-diagonal parts, respectively.

In equilibrium conditions (μN = μS) the Fourier transform
of Gd (τ,τ ′) = Gd (τ − τ ′) can be expressed as

G−1(ω) =
(

ω−ε 0
0 ω+ε

)
− �d (ω). (A1)

In general, the self-energy �d (ω) accounts for the hybridiza-
tion of the quantum impurity with external reservoirs and the
correlation effects. In the absence of the correlations its exact
form �d (ω) = ∑

k,β |Vkβ |2gkβ(ω) depends on the Green’s
functions gkβ(ω) of mobile electrons. In the wide-band limit
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MACIEJ M. MAŚKA et al. PHYSICAL REVIEW B 95, 045429 (2017)

FIG. 15. Spectrum of the isolated atom (tij = 0) coupled to
the superconducting (�S) and normal (�N ) reservoirs. Results are
obtained in the absence of the correlations for ε = 0, � = 2�S and
several coupling ratios �N/�S , as indicated.

�d (ω) simplifies to [58,59]

�d (ω) = − i�N

2

(
1 0
0 1

)
− �S

2

(
1 �

ω
�
ω

1

)

×
{

ω√
�2−ω2 for |ω| < �

i |ω|√
ω2−�2 for |ω| > �

. (A2)

Equation (A2) describes (i) the proximity-induced electron
pairing (via the off-diagonal terms that are proportional to �S)
and (ii) the finite lifetime effects. The latter come from the
imaginary parts of the self-energy (A2) and depend either on
both couplings �β=N,S (for energies |ω| � �) or solely on �N

(in the subgap regime |ω| < �).
In the subgap regime |ω| < � the Green’s function acquires

the BCS-type structure

G(ω) =
(

ω̃ + i�N/2 − ε �̃S/2
�̃S/2 ω̃ + i�N/2 + ε

)−1

(A3)

with ω̃ = ω + �S

2
ω√

�2−ω2 and �̃S = �S
�√

�2−ω2 , respectively.

The spectral function ρd (ω) = −π−1ImG11(ω + i0+) reveals
two in-gap peaks, related to the Andreev [58,60] or Yu-Shiba-
Rusinov [51,61] quasiparticles. We can regard their splitting
as the induced pairing gap �d (Fig. 15).

Figure 15 shows the spectral function for several ratios
�N/�S . In the extreme regime �N →0 the in-gap quasiparti-
cles are represented by the Dirac distribution functions (i.e.,
their lifetime is infinite). Otherwise the broadening of in-gap
states is proportional to �N . Energies EA,± of the Andreev
quasiparticles have to be determined from the following
equation [62]:

EA,± + (�S/2)EA,±√
�2 − E2

A,±
= ±

√
ε2 + (�S/2)2�2

�2 − E2
A,±

. (A4)

For �S � � the quasiparticle energies (A4) appear close to the
superconductor gap edges EA,± � ±�, whereas in the weak

FIG. 16. Evolution of the subgap quasiparticle energies of the
uniform Rashba chain from the (topologically) trivial to nontrivial
superconducting phases above Bc ≈ 0.22.

coupling limit, �S � �, the asymptotic values are EA,± �
±

√
ε + (�S/2)2.

In the superconducting atomic limit �N → 0 the self-
energy (A2) becomes static

�0
d (ω) = −1

2

(
i�N �S

�S i�N

)
, (A5)

and therefore the following equivalence holds:∑
σ

εd̂†
σ d̂σ + ĤS +

∑
k,σ

(VkS d̂
†
i,σ ĉkσS + H.c.)

=
∑

σ

εd̂†
σ d̂σ − (�dd̂

†
↑d̂

†
↓ + H.c.) (A6)

with �d = �S/2 valid for the deep subgap regime |ω| � �.
This line of reasoning allows us to represent the initial
Hamiltonian (1) of the atomic chain by (5) that describes the
proximized quantum wire coupled to the STM tip.

APPENDIX B: IN-GAP STATES OF THE CHAIN

In Fig. 16 we show typical variation of the in-gap quasipar-
ticle energies versus the magnetic field B, expressed in units of
t/(gμB/2). We notice that at some critical value (Bc ≈ 0.22)
two in-gap quasiparticles evolve into the zero-energy bound
states. Because of a finite chain length there is some overlap
between these Majoranas, observable by a tiny splitting of the
zero-energy modes with magnitude dependent on the magnetic
field. Above Bc these Majorana modes are protected by the soft
gap (∼0.1t for the present set of parameters) outside of which
there exist the ordinary (Andreev-Shiba) states.

