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Competition of the Coulomb and hopping-based exchange interactions in granular magnets
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We study exchange coupling due to the interelectron Coulomb interaction between two ferromagnetic grains
embedded into an insulating matrix. This contribution to the exchange interaction complements the contribution
due to virtual electron hopping between the grains. We show that the Coulomb and the hopping-based exchange
interactions are comparable. However, for most system parameters these contributions have opposite signs and
compete with each other. In contrast to the hopping-based exchange interaction the Coulomb-based exchange
is inversely proportional to the dielectric constant of the insulating matrix ε. The total intergrain exchange
interaction has a complicated dependence on the dielectric permittivity of the insulating matrix. Increasing ε one
can observe the ferromagnet-antiferromagnet (FM-AFM) and AFM-FM transitions. For certain parameters no
transition is possible, however even in this case the exchange interaction has large variations, changing its value
three times by increasing the matrix dielectric constant.
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I. INTRODUCTION

Granular metals possess complicated physics involving size
and charge quantization effects which interplay with compli-
cated morphology of these systems [1–10]. Many-body effects
play a crucial role in granular metals. Electronic and thermal
transport properties of granular metals are broadly studied both
theoretically and experimentally. These properties are defined
by conduction electrons in the systems [2]. The situation
becomes more complicated in granular magnets with magnetic
metallic grains being embedded into an insulating matrix
[11–14]. The magnetic state of granular magnets is defined
by three main interactions: magnetic anisotropy of a single
grain, magnetodipole interaction between ferromagnetic (FM)
grains, and the intergrain exchange interaction. Magnetic
properties of granular magnets were studied in many papers.
Numerous papers were devoted to magnetic anisotropy and
magnetodipole interaction [15–22]. Much less is known about
the exchange interaction between magnetic grains [23–27].
The influence of the intergrain exchange coupling on the
magnetic state of the whole granular magnet is currently
understood, however the microscopic picture of the intergrain
exchange interaction is still missing. Note that the intergrain
exchange coupling is related to the conduction electrons. The
theory of such a coupling extends the theory of conduction
electrons in granular metals.

In most experimental studies the exchange coupling be-
tween magnetic grains was explained using the Slonczewski
model [28], developed for magnetic tunnel junctions (MTJ).
Usually the coupling between grains was estimated using this
model by taking into account the grains’ surface area. Recently
it was shown that the intergrain coupling differs from the
exchange coupling in MTJ [27]. In the granular system the
exchange coupling depends not only on the distance between
the grains and on the insulating matrix barrier, but also on the
dielectric properties of the matrix. Such an effect appears due
to charge quantization and the Coulomb blockade effects in
FM nanograins.

The intergrain exchange coupling studied in the past was
due to virtual electron hopping between the grains and can

be associated with the kinetic energy in the system Hamil-
tonian. However, it is known that the many-body Coulomb
interaction also leads to the magnetic exchange interaction
[29,30]. Recently the Coulomb-based exchange interaction
was considered in MTJ [31]. It was shown that this contribution
to the magnetic interaction between magnetic leads separated
by the insulating layer is comparable and even larger than the
hopping-based exchange coupling.

In this paper we consider a competition of the Coulomb
and the hopping-based exchange coupling in the system of two
spherical magnetic grains embedded into an insulating matrix.
In contrast to the layered system the screening of the Coulomb
interaction in the granular system is different due to finite
grain sizes. This leads to the appearance of additional terms
in the total exchange interaction between grains. Also, the
hopping-based exchange interaction in granular and layered
systems is different. Thus, the competition of hopping and
Coulomb-based exchange interaction in the granular system
results in essentially different total coupling.

In Ref. [31] it was shown that the Coulomb-based coupling
strongly depends on the insulator dielectric constant. For the
granular system both the hopping and the Coulomb-based
exchange depend on the matrix dielectric susceptibility.

In this paper we calculate the Coulomb-based exchange
interaction between FM nanograins and study the competition
between two mechanisms of exchange interaction.

The paper is organized as follows. In Sec. II we introduce
the model for the granular system. In Secs. III and IV we
underline the main results for the hopping-based exchange
coupling in granular systems. In Sec. V we calculate the
interelectron Coulomb interaction and the intergrain exchange
coupling. We discuss and compare the Coulomb and the
hopping-based exchange interaction in Sec. VI. Finally, we
discuss validity of our theory in Sec. VII.

II. THE MODEL

We consider two identical FM grains with radius a (see
Fig. 1). The Hamiltonian describing delocalized electrons in
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FIG. 1. (a) Two FM metallic grains with radius a and intergrain
distance d embedded into an insulating matrix with dielectric constant
ε. M1,2 stands for grain magnetic moment. (b) Schematic picture of
potential energy profiles for an electron with spin “up” (red line) and
“down” (blue line) states for AFM configuration of leads magnetic
moments M1,2. Red and blue lines are slightly shifted with respect to
each other for better presentation. Zero energy corresponds to the top
of the energy barrier for electrons in the insulator. Symbols FM and
I stand for FM metal and insulator, respectively. All other notations
are defined in the text.

the system can be written as follows:

Ĥ = Ĥ0 + ĤC, (1)

where the single particle Hamiltonian Ĥ0 = ∑
i[Ŵk(ri) +

Û1(ri) + Û2(ri) + Ĥ1m(ri) + Ĥ2m(ri)] has the kinetic energy
Ŵk, the potential profiles of grains Û1,2, and the exchange
interaction between conduction electrons and ions Ĥ1,2m

[30] in each grain. ĤC is the Coulomb interaction between
electrons.

We assume that the single particle potential energy is
Ûi = −U�i , where �i = 1 inside grain (i) and �i = 0
outside grain (i). We consider only FM and AFM collinear
configurations of the grains’ magnetizations M1,2. According
to the Vonsovskii s-d model the ions influence the delocalized
electrons through creation of spin-dependent single particle
potential of magnitude Ĥ

sp
1,2m(ri) = −Jsdσ̂zM1,2�1,2; where

M1,2 takes only two possible values ±1.

Note that we choose the zero energy level at the top of the
insulating barrier (see Fig. 1). This leads to the negative Fermi
level EF < 0.

We introduce a single particle Hamiltonian for each separate
grain Ĥ

g
1,2 = Ŵk + Û1,2 + Ĥ1,2m, with the eigenfunctions ψs

i

in grain (1) and φs
j in grain (2). The subscript i stands

for orbital state and the superscript s denotes the spin state
in a local spin coordinate system related to magnetization
of the corresponding grain. Due to grain symmetry the
wave functions are symmetric ψs

i (x,y,z) = φs
i (x,y,−z). The

energies of these states are εs
1i = εs

2i = εs
i .

The creation and annihilation operators in grain (1) are âs+
i

and âs
i , and in grain (2) are b̂s+

i and b̂s
i . The total number of

electrons is given by the operators n̂ and m̂ in grains (1) and
(2), respectively. The whole system is neutral. The total charge
of ions in each grain is −en0.

