
PHYSICAL REVIEW B 95, 045426 (2017)

Quasiparticle decay in a one-dimensional Bose-Fermi mixture
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In a one-dimensional weakly interacting Bose-Fermi mixture, one branch of elementary excitations is well
described by the Bogoliubov spectrum. Here we use the microscopic theory to study the decay of such quasiparticle
excitations. The main scattering process which leads to their decay is the backscattering of a Bogoliubov
quasiparticle off the Fermi sea, where a particle-hole pair is excited. For a low-momentum quasiparticle (phonon)
of momentum q, we find that the decay rate scales as q3 provided q is smaller than the Fermi momentum kF ,
while in the opposite case the decay behaves as q2. If the ratio of the masses of fermions and bosons is equal to
the ratio of the boson-fermion and the boson-boson interaction strengths, the decay rate changes dramatically. It
scales as q7 for q < kF , while we find q6 scaling at q > kF . For a high-momentum Bogoliubov quasiparticle, we
find a constant decay rate for q < kF , while it scales as 1/q for q > kF . We also find an analytic expression for the
decay rate in the crossover region between low and high momenta. The decay rate is a continuous, but nonanalytic
function of the momentum at q = kF . In the special case when the parameters of our system correspond to the
integrable model, we observe that the decay rate vanishes.
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I. INTRODUCTION

For a long time, the investigation of mixtures of quantum
fluids was limited to the 3He -4He mixture. However, highly
controlled experimental setups with ultracold atomic gases
have been developed in the last 20 years [1], which provide
a new playground for detailed studies of quantum mixtures.
In particular, various experimental realizations of Bose-Fermi
mixtures have been achieved [2–7]. Such realizations with cold
gases are especially interesting due to the possibility to tune
the interaction between atoms using the Feshbach resonance
technique, which enables one to probe the system at arbitrary
coupling. Moreover, one is able to create low-dimensional
mixtures by suitably applying the trapping potential and
thus study phenomena in reduced dimensions where the role
of quantum fluctuations is enhanced. Ground-state proper-
ties, thermodynamics, and the rich phase diagram of one-
dimensional Bose-Fermi mixtures are studied in numerous
works [8–26].

The usual starting point for the theoretical analysis of
one-dimensional interacting bosonic and fermionic systems
is the Luttinger liquid theory [27]. Within this hydrodynamic
approach, the low-energy excitations are bosonic quasiparti-
cles with linear energy spectrum. This poses a problem for
the calculation of the quasiparticle decay rate [28]. Within the
framework of the Luttinger liquid theory, these quasiparticles
have an infinite lifetime. However, the quasiparticles are not
exact eigenstates of the system and therefore should decay.
In order to describe their decay, we have to go beyond the
Luttinger liquid description and carefully account for various
nonlinearities [28–30]. The decay rate of quasiparticles is a
quantity that could be directly probed, e.g., by measuring the
dynamic structure factor. The latter does not have the form of
an infinitely sharp δ function at the position of the excitation,
but rather a peak with the width determined by the decay rate.

The decay of quasiparticles in one-dimensional quantum
liquids has recently attracted considerable attention [29–40].
For both systems of interacting bosons and fermions, the
lowest-energy excitations are fermionic quasiparticles [28,41].

Their decay rate behaves as the eighth power of the mo-
mentum [37]. The nature and the decay rate of quasiparticle
excitations at higher momenta become more complicated. For
example, in a weakly interacting Bose gas, good quasipar-
ticles are bosonic quasiparticles that are well described by
the Bogoliubov spectrum [28,30,42]. At low momenta, the
quasiparticles are phonons and their decay rate scales as the
seventh power of the momentum [30,38]. At higher momenta,
the decay rate of Bogoliubov quasiparticles crosses over into
a momentum-independent value [30,33].

A one-dimensional Bose-Fermi mixture is commonly
described in terms of a two-component Luttinger liq-
uid [10,11,43]. Although this theory is fruitful for some
questions, to account for the decay of quasiparticle excitations,
a more detailed theoretical description is needed. For particular
values of parameters, the system has a special feature of
being integrable. This means that one can find the exact
solution using the Bethe ansatz method [8,13,16]. However,
in this case, a large number of conservation laws prevent
equilibration, and quasiparticles do not decay. The low-energy
microscopic description should be consistent and in special
cases, which correspond to the integrable models, it must
be in agreement with the results obtained by the Bethe
ansatz.