APPENDIX C: CROSSOVER TO TRIVIAL PHASE

In this section we provide additional evidence for a
crossover from the nontrivial (p-wave) to trivial (s-wave)
pairing driven by the diagonal disorder (random energies of the
atoms). Figure 17 shows the geometrically averaged density
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FIG. 17. Geometrically averaged density of states obtained at
ω = 0 for site i = 4 as a function of the diagonal disorder. The red
vertical strip corresponds to the changeover from the nontrivial to
trivial superconducting phases (as defined in Fig. 7).

of states ρ̃i(ω) ≡ exp〈ln ρi(ω)〉{ξi } (typical density of states)
versus the disorder amplitude δ at site i = 4, corresponding
to the maximum of the zero-energy Majorana mode. We
noticed that length N has practically no effect; therefore
we conclude that gradual disappearance of the Majorana
quasiparticles is a generic property. Point δ∗ can be interpreted
as characteristic for the smooth transition from the nontrivial
to trivial superconducting phases.

Figure 18 presents the geometrically averaged density of
states at the central site i = N/2. We suspect that the weak
disorder regime is related with the Majorana mode(s) which
are eventually pinned at individual sites inside the chain. This
process is somewhat sensitive to the atomic chain length N .
On the other hand, for stronger disorder δ > δ∗, we observe
the monotonous decrease of the spectral function at zero
energy (that is almost insensitive to N ). Using geometrical
averaging we notice that the maximum of ρ̃(ω = 0) is much
more pronounced than in the case of arithmetic averaging
(Fig. 7). Moreover, in the present Fig. 18 the maximum
perfectly coincides with the transition where the topological

FIG. 18. Geometrically averaged local density of states obtained
for ω = 0 at the central site i = N/2. The meaning of the red vertical
strip is the same as in Fig. 7).

FIG. 19. The same as in Fig. 6, but for a two-band model using
μ = −1.05t , μBB = 0.27t , the interband hybridization t12 = t , and
the interband spin-orbit coupling α12 = α.

Z2 number changes. It suggests that the local density of states
in the internal part of the Rashba chain (distant from the
Majorana quasiparticles) could be useful for identifying the
disorder-induced topological transition.

APPENDIX D: TWO-BAND RASHBA CHAIN

Up to this point we have investigated the Majorana
quasiparticles of a strictly one-dimensional chain, where they
are created by occupying only the lowest transverse sub-band
of atomic nanowire. Since such a condition might be difficult
to satisfy in real experiments, we shall address here the
influence of disorder on the Majorana states for the simplest
multiband system. It has been demonstrated in Refs. [63,64]
that a multiband Rashba chain coupled to an s-wave bulk

(a)

(b)

FIG. 20. Geometrically averaged local density of states at central
site i = N/2 obtained for zero energy within the two-band model
with the same model parameters as in Fig. 19.
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FIG. 21. The same as in Fig. 10, but for a two-band model. The
results presented in Figs. 19 and 20 are obtained for the system in
topologically nontrivial regime (indicated by the white arrow), that is
hardly affected by the finite-size effects.

superconductor can be effectively modeled with two chains,
whose coupling depends on external parameters that can be
tuned. For studying how robust the Majorana quasiparticles
of multiband disordered systems are, we generalize the
Hamiltonian (5) to the form

Ĥ
(prox)
2b = Ĥ

(prox)
chain (ĉ) + Ĥ

(prox)
chain (d̂) + t12

∑
i,σ

ĉ
†
iσ d̂iσ + H.c.

+α12

∑
i,σσ ′

[ĉ†iσ (iσ x)d̂iσ ′ − d̂
†
iσ (iσ x)ĉiσ ′], (D1)

where ĉiσ (d̂iσ ) are annihilation operators for electrons in chain
1 (2) described by Hamiltonians Ĥ

(prox)
chain (ĉ) [Ĥ (prox)

chain (d̂)]. The
model parameters are tuned to allow for emergence of the
Majorana quasiparticle. Our results are presented in Figs. 19
and 20.

One can see that dependence of the local density of states on
disorder is almost exactly the same as in the one-band model.

FIG. 22. The same as in Fig. 11(b), but for a two-band model.
Additionally, the inset shows the sign of det(R) averaged over 104

disorder realizations.

Again, the maximum of ρ(ω = 0) in the central part of the
chain coincides with the critical disorder δ∗. This suggests that
in the multiband case δ∗ corresponds to transition between the
topologically nontrivial and trivial phases.

To confirm this observation we calculated the Z2 topolog-
ical quantum number, following the procedure described in
Sec. III C. In the present case the scattering matrix [Eq. (8)]
was composed of 8×8 blocks R,R′,T ,T ′ expressed in the
basis given by vectors (ĉ†i↑,ĉ

†
i↓,ĉi↓, − ĉi↑,d̂

†
i↑,d̂

†
i↓,d̂i↓, − d̂i↑).

Numerical product of these matrices is even more unstable
than for the one-band model case, but fortunately the method
proposed in Ref. [54] helps to obtain reliable results. Figure 21
shows det(R) for the uniform atomic chains comprising 70 and
500 lattice sites.

Influence of the disorder is presented in Fig. 22. By
comparing it with Fig. 11(b) we notice that the topologically
nontrivial region is in both (one- and two-band) models quite
similar. Figures 20(a) and 20(b) indicate that the disorder-
induced topological transition coincides with the maximum of
the local density of states (at zero energy) in a central site of
the atomic chain.
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