We introduce the zero-order many-particle wave functions
�AFM

0 and �FM
0 for AFM and FM configurations of leads

magnetic moments M1,2. These wave functions describe the
noninteracting FM grains (d → ∞). All states ψs

i and φs
j

with energies εs
i < EF are filled and all states above EF are

empty (we consider the limit of zero temperature). The wave
functions of coupled grains, when d is finite, are denoted as
�FM and �AFM for FM and AFM configurations, respectively.

We split the Coulomb interaction operator into two parts,
ĤC = ĤdC + ĤiC. Here ĤdC describes direct Coulomb inter-
action of electrons in the grains. It has the form [2,3]

ĤdC = Ec(n̂ − n0)2 + Ec(m̂ − n0)2 + e2

Cm
(n̂ − n0)(m̂ − n0),

(2)

where Ec = e2/(8πε0 εeff a) is the grain charging energy in
SI units with εeff being the effective dielectric constant of the
surrounding media. In general εeff can differ from the dielectric
constant ε of the insulating matrix. In granular magnets the
effective dielectric constant depends on properties of insulating
matrix and grains [2]. In inhomogeneous systems, such as
layers of grains located on top of the insulating substrate,
the charging energy Ec is a complicated function depending
on the grain density, dielectric properties of the substrate, and
geometrical factors [32,33]. In Eq. (2), Cm is the mutual grains
capacitance.

The second part of the Coulomb interaction describes the
indirect spin-dependent Coulomb interaction—the exchange
interaction [29]

ĤiC = −
∑
i,j,s

U s
ij â

s+
i âs

i b̂
s ′+
j b̂s ′

j , (3)

with

Us
ij =

∫∫
d3r1d

3r2ψ
s∗
i (r1)φs ′

j (r1)ÛCψs
i (r2)φs ′∗

j (r2). (4)

Here s ′ = s for FM and s ′ = −s for AFM configuration
of grain magnetic moments; and ÛC is the operator of the
Coulomb interaction between two electrons. In Eq. (3) we keep
only diagonal elements of the indirect Coulomb interaction
with repeating indexes. We do this assuming that electron
wave functions have random phases due to scattering on
impurities. In this case only matrix elements with repeating
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indices survive. Also we omit the indirect Coulomb interaction
between conduction electrons in the same grain. On one hand,
this contribution does not produce any interaction between
grains and, on the other hand, it leads to spin subband splitting
which is much smaller than the s-d interaction (and may be
incorporated into constant Jsd).

Recently the exchange interaction between magnetic grains
was considered using the Hamiltonian Ĥ0 + ĤdC [27]. How-
ever, later it was shown [31] that the indirect Coulomb
interaction may also lead to magnetic coupling between the
FM contacts. In particular, this was demonstrated for MTJ with
infinite leads. The indirect Coulomb-based interlayer exchange
interaction was found to be comparable with hopping-based
exchange interaction. In the present paper we calculate the
intergrain exchange interaction based on the indirect Coulomb
interaction of electrons ĤiC. We denote the hopping-based
exchange interaction as H ex

h . It is given by the following
expression:

H ex
h = 〈�AFM|Ĥ0 + ĤdC|�AFM〉 − 〈�FM|Ĥ0 + ĤdC|�FM〉.

(5)

The contribution to the exchange coupling from the indirect
Coulomb interaction is given by

H ex
iC = 〈

�AFM
0

∣∣ĤiC

∣∣�AFM
0

〉− 〈
�FM

0

∣∣ĤiC

∣∣�FM
0

〉
. (6)

For Coulomb-based exchange interaction it is enough to
average the operator over the ground state. The total exchange
interaction is defined as follows:

H ex = H ex
h + H ex

iC . (7)

III. SINGLE GRAIN WAVE FUNCTIONS

Consider single spherical metallic grain with radius a. We
will follow the approach and notations of Ref. [27]. In the
absence of spin-orbit interaction the spin and the spatial parts
of wave functions are separated. The spin parts are (10)T

and (01)T for the spin up and spin down states, respectively.
We introduce the following coordinates: z is along the line
connecting grain centers; z = 0 is the symmetry point between
the grains; x and y are perpendicular to z, r⊥ =

√
x2 + y2.

Grains surfaces are close to each other around point (x,y,z) =
0. In general, the wave functions are the spherical waves with
quantum numbers (m,n,l). For d 	 a and Sc = πa/
0 	
πa2 (
0 =

√
−2meEF/�2 is the inverse characteristic length

scale of electron wave function decay inside the insulator)
we approximate the electron wave functions in the vicinity of
grain surfaces with plane waves. We change quantum numbers
(m,n,l) with (kx,ky,kz). In the vicinity of the grains’ contact
area we use the following expressions for wave functions:

ψs
k(z,r⊥) ≈ τ s

k√
�

exp

[
−
s

k

(
d

2
+ z + r2

⊥
2a

)]
eik⊥r⊥ ,

(8)

φs
k(z,r⊥) ≈ τ s

k√
�

exp

[
−
s

k

(
d

2
− z + r2

⊥
2a

)]
eik⊥r⊥ .

This expression is valid in the insulator region outside the
grains. Here τ s

k = 2kz

kz+i
s
k

is the amplitude of the transmitted

electron wave, k⊥ = (kx,ky,0), r⊥ = (x,y,0), � = 4πa3/3,

and 
s
k = √

2me[U − s Jsd −�2k2
z /(2me)]/�2 is the inverse

decay length written in new notations. We neglect the surface
interference effect and the penetration of electron wave
function beyond the grain in determining the normalization
factor.

Below we will use the symbols i and j (instead of k) to
describe a set of quantum numbers characterizing the orbital
motion of electrons. The overlap of wave functions of electrons
i and j located in different grains exists only between the grains
in a small region in the vicinity of r⊥ = 0. The in-plane area
[(x,y) plane] of the overlap region is S

ij
c = π (λij

⊥)2, where
λ

ij

⊥ = √
2a/(
i + 
j ). The introduced above area Sc = πλ2

⊥
is the contact area for electrons at the Fermi level (size λ⊥ =√

a/
0).
For electron wave functions inside the grains we obtain

ψs
k(z,r⊥) ≈ eikz( d

2 +z+ r2⊥
2a

) + ξ s
ke−ikz( d

2 +z+ r2⊥
2a

)

√
�

eik⊥r⊥ ,

(9)

φs
k(z,r⊥) ≈ eikz( d

2 −z+ r2⊥
2a

) + ξ s
ke−ikz( d

2 −z+ r2⊥
2a

)

√
�

eik⊥r⊥ ,

with ξ s
k = kz−i
s

k
kz+i
s

k
. Below we will use Eqs. (8) and (9) to

calculate exchange interaction between the grains.