In this paper, we study a Bose-Fermi mixture at weak
interaction. In this regime, one branch of excitations is
inherited from weakly interacting bosons and has a Bogoliubov
form. We study the effect of Bose-Fermi coupling on the
decay of Bogoliubov excitations. We use the hydrodynamic
microscopic description which accounts for various anhar-
monicities in the theory. We consider spin-polarized fermions.
At zero temperature, the leading process that gives the decay
is the quasiparticle backscattering off the Fermi sea, where
a particle-hole pair is created. For generic values of the
coupling constants and the masses of bosons and fermions,
we find different regimes of scaling of the decay rate. These
regimes depend on the initial quasiparticle momentum, Fermi
wave vector, and the characteristic momentum of Bogoliubov
excitations. However, we show that by tuning the ratio of the
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masses of bosons and fermions and the interactions, different
regimes emerge where the decay rate dramatically changes.

This paper is organized as follows. In Sec. II, we introduce
the model for a one-dimensional Bose-Fermi mixture. In
Sec. III, we calculate the scattering matrix element describing
the decay of a Bogoliubov quasiparticle using the perturbation
theory in the interaction strength. We also analyze the matrix
element in the limits of small and large momenta. In Sec. IV,
we evaluate the decay rate of a Bogoliubov quasiparticle.
We consider regions of low- and high-energy excitations,
and provide the analytic expression for the full crossover
function between them. Section V contains discussions and
conclusions. The technical details of the calculations are given
in Appendices A–E.

II. MICROSCOPIC MODEL

We study a weakly interacting Bose-Fermi mixture de-
scribed by the Hamiltonian H = HB + HF + V1, where

HB = �
2

2m

∫
dx(∇ψ†)(∇ψ) + g

2

∫
dxn2, (1)

HF = �
2

2M

∫
dx(∇�†)(∇�), (2)

V1 = G

∫
dxnnF . (3)

Equation (1) describes bosonic particles of the mass m that
interact via contact repulsion of the strength g. By ψ and ψ†,
we denote bosonic single-particle field operators that satisfy
the standard commutation relation [ψ(x),ψ†(y)] = δ(x − y).
The density of bosons is n = ψ†ψ . Equation (2) describes
noninteracting spinless fermionic particles of the mass M .
By � and �†, we denote fermionic single-particle field
operators that satisfy the standard anticommutation relation
{�(x),�†(y)} = δ(x − y). Equation (3) describes the mutual
interaction between two subsystems, where G is the interaction
strength, while nF = �†� denotes the density of fermions.

We note that in the special case m = M and g = G, the
Hamiltonian H describes an integrable model which can be
solved using the Bethe ansatz technique [8,13,16]. We also
note that in the case of fermions with spin, the integrable
model is realized under the conditions m = M and g = G, but
with an additional requirement of contact interaction between
fermions of the strength g [8,13,16].

Our goal is to find the excitations of the system as well as
small residual interaction between them. We begin with the
subsystem of bosons that is described by the Hamiltonian (1).
In the weakly interacting case, we use a hydrodynamic
approach where the single-particle operator is expressed
as [44,45]

ψ†(x) =
√

n(x) eiθ(x). (4)

Here the density n and the phase θ obey the bosonic commuta-
tion relation [n(x),θ (y)] = −iδ(x − y). The Hamiltonian (1)
then becomes

HB = �
2

2m

∫
dx

[
n(∇θ )2 + (∇n)2

4n

]
+ g

2

∫
dxn2. (5)

To account for the low-energy excitations, we consider small
density fluctuations,

n = n0 + ∇φ

π
, (6)

around the mean density n0. Here the new field φ is defined
by the commutation relation [∇φ(x),θ (y)] = −iπδ(x − y).
Such hydrodynamic description is valid as long as the density
fluctuations are small, |∇φ| � n0, such that the root in Eq. (4)
stays positive. This occurs at the wave vectors of excitations
below n0. We eventually expand the Hamiltonian (5) in
small ∇φ/n0. The obtained result can be conveniently split
in different powers of ∇θ and ∇φ as HB = HB0 + V3 + V4