IV. HOPPING-BASED EXCHANGE INTERACTION

This mechanism was considered for grains in Ref. [27]. We
split the expression for the hopping-based exchange interaction
into two parts:

H ex
h = H ex

h0 − H ex
hε , (10)

where

H ex
h0 = πa

(2π )2
0

∑
s

∫ ks
F

0
dk
[(

ks
F

)2 − k2
]
V s

k

− a

8π2
0

∑
s

[∫ k−s
F

0
dk1

∫ ks
F

0
dk2δ̃

s(k1,k2)T −ss
12

(
P −ss

12

)∗

−
∫ ks

F

0
dk1

∫ ks
F

0
dk2δ

s(k1,k2)T ss
12

(
P s

12

)∗]
(11)

and

H ex
hε =− a

8π2
0

⎧⎪⎨
⎪⎩
∫ k−

max

√
2J̃sd

dk1

∫ k−
up

0
dk2

ξ̃−(k1,k2)|T −−
12 |2

�2
(
k2

1−k2
2−2J̃sd

)
2me

+ ε̃c

+
∫ k+

max

0
dk1

∫ k+
up

0
dk2

ξ̃+(k1,k2)|T ++
12 |2

�2

2me

(
k2

1 − k2
2 + 2J̃sd

)+ ε̃c

−
∑

s

∫ ks
max

0

∫ min(k1,k
s
F)

0
dk1dk2

ξ s(k1,k2)
∣∣T s−s

12

∣∣2
�2
(
k2

1−k2
2

)
2me

+ ε̃c

⎫⎪⎬
⎪⎭.

(12)

For simplicity we change all different squares S
ij
c in the

integrals with characteristic contact area S0 = πa/
0. This
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change does not influence the resulting exchange interaction a
lot. We introduce the following functions:

δ̃s(k1,k2) =
{(

k−s
F

)2 − k2
1, 2sJ̃sd + k2

2 < k2
1,(

ks
F

)2 − k2
2, 2sJ̃sd + k2

2 > k2
1,

(13)

δs(k1,k2) =
{(

ks
F

)2 − k2
1, k2 < k1,(

ks
F

)2 − k2
2, k1 > k2,

(14)

ξ̃ s(k1,k2) =
{(

2sJ̃sd + k2
1 − k2

2

)
, k1 < ks

F,((
k−s

F

)2 − k2
2

)
, k1 > ks

F,
(15)

ξ s(k1,k2) =
{(

k2
1 − k2

2

)
, k1 < ks

F,((
ks

F

)2 − k2
2

)
, k1 > ks

F,
(16)

and notations

ks
up = min

(√
k2

1 + 2sJ̃sd ,k−s
F

)
. (17)

ks
max =

√
2me(U − sJ )/�2, (18)

ks
F =

√
2me(EF + U − sJ )/�2, (19)

J̃sd = 2me Jsd /�
2. (20)

We introduce the charging energy ε̃c = 2Ec − e2/Cm, which
can be estimated as ε̃c = e2/(8πaεε0) for d ≈ 1 nm and a ∈
[1; 10] nm.

The matrix elements T s
12, P s

12, and V s
k in Eqs. (11) and (12)

are given by the following expressions:

V s
k =−s Jsd

(∣∣τ s
i

∣∣)2(

s

i

) e−2
s
i d ,

T ss ′
ij =−(s Jsd +U )

τ s∗
i τ s ′

j

(

s

i + 
s ′
j

)
[
(ki)2 + (


s ′
j

)2] e−
s′
j d ,

P ss ′
ij = τ s∗

i τ s ′
j

(

s

i + 
s ′
j

)
[
k2
j + (


s
i

)2] e−
s
i d + τ s∗

i τ s ′
j

(

s

i + 
s ′
j

)
[
k2
i + (


s ′
j

)2] e−
s′
j d

+ 2τ s∗
i τ s ′

j e−(
s
i +
s′

j ) d
2 sinh

[(

s

i − 
s ′
j

)
d
2

]
(

s

i − 
s ′
j

) . (21)

For semimetal with only one spin subband occupied (EF <

Jsd −U ) we sum in Eqs. (11) and (12) only over the occupied
spin subband (s = “−”).

V. COULOMB-BASED EXCHANGE INTERACTION

The integral in Eq. (4) includes the operator of the Coulomb
interaction ÛC. For a homogeneous insulator it has the form
ÛC = e2/(4πε0ε| r1 − r2 |), where ε is the medium effective
dielectric constant. In our case the system is inhomogeneous
and the Coulomb interaction is renormalized by screening
effects due to metallic grains.

There are two regions contributing to Eq. (4): (1) The region
inside the FM grains �1 (�2) where the Coulomb interaction

is effectively screened and is short range [3,34]

ÛL
C = ��

2
δ(r1 − r2) + 2Ec

+ 2Ecλ
2
TF

a
δ(|r1| − a) + 2Ecλ

2
TF

a
δ(|r2| − a), (22)

where � is the mean energy level spacing, �� =
6π2EF/[(k+

F )3 + (k−
F )3]. In metals the Coulomb interaction

is screened on the length scale of the order of Thomas-
Fermi length λTF ≈ [

√
e2k3

F/(4πε0)EF]−1 ≈ 0.05 nm. The
characteristic length scale of the electron density variation
is 
−1

0 ≈ 0.5 nm. Thus we can use the local approximation for
decaying electron wave functions since λTF 	 
−1

0 .
The Coulomb-based exchange coupling between infinite

magnetic leads was considered in Ref. [31], where it was
shown that the Coulomb interaction inside the FM leads also
contributes to the total interlayer exchange coupling. However,
for infinite leads the last three terms in Eq. (22) disappear. In
the present paper we take into account these terms appearing
due to finite grain sizes.

(2) The second region contributing to Eq. (4) is the region
between the grains where screening of the Coulomb interaction
is weak and the interaction is long range. However, due to
metallic grains, the electric field of two interacting electrons
is finite only inside this region. We denote the renormalized
Coulomb interaction inside the insulating layer as Û I

C.
In our model electrons inside the insulator and electrons

inside the grains do not interact with each other.
The right-hand side of Eq. (4) can be considered as the

Coulomb interaction between two effective charges ρ
(1)
ij =

eψs∗
i (r)φs ′

j (r) and ρ
(2)
ij = eψs

i (r)φs ′∗
j (r). Here s ′ = s for FM

and s ′ = −s for AFM ordering. One can see that ρ
(1)
ij =

ρ
(2)∗
ij = ρij .