+ · · · , where HB0 is a quadratic term, V3 is a cubic term, V4

is a quartic term, etc.
The quadratic term is given by

HB0 = �

2π

∫
dx

{
vK

[
(∇θ )2 + (∇2φ)2

4π2n2
0

]
+ v

K
(∇φ)2

}
,

(7)

which corresponds to the usual Luttinger liquid Hamiltonian,
but with the additional term ∝ (∇2φ)2 identified as the
quantum pressure. The sound velocity v and the Luttinger
liquid parameter K are given by

v =
√

gn0

m
, K = π�n0

mv
. (8)

We consider the weakly interacting limit, K � 1. The cubic
term V3 reads

V3 = �
2

2πm

∫
dx

[
(∇φ)(∇θ )2 − 1

4π2n2
0

(∇φ)(∇2φ)2

]
. (9)

For the purpose of the scattering process considered in the next
section, we do not need the quartic anharmonic term.

The quadratic term (7) is diagonalized by expanding the
bosonic field φ and θ in normal modes as

∇φ(x) =
∑

q

√
π2n0

2Lmεq

|q|eiqx/�(b†−q + bq), (10)

∇θ (x) =
∑

q

√
mεq

2L�2n0
sgn(q)eiqx/�(b†−q − bq). (11)

Here, L is the size of the system, while b
†
q and bq are,

respectively, the bosonic creation and annihilation operators
that satisfy the commutation relation [bq,b

†
q ′ ] = δq,q ′ . The

quadratic part (7) in the normal mode representation becomes

HB0 =
∑

q

εqb
†
qbq, with εq = v|q|

√
1 + 2q2

q2
0

. (12)

Here, q0 = √
8mv. Equation (12) describes bosonic quasipar-

ticle excitations characterized by the nonlinear Bogoliubov
dispersion. This nonlinearity arises due to the quantum
pressure ∝ (∇2φ)2 in Eq. (7), which usually does not appear
in the Luttinger liquid Hamiltonian.
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The cubic term (9) describes the interaction between
Bogoliubov quasiparticles. It is given by

V3 =
∑

q1,q2,q3

|q1q2q3|√
εq1εq2εq3

[
f+(q1,q2,q3)

(
b†q3

b†q2
b†q1

+ H.c.
)

+ 3f−(q1,q2,q3)
(
b†q3

b†q2
b−q1 + H.c.

)]
δq1+q2+q3,0,

(13)

where

f±(q1,q2,q3) = v2

12
√

2Lmn0

[
1

v2

(
εq3εq2

q3q2
± εq1εq2

q1q2
± εq1εq3

q1q3

)

− 1

q2
0

(
q2

1 + q2
2 + q2

3

)]
. (14)

We now treat the part of the total Hamiltonian that involves
fermions, given by Eqs. (2) and (3). The former describes
the free fermions, while the latter represents the interaction
between bosons and fermions. We expand the fermionic field
using the normal modes as

�(x) = 1√
L

∑
q

eiqx/�aq, �†(x) = 1√
L

∑
q

e−iqx/�a†
q,

(15)

where the fermion operators satisfy the anticommutation
relation {aq,a

†
q ′ } = δq,q ′ . The fermions are described by the

quadratic Hamiltonian,

HF =
∑

q

Eqa
†
qaq, with Eq = q2

2M
. (16)

In the regime of weak Bose-Fermi coupling G, the two
branches of excitation of the Bose-Fermi mixture are given
by the expressions (12) and (16).

Using the normal mode expansions (10) and (11), and
Eq. (15), the Bose-Fermi interaction (3) becomes

V1 =
∑

q1,q2,q3

	(q3)a†
−q2

aq1 (b†−q3
+ bq3 )δq1+q2+q3,0, (17)

where

	(q) = G

√
n0q

2

2Lmεq

. (18)

In normal modes, Eq. (17) describes the process where a
fermion either emits or absorbs one Bogoliubov quasiparticle.
We consider the case of weak Bose-Fermi coupling, G �
g
√

K (see Appendix E).