We can write the matrix elements of the indirect Coulomb
interaction as a sum of two terms:

Us
ij = Ls

ij + I s
ij ,

Ls
ij =

∫∫
�1+�2

d3r1d
3r2ρij (r1)ÛL

Cρ∗
ij (r2), (23)

I s
ij =

∫∫
�I

d3r1d
3r2ρij (r1)Û I

Cρ∗
ij (r2),

where �1,2 = � is the grain volume and �I is the volume of
the insulating layer. The index s stands for the spin index of
the electron wave function in grain (1). The spin state of the
electron in grain (2) is the same (s) for FM and −s for AFM
configuration. We can split the total Coulomb-based exchange
interaction into two contributions:

H ex
C = Lex + I ex. (24)

Below we consider these two contributions to the Coulomb-
based exchange interaction separately.

A. Contribution to the exchange interaction due
to the insulating region I ex

To calculate the contribution to the exchange interaction
due to the insulating region we will follow the approach of
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Ref. [31] where exchange coupling was calculated for MTJ. In
this approach the electric field Eij

1,2 created by effective charges

ρ
(1,2)
ij inside the insulating region was calculated by taking

into account the screening produced by the FM leads. The
leads were treated as ideal metal with zero screening length.
The energy of this field (the part corresponding to the mutual
interaction) Iij = (ε0ε)(

∫
�I

d3rEij

1 Eij

2 ) gives the estimate of
the matrix element of indirect Coulomb interaction. In MTJ
the charges ρ

(1,2)
ij are periodic functions in the (x,y) plane and

decay exponentially along z direction. In the case of magnetic
grains the geometry of the system is more complicated. We
will use the following approximation: the region of interaction
of electrons in states i and j is restricted by the area S

ij
c . The

linear size of this area is much larger than the Fermi length
for large enough grains (

√
πa/
 > 1/kF). In this case we can

model the interaction region as two leads with parallel surfaces
neglecting grains curvature. In the region of interaction we
calculate the electric field created by charges ρ

(1,2)
ij as if we have

the infinite parallel leads. The matrix element of the interaction
is given by Iij = (ε0ε/2)(

∫
�̃I

d3rEij

1 Eij

2 ), where �̃I is the
volume restricted by the inequalities |z| < d/2, r⊥ < a
ij .
In practice we multiply the area-normalized matrix elements
in Ref. [31] by the contact area S

ij
c . Following Ref. [31]

we derive the following expression for the Coulomb-based
exchange interaction:

I ex = ˜̃Iex − Ĩ+
ex − Ĩ−

ex, (25)

where

˜̃Iex =− e2a

16π4ε0ε

∫ k+
F

0

∫ k−
F

0
dk1dk2

|(τ+
1 )∗τ−

2 |2

+

1 + 
−
2

e−d(
+
1 +
−

2 )

×
∫ kmax

2 +kmax
1

0
qωI(q)dq

∫ (kmax
2 +kmax

1 )/2

0
kζ (k,q)dk,

(26)

Ĩ s
ex =− e2

16π4ε0ε

∫ ks
F

0

∫ k1

0
dk1dk2

|(τ s
1 )∗τ s

2 |2

s

1 + 
s
2

e−d(
s
1+
s

2 )

×
∫ kmax

2 +kmax
1

0
qωI(q)dq

∫ (kmax
2 +kmax

1 )/2

0
kζ (k,q)dk.

(27)

The maximum value of perpendicular momenta are kmax
1 =√

(ks
F)2 − k2

1z and kmax
2 =

√
(ks ′

F )2 − k2
2z, where s ′ = s in ex-

pression for kmax
1 and kmax

2 in Eq. (26), and s = “+,” s ′ = “−”
in Eq. (27). We also introduce the following functions:

ζ (k,q) =
{

0, (φ2 < φ3) or (φ1 < φ3),
φ1 − φ3, otherwise, (28)

where

φ1(k,q) =

⎧⎪⎪⎨
⎪⎪⎩

0, k > kmax
1 + q/2,

π+π sgn(kmax
1 −q/2)

2 , k < |kmax
1 − q/2|,

arccos
( k2+q2/4−(kmax

1 )2

qk

)
, otherwise.

(29)

φ2(k,q) =
{

π, k < kmax
2 − q/2,

arccos
( k2+q2/4−(kmax

2 )2

qk

)
, otherwise.

(30)

φ3(k,q) = π − φ2(k,q). (31)

The reduced matrix element ωI(q) is given by the expression

ωI(q) = ωIx(q) + ωIz(q), (32)

where

ωIz =
{(

α2
1 + α2

2

) sinh(dq)

q
+ α2

3
sinh(d�
)

q
+ 2α1α2d

+ 4α1α3
sinh[(�
 + q)d/2]

�
 + q

+ 4α2α3
sinh[(�
 − q)d/2]

�
 − q

}
,

(33)

ωIx =
{(

α̃2
1 + α̃2

2

) sinh(dq)

q
+ α̃2

3
sinh(d�
)

q
+ 2α̃1α̃2d

+ 4α̃1α̃3
sinh[(�
 + q)d/2]

�
 + q

+ 4α̃2α̃3
sinh[(�
 − q)d/2]

�
 − q

}
,

where �
 = 
s
1 − 
s ′

2 and functions αi and α̃i are defined as
follows:

α1 = e− qd

2 σ2 − e(�
−q) d
2

q − �

, α̃1 =−e− qd

2 σ2 − e(�
−q) d
2

q − �

,

α2 = e− qd

2 σ1 + e−(q+�
)d/2

q + �

, α̃2 = e− qd

2 σ1 − e−(q+�
) d
2

q + �

,

α3 = 2�


q2 − �
2
, α̃3 = −2q

q2 − �
2
. (34)

The functions σ1,2 are defined as

σ1(2) = σ 0
1(2)e

qd + σ 0
2(1)

eqd − e−qd
, (35)

with

σ 0
1 = e−qd/2

q − �

(e(q−�
)d/2 − e−(q−�
)d/2),

σ 0
2 = e−qd/2

q + �

(e−(q+�
)d/2 − e(q+�
)d/2).

(36)

B. Contribution to the exchange interaction due to grains Lex

In this region the operator of Coulomb interaction is defined
in Eq. (22). The operator consists of four terms. The last three
terms contribute only in the case of nanoscale grains. These
terms vanish for infinite metallic leads.

First, we consider the last two terms describing single
particle potential uniformly distributed over the grain surface.
This potential is zero inside the grain. Consider the interaction
between an electron in some state ψs

i located in the left grain
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and an electron in state φs
j located in the right grain. Consider

the interior of the right grain. The charge ρij is nonzero
only in the small area S

ij
c in the (x,y) plane and penetrates

into the grain by the distance 
−1. Therefore the potential
2Ecλ

2
TF

a
δ(|r2| − a) interacts with the charge ρij only in the small

area of the surface S
ij
c 	 4πa2. Therefore this potential gives

a small contribution to the intergrain exchange interaction in
comparison to the contribution coming from the first term
of Eq. (22), ��

2 δ(r1 − r2). The direct calculations show that
the small parameter is (a
0)−1(akF)−1(EF/Ec) 	 1. For this
reason we neglect the last two terms in Eq. (22).

The matrix element calculated using the second term in
Eq. (22) is given by

2Ec

∫∫
�1+�2

d3r1d
3r2ρij (r1)ρ∗

ij (r2)

= 2Ec

∣∣τ s
i

∣∣2∣∣τ s ′
j

∣∣2 (
s
i + 
s ′

j

)2

�2

∣∣∣∣∣∣
e−
s′

j dSs ′
j Sinc(qxλ

j

⊥)Sinc(qyλ
j

⊥)(
ks
i

)2 + (

s ′

j

)2

e−
s
i dSs

i Sinc(qxλ
i
⊥)Sinc(qyλ

i
⊥)(

ks ′
j

)2 + (

s

i

)2

∣∣∣∣∣∣
2

. (37)

Here Ss
i = πa/
s

i is the surface area and λi
⊥ = √

Ss
i is the linear size, and q = k1⊥ − k2⊥ is the momentum. The contribution to

the intergrain exchange coupling due to this matrix element is

Lex
Ec

= −e2

64π3εε0

∑
s

∫ ks
F

0

∫ ks
F

0
dk1dk2

∣∣τ s
1

∣∣2∣∣τ s
2

∣∣2δ(k1,k2)
(

s

1 + 
s
2

)2

{
e−2
s

1d[
k2

2 + (

s

1

)2]2

s

1

+ e−2
s
2d[

k2
1 + (


s
2

)2]2

s

2

+ e−(
s
1+
s

2 )d[
k2

2 + (

s

1

)2][
k2

1 + (

s

2

)2]
max

(

s

1,

s
2

)
}

− e2

32π3εε0

∫ k+
F

0

∫ k−
F

0
dk1dk2|τ+

1 |2|τ−
2 |2δ̃(k1,k2)(
+

1 + 
−
2 )2

×
{

e−2
+
1 d[

k2
2 + (
+

1 )2
]2


+
1

+ e−2
−
2 d[

k2
1 + (
−

2 )2
]2


−
2

+ e−(
+
1 +
−

2 )d[
k2

2 + (
+
1 )2

][
k2

1 + (
−
2 )2

]
max(
+

1 ,
−
2 )

}
. (38)

The first term in Eq. (22) gives the following contribution to the intergrain exchange interaction:

Lex
loc = −3a(U + EF)

26π [(k+
F )3 + (k−

F )3]

∑
s,s ′

γ (s,s ′)
∫ ks

F

0

∫ ks
F

0
dk1dk2

[(
ks ′

F

)2 − k2
2

][(
ks

F

)2 − k2
1

]

×
{

e−2d
s
1
∣∣τ s

1

∣∣2

s

1

[
1 + ∣∣rs ′

2

∣∣2
2
s

1

+ Re

( (
rs ′

2

)∗

s

1 + ik2

)]
+
∣∣τ s ′

2

∣∣2e−2d
s′
2


s ′
2

[
1 + ∣∣rs

1

∣∣2
2
s ′

2

+ Re

( (
rs

1

)∗

s ′

2 + ik1

)]}
, (39)

we introduce the function

γ (s,s ′) =
{

1, s = s ′,
−1, s = s ′. (40)

C. Total exchange interaction

The total intergrain exchange interaction is given by the
following expression:

H ex = H ex
h0 + Lex

loc + H ex
hε + I ex + Lex

Ec
, (41)

where term H ex
h0 is given by Eq. (11), Lex

loc by Eq. (39), H ex
hε by

Eq. (46), I ex by Eqs. (25)–(27), and Lex
Ec

by Eq. (38).

VI. DISCUSSION OF RESULTS

There are several contributions to the intergrain exchange
interaction in Eq. (41). These contributions have different
physical nature and different dependencies on system param-
eters. In this section we will discuss these contributions and
compare the intergrain exchange coupling with the interlayer
exchange coupling in MTJ.

A. Granular magnets

First, we discuss the influence of intergrain exchange
interaction on properties of granular magnets with many
grains forming an ensemble of interacting nanomagnets.
The exchange interaction between the grains leads to the
formation of long-range magnetic order appearing below a
certain temperature [3,23–25], which is called the ordering
temperature Tord. For Ising model [24,35] the ordering temper-
ature in granular magnets with FM coupling is related to the
intergrain exchange interaction as Tord = znH

ex, where zn = 6
is the coordination number for three-dimensional cubic lattice.
Below we will plot the exchange interaction multiplied by the
coordination number zn = 6 to show the temperature where
coupling overcomes temperature fluctuations.

Note that we do not consider the intergrain magnetodipole
(MD) interaction [17–22,36], which competes with the ex-
change interaction and leads to the formation of superspin
glass state. The influence of MD interaction on the magnetic
state of GFM was discussed in Refs. [17–20,36].

B. Comparison with layered systems

Both the hopping and the Coulomb-based exchange cou-
pling were considered for layered structures such as MTJ in
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the past. There are at least three essential differences between
granular and layered systems.

The first difference is related to the morphology of granular
system. Due to spherical grain shape the effective area of
interaction is small and it linearly depends on the grain size
a. Therefore the intergrain exchange interaction in granular
systems grows linearly with a in contrast to the MTJ, where
interaction grows as a2.

The second difference is the essential influence of the
Coulomb blockade effect on the hopping-based exchange
coupling. In MTJ the Coulomb blockade is absent while in
GFM the Coulomb interaction suppresses the FM contribution
to the hopping-based magnetic intergrain coupling.

The third difference appears due to finite grain sizes.
The Coulomb-based exchange interaction has an additional
contribution Lex

Ec
appearing due to the second term in Eq. (22).

This contribution does not depend on the grain size a. On one
hand, the interaction area grows linearly with a and, on the
other hand, this term is proportional to the charging energy
Ec ∼ 1/a.

Thus, the total exchange interaction between magnetic
grains cannot be extracted from the known result of interlayer
exchange coupling in MTJ by simple multiplication of the later
by the grain or effective contact area.