III. SCATTERING MATRIX ELEMENT

As shown in the previous section, one type of excitations
of a weakly interacting Bose-Fermi mixture is Bogoliubov
quasiparticles, which have the spectrum given by Eq. (12). Due
to weak residual interactions, these excitations are not exact
eigenstates of the full Hamiltonian. Therefore, in general, they
do decay. The goal of this paper is to study their decay rate.
Residual interaction between bosons described by V3 (and by
other terms contained in HB , such as V4) are one possible
decay channel for a Bogoliubov quasiparticle. However, the

FIG. 1. Representation of the decay of a Bogoliubov quasipar-
ticle. Left: The Bogoliubov spectrum of quasiparticles. Right: The
spectrum of fermions, where the dashed line represents the Fermi
energy.

Hamiltonian HB given by Eq. (1) describes the Lieb-Liniger
model [46]. It is integrable and therefore its excitations do not
decay. This has been recently explicitly shown in Ref. [30]. We
should therefore study another decay channel due to interaction
with fermions, which is described by V1 (and its combination
with residual interaction between bosons that may arise in
higher orders of perturbation theory). In this section, we use
perturbation theory to calculate the scattering matrix element
for the decay of a Bogoliubov quasiparticle due to interaction
with fermions.

Using the conservation laws of momentum and energy, one
finds that the leading process for the decay of the Bogoliubov
quasiparticle is its backscattering off the Fermi sea, where a
particle-hole pair becomes excited (see Fig. 1). We consider
slow fermions, with velocity smaller than the sound velocity
v. This can be achieved only for sufficiently small Fermi
energy. Moreover, we also require that the initial Bogoliubov
quasiparticle is of sufficiently small momentum, such that
it cannot excite the fermions at too high momenta. If one
calculates the correction to the spectrum Ek of fermions due
to V1 perturbation (see Appendix D), one finds that it becomes
significant only in the very near vicinity of Mv, which signals
that the quadratic form of the spectrum Ek = k2/2M is not
good only at such high momenta. Therefore, if we consider
fermions at momenta below Mv, we could safely use the bare
fermionic spectrum. On the other hand, fermions cannot be ex-
cited at too high momenta if we consider the initial Bogoliubov
quasiparticle at sufficiently small momenta, below Mv/2. The
latter condition is obtained and discussed later in this section.

The matrix element for the process shown in Fig. 1 is the
central object of our interest. It is given by the expression
Aq ′,k′

q,k = 〈0|ak′bq ′ |T |a†
kb

†
q |0〉 in terms of the T matrix. Here, q

is the initial momentum of the Bogoliubov quasiparticle, while
q ′ is its final momentum. By |k| < kF , we denote the fermion
in the initial state, which is scattered to the state |k′| > kF

above the Fermi sea. By kF , we denote the Fermi momentum,
while |0〉 denotes the vacuum.

For the scattering process that we study, the T matrix is
given by the expression

T = V + V
1

εq + Ek − HB0 − HF

T, (19)

where V = V1 + V3. When the perturbation is weak, Eq. (19)
can be solved iteratively. Since V does not conserve the number
of quasiparticles, the leading contribution to the matrix element
is given in second-order perturbation theory in V . Therefore,
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the leading-order contribution to the matrix element is

Aq ′,k′
q,k =

∑
m

〈0|ak′bq ′ |V |m〉〈m|V |a†
kb

†
q |0〉

εq + Ek − Em

, (20)

where Em = 〈m|HB0 + HF |m〉 denotes the energy of the
intermediate state |m〉.

Equation (20) is evaluated on the mass shell, i.e., accounting
for the conservation laws of momentum and energy:

q + k = q ′ + k′, εq + Ek = εq ′ + Ek′ . (21)

The details are given in Appendix A, while here we give the final result,

Aq ′,k′
q,k = −

{
	(q)	(q ′)

(
1

Eq+k − Ek − εq

+ 1

Eq ′−k − Ek + εq ′

)

+ 6	(q − q ′)
|q ′q(q − q ′)|√

εqεq ′εq−q ′

[
f−(−q ′,q,q ′ − q)

εq−q ′ + εq − εq ′
+ f−(−q,q ′,q − q ′)

εq−q ′ + εq ′ − εq

]}
δq+k,q ′+k′ .

(22)

It is important to note that the matrix element (22) has two
contributions, both of them being equally important in the
general case. One arises from second-order perturbation theory
in V1, while the other is obtained in the same order, but involves
both perturbations, V1 and V3. We have verified that in the
integrable case (m = M and g = G), the matrix element (22)
nullifies at arbitrary momenta.

One could argue that at second order in V , the Bogoliubov
quasiparticle could decay via