C. Comparison of different contributions to the Coulomb-based
exchange coupling in granular systems

The Coulomb-based intergrain exchange interaction has
several contributions. The first contribution I ex is due to
the region between the grains. In this region the Coulomb
interaction can be considered as a long-range interaction.
The electric field of a point charge penetrates over the
whole volume of the insulator between the grains. This field
is reduced by the dielectric between the grains. Thus, the
electron-electron interaction between the grains depends on
the dielectric constant of the insulating matrix ε. The second
contribution appears due to the Coulomb interaction between
electrons inside the grains Lex. It consists of two terms: (1) the
short-range term in Eq. (22) Lex

loc, and (2) the size effect term
Lex

Ec
. Terms I ex and Lex

loc linearly grow with grain size a. The
contribution Lex

Ec
does not depend on the grain size. Therefore

the influence of this term increases with decreasing the grain
size a. However, our calculations show that even for very small
grains with a ≈ 1 nm the contribution Lex

Ec
is much smaller than

two other contributions. Figure 2 shows the behavior of these
contributions to the Coulomb-based exchange interaction as a
function of barrier height hB =

√
−2meEF/�2 (which is the

difference between the energies of the insulator barrier and the
Fermi level). The curves are shown for very small grains, with
grains’ diameter 2a = 2 nm. Even in this case the contribution
Lex

Ec
exceeds two other contributions only when Lex

loc or I ex

change its sign. However, in this region the intergrain coupling
due to the Coulomb interaction is very small ∼10−2 K. Thus,
with good accuracy we can neglect the contribution Lex

Ec
in

most cases.
Contributions Lex

loc and I ex are comparable. Figure 2 shows
how these two contributions change their sign by changing
the barrier height hB. For a large barrier the interaction is
weak and positive (FM type), while for a small barrier the

FIG. 2. The intergrain exchange interaction (multiplied by the
coordination number) as a function of insulating barrier height hB

for U = 5 eV, ε = 4.5, d = 1 nm, a = 1 nm, and (a) Jsd = 4.5 eV,
(b) Jsd = 3.8 eV. Black lines show |Lex

loc| [Eq. (39)], blue lines are
for |Lex

Ec
| [Eq. (38)], and red lines are for |I ex| [Eq. (25)]. The y axis

has logarithmic scale. Dashed parts show the region where functions
Lex

loc, Lex
Ec

, and I ex are negative.

interaction is negative (AFM type). One can see that for a
large barrier the contribution due to the intergrain region I ex

exceeds contribution from the grains Lex
loc. For a small barrier

the situation is the opposite, Lex
loc > I ex.

Note that the contribution due to intergrain region depends
on the dielectric constant of the insulator I ex ∼ ε−1, while Lex

loc
does not depend on ε. Thus, changing the matrix dielectric
constant ε one can change the ratio of Lex

loc and I ex. Figure 2
shows the case for ε = 4.5, corresponding to the Si insulator.

Figure 3 shows the dependence of three contributions to
the Coulomb-based exchange interaction Lex

loc, Lex
Ec

, and I ex

on the spin subband splitting of electrons inside the grains
Jsd for a = 5 nm grains. In this case the contribution Lex

Ec
is

FIG. 3. The intergrain exchange interaction as a function of spin
subband splitting Jsd for U = 5 eV, ε = 4.5, d = 1 nm, a = 5 nm, and
(a) hB = 0.5 eV, (b) hB = 0.2 eV. Black lines show Lex

loc [Eq. (39)],
blue lines are for Lex

Ec
[Eq. (38)], and red lines are for I ex [Eq. (25)].
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FIG. 4. The intergrain exchange interaction (multiplied by the
coordination number) as a function of insulating barrier height hB

for U = 5 eV, ε = 4.5, d = 1 nm, a = 5 nm, and (a) Jsd = 5 eV,
(b) Jsd = 3.8 eV. Black lines show the hopping-based coupling |H ex

h |
[Eq. (10)] and red lines are for the Coulomb-based coupling |H ex

C |
[Eq. (24)]. The y axis has logarithmic scale. Dashed parts show the
region where functions H ex

h and H ex
C are negative.

negligible in the whole range of parameters. The contribution
due to grains Lex

loc is negative (AFM) for small splitting and
positive (FM) for large splitting (when only one spin subband
is filled). The contribution coming from the insulating region
I ex changes its sign twice. For small Jsd the coupling is positive
(FM), for intermediate Jsd the contribution is negative (AFM),
and for large splitting I ex > 0 (FM).

For large spin subband splitting (when only one subband is
filled) and for large barrier hB the contribution I ex exceeds the
contribution coming from the grains [Fig. 3(a)]. For a small
barrier the situation is the opposite. For small splitting and for
the case when both spin subbands are filled (Jsd < EF +U ) the
contribution due to grains exceeds the contribution due to the
insulating region (|I ex| < |Lex

loc|). In this region Lex
loc is of AFM

type and thus the whole Coulomb-based coupling is of AFM
type.

Note that for small barrier height the Coulomb-based
coupling |Lex

loc| can be rather large reaching 100 K. Thus, the
intergrain Coulomb-based exchange coupling can be observed
in experiment.

D. Coulomb vs hopping-based exchange interactions

Figure 4 compares the hopping H ex
h and the Coulomb

H ex
C based exchange interactions as a function of the barrier

height hB for the following parameters: U = 5 eV, d =
1 nm, a = 5 nm, ε = 4.5, and (a) Jsd = 5.0 eV, (b) Jsd =
3.8 eV. One can see that the Coulomb and the hopping-based
exchange couplings are comparable. For large spin subband
splitting, Fig. 4(a), the Coulomb-based coupling exceeds the
hopping-based coupling. For weak splitting (Jsd < EF +U )
both contributions change their sign. This happens almost for
the same barrier height. Contributions H ex

h and H ex
C have the

opposite sign for almost all parameters. For large spin subband
splitting H ex

h is negative, H ex
h < 0 (AFM) for any hB, while the

FIG. 5. The intergrain exchange interaction as a function of spin
subband splitting Jsd for U = 5 eV, ε = 4.5, d = 1 nm, a = 5 nm, and
(a) hB = 0.5 eV, (b) hB = 0.2 eV. Black lines show the hopping-based
coupling H ex

h [Eq. (10)] and red lines are for the Coulomb-based
coupling H ex

C [Eq. (24)].

Coulomb-based coupling is positive (FM). For small splitting
(Jsd < EF +U ) the Coulomb-based interaction H ex

C is positive
for a large barrier, and negative for a small barrier, while H ex

h
shows the opposite behavior.

Figure 5 shows the hopping-based H ex
h and the Coulomb-

based H ex
C contributions to the total intergrain exchange

interaction as a function of internal spin subband splitting Jsd

for the following parameters: U = 5 eV, d = 1 nm, a = 5 nm,
ε = 4.5, and (a) hB = 0.5 eV, (b) hB = 0.2 eV. One can see that
both contributions are comparable and have the opposite sign.
For small splitting the hopping-based contribution is positive
(FM), while the Coulomb-based contribution is negative,
H ex

C < 0. For large splitting the situation is the opposite.

E. A toy model

The main feature of the hopping-based and the Coulomb-
based contributions is the sign change as a function of the
barrier height hB and the spin subband splitting Jsd. Moreover,
one can see that the dependencies H ex

h and H ex
C on hB and

Jsd are quite similar but have the opposite sign. The reason
for such a similarity is related to the fact that both H ex

h and
H ex

C are defined by the density of states in the vicinity of the
Fermi surface. Consider the first term in Eqs. (11) and (39). The
first integral describes one of the hopping-based contributions.
The second integral describes one of the Coulomb-based
contributions. These two integrals are the most simple to
analyze. Due to the presence of the exponential factor e−2
d

only electrons in the vicinity of the Fermi surface contribute
to the integrals. We assume that the matrix elements do not
depend on the electron energy (besides the exponential factor).
In this case we can estimate

H ex
h0 ∼V −

F N− − V +
F N+ − · · · (42)
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and

Lex
loc ∼

∑
s,s ′

γ (s,s ′)
∫ ks

F

0

∫ ks′
F

0
dk1dk2

[(
ks ′

F

)2 − k2
2

]

× [(
ks

F

)2 − k2
1

]
(Lse

−2d
s
1 + Ls ′e−2d
s′

2 )

= (N0
− − N0

+)(L+N+ − L−N−),

N0
s =

∫ ks
F

0
dk
[(

ks
F

)2 − k2
]
, (43)

Ns =
∫ ks

F

0
dk
[(

ks
F

)2 − k2
]
e−2d
s

,

where V ±
F and Ls are the parameters independent of integration

variables. The key element of both the formulas is the integral
of the form

∫
[(kF)2 − k2]e−2
ddk. This integral defines the

number of electrons participating in the exchange interaction.
Equation (42) has only single integrals because this term is
the first-order perturbation theory correction to the system
energy and it is proportional to the number of electrons
in the system. Equation (43) has double integrals since it
describes the many-body interaction and it is proportional to
the number of electrons squared. The different spin subbands
give contributions to the exchange interaction of opposite sign.

For semimetals [only one spin subband is filled, Jsd > (U +
EF)] only the integrals over the majority spin subband survive.
Therefore, the majority spin subband defines the sign of the
exchange interaction. For small spin subband splitting Jsd 	
EF (and 
0 	 kF) we have∫ [(

ks
F

)2 − k2
]
e−2
sddk ∼ 
3

0

dks
F

e−2
0d . (44)

This result means that the spin subband with higher density
of states at the Fermi surface (higher kF) gives the smaller
contribution to the exchange interaction, meaning that at
small Jsd the minority spin subband defines the sign of the
exchange interaction. This causes the sign change of the
exchange coupling at a certain Jsd. To estimate the transition
point we estimate the integral

∫
[(ks

F)2 − k2]e−2
sddk at small
Fermi momentum k+

F 	 
0. The estimate in Eq. (44) does not
work in this limit (kF → 0). We have

∫
[(k+

F )2 − k2]e−2
ddk ∼
(k+

F )3e−2
0d and
∫

[(k−
F )2 − k2]e−2
ddk ∼ (
3

0 )/(dk−
F )e−2
0d .

The exchange interaction changes its sign when the integrals
for both spin subbands are equal. This point is defined
by the condition 
3

0 ≈ dk−
F (k+

F )3. Usually 
2
0 	 EF and

therefore the transition appears close to the point k+
F = 0, i.e.,

close to the case of semimetal [Jsd ≈ (U + EF)]. This is in
agreement with our calculations. The condition also shows
that the sign change appears with varying the barrier height
hB, which is also in agreement with our calculations. This
toy model explains the behavior of the exchange interaction
and the reason for similarity between the Coulomb and the
hopping-based exchange contributions.

F. Total exchange interaction

In granular systems the Coulomb and the hopping-based
exchange interactions compete with each other. These two
contributions have the opposite sign for almost all parameters.

FIG. 6. Total intergrain exchange interaction H ex [Eq. (7)] as a
function of (a) the barrier height hB, and (b) spin subband splitting
Jsd, for U = 5 eV, ε = 4.5, d = 1 nm, a = 5 nm. In (a) the y axis has
logarithmic scale. Dashed parts show the region where function H ex

is negative.

Figure 6 shows the total intergrain exchange interaction
H ex as a function of (a) the barrier height hB, and (b) the
spin subband splitting Jsd for U = 5 eV, ε = 4.5, d = 1 nm,
a = 5 nm. The sign and the magnitude of the total exchange
interaction depends on the value of spin subband splitting Jsd

and the barrier height hB. For small splitting Jsd the coupling
is AFM while for large splitting it is FM. Depending on Jsd the
coupling changes its sign one or three times. Due to the com-
petition between the Coulomb and the hopping mechanisms
the magnitude of the total exchange interaction is smaller than
the magnitude of the Coulomb-based contribution.

Note that both the Coulomb and the hopping-based contri-
butions depend on the dielectric permittivity of the insulating
matrix. The Coulomb contribution can be written as

H ex
C = Lex

loc + I ex
1

ε
, (45)

where I ex
1 is the Coulomb-based exchange coupling inside

the insulator with ε = 1. Note that I ex
1 can be either positive or

negative depending on the system parameters. The dependence
of the hopping contribution H ex

h on the dielectric constant is
more complicated (see Ref. [27]). Approximately it can be
written as

H ex
h = H ex

h0 + H ex
h1

⎡
⎣1 −

√
d
√

2mε̃c

γ �
√

hB
arctan

⎛
⎝
√

γ �
√

hB

d
√

2mε̃c

⎞
⎠
⎤
⎦,

(46)

where γ ≈ 3.43 and H ex
h1 > 0. The dielectric permittivity in

this equation enters through the effective charging energy ε̃c ∼
1/ε, for simplicity we omit the difference between εeff and ε.
The second term in Eq. (46) increases with increasing ε. This is
in contrast to the Coulomb-based coupling. Also, we note that
ε̃c depends on the grain size a. Decreasing the grain size leads
to the enforcement of the Coulomb blockade effect making
H ex

h more sensitive to variation of ε.
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FIG. 7. Total intergrain exchange coupling H ex in Eq. (7) as a
function of dielectric permittivity of the insulating layer ε for U =
5 eV, d = 1 nm, a = 5 nm and different spin subband spitting Jsd and
barrier height hB. The brown curve divided by 5.

Using Eqs. (45) and (46) we can write

H ex = H ex
0 + I ex

1

ε

+H ex
h1

⎡
⎣1−

√
d
√

2mε̃c

γ �
√

hB
arctan

⎛
⎝
√

γ �
√

hB

d
√

2mε̃c

⎞
⎠
⎤
⎦. (47)

The second and the third terms have opposite dependence
on ε. Figure 7 shows the dependence of the total exchange
interaction H ex on the dielectric permittivity of the insulating
matrix for various parameters. In most cases the Coulomb-
based contribution H ex

C , Eq. (47), is the largest. For positive I ex
1

the total exchange coupling decreases with increasing ε. One
can see that H ex

0 can be either positive (red curve) or negative
(black curve). For positive H ex

0 the exchange coupling is
always positive (FM) and decreases with increasing the matrix
dielectric constant. For negative H ex

0 the coupling changes its
sign with increasing ε. For a small dielectric constant, H ex

C is
of FM type, and it becomes AFM for large dielectric constants.
The total coupling decreases three times (from 100 to 30 K)
with increasing the dielectric constant.

For some parameters the hopping-based coupling is the
dominant contribution to ε dependence of the total exchange
interaction H ex (green line). In this case the coupling grows
with ε. For a small dielectric constant the coupling is of AFM
type. It becomes positive (FM) with increasing the dielectric
constant.

For negative I ex
1 the total coupling is negative and increases

(the absolute value decreases) with increasing the dielectric
constant (brown curve in Fig. 7). In this case both contributions
contribute in the same direction. Thus, changing system pa-
rameters one can have different dependencies of the exchange
coupling on ε in granular systems.

The fact that the total intergrain exchange interaction
depends on the dielectric constant can be used to realize the
magnetoelectric coupling in granular systems. This effect was
semiphenomenologically predicted in Refs. [32,37,38], where

it was shown that if one can control the dielectric properties of
the matrix with an external electric field than one can control
the intergrain exchange coupling and therefore the magnetic
state of the granular magnet. For example, the FE matrix can be
used for this purpose. It is known that the dielectric permittivity
of FEs depends on the electric field. Applying the electric field
to the system with magnetic grains being placed into FE matrix
one can change its magnetic state.

VII. VALIDITY OF OUR MODEL

Below we discuss several assumptions and approximations
of our theory.

(1) Above we introduce two dielectric constants: the real
constant ε and the effective constant εeff . The constant ε

defines the screening of electric field in the region between
the grains (insulating matrix). This constant governs the
exchange coupling based on the Coulomb interaction. The
electric field involved in this interaction exists only in the small
region between the grains. The effective dielectric constant
εeff describes the long-range screening on the scale of many
grains. A charged grain creates a field penetrating into the
volume of many grains. Therefore the effective dielectric
constant εeff includes the screening properties of both the
matrix and the grains. Thus, the charging energy and the
hopping-based exchange coupling depend on the dielectric
properties averaged over a large volume, while the Coulomb-
based coupling depends on the dielectric properties of a small
intergrain region. A qualitative difference between these two
constants may appear in the system with magnetic grains being
placed on a substrate with a variable dielectric constant. Such a
substrate will influence the charging energy (see Refs. [33,39])
and therefore the hopping-based exchange coupling. However,
it will not influence the Coulomb based exchange coupling.

(2) We propose to use FE as an insulating matrix with a
variable dielectric constant. To observe the intergrain exchange
coupling in experiment the intergrain distance should be of
the order of 1 nm. The properties of such thin FE films are
not well known at this time. However, it is known that FE
properties degrade with decreasing of FE thickness [40,41].
For each particular FE there is a critical thickness at which FE
properties disappear. At the same time the monoatomic layer
FEs also exist [40,41]. The FE properties of a dense granular
material with magnetic inclusions are not studied at all. This
question requires further investigation.

(3) Following Ref. [27] we do not take into account the
inelastic scattering and tunneling.

(4) When calculating the Coulomb based contribution to
the total exchange coupling we use the approach of Ref. [31]
which was developed for an infinite layered system. The grains
form a capacitor with finite lateral size with an electric charge
being localized in between the capacitor surfaces (grains) and
inside the grains. The charge is localized in the area Sc. In
our calculations we assume that the electric field is localized
between the leads only. Such an approximation is valid when
the lateral size of the capacitor is much larger than the capacitor
thickness. We calculated numerically the energy of a finite flat
capacitor with a uniformly distributed positive charge inside
the capacitor and negatively charged surfaces, such that the
whole system is neutral. The capacitor area is Sc. The energy
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of the capacitor is W fc. We compare the energy with the energy
of the area Sc of an infinite flat capacitor W ic, W ic < W fc. The
difference between W ic and W fc is of order of d/

√
Sc, where

d is the capacitor thickness. Thus, the matrix element of the
exchange interaction is overestimated. The error grows with
decreasing the grain size.

(5) We also assume that the leads are perfect metals,
meaning that they totally screen the electric field. In fact, the
electric potential created by a point charge located in a metal
decays exponentially with distance, ∼e−r/λTF/r , where λTF is
the Thomas-Fermi length. The field of a point change outside
the metal surface also penetrates into the metal by the distance
of the order of the Thomas-Fermi length. The Thomas-Fermi
length is of the order of 0.05 nm and is much smaller than
the characteristic length scales of the decay of electron wave
function 
0 and the insulator thickness d. Our approach is valid
for λTF < min(
0,d).

VIII. CONCLUSION

We developed the theory of the intergrain exchange interac-
tion in the system of two metallic magnetic grains embedded
into an insulating matrix by taking into account the magnetic
coupling due to Coulomb interaction between electrons.
The basic idea is the following: electrons wave functions
located at different grains are overlapped. In combination
with weak screening of the electric field inside the insu-
lator these electrons experience the indirect spin-dependent
Coulomb interaction leading to interlayer magnetic coupling.
The Coulomb-based exchange interaction complements the
exchange interaction due to virtual electron hopping between
the grains. We showed that the Coulomb and the hopping-
based exchange interactions are comparable. For most of the
parameters these two contributions have the opposite sign and
therefore compete with each other.

We showed that many-body effects lead to new phenomena
in magnetic exchange coupling. In particular, the exchange
coupling depends not only on the barrier height and thickness
of the insulating matrix but also on the dielectric properties

of this matrix. In granular systems both the hopping and the
Coulomb-based exchange coupling depend on the dielectric
constant of the insulating matrix. This dependence appears
due to many-body effects. We showed that hopping-based
exchange interaction depends on the matrix dielectric constant
due to the Coulomb blockade effect controlling virtual electron
hopping between the grains. The larger the dielectric constant
the smaller the Coulomb blockade thus the stronger the
exchange coupling. The Coulomb-based exchange coupling
depends on the dielectric constant ε—decreasing with increas-
ing ε. Both the hopping and the Coulomb-based exchange
interactions have terms which do not depend on the matrix
dielectric constant. These terms can be either FM or AFM type.
The combination of three different contributions to the total
exchange coupling results in a complicated dependence of the
total magnetic intergrain exchange on ε and other parameters
of the system. Increasing ε one can have the FM-AFM or
AFM-FM transitions. For certain parameters no transition is
possible, however the exchange coupling varies by three times
with increasing the dielectric constant.

We showed that the intergrain exchange interaction strongly
depends on system parameters such as Fermi level, internal
spin subband splitting, the height of the insulating barrier, and
the grain size. The dependence on the grain size is almost
linear due to spherical shape of the grains. The contact area
of two grains linearly depends on the grain size in contrast
to the layered system, where the exchange coupling increases
as the surface area. Depending on the Fermi level and the
spin subband splitting the intergrain exchange coupling can
be either positive (FM) or negative (AFM). For small barrier
height the coupling can be rather strong even for 5 nm grains
reaching 100 K if the spin subband splitting is large enough.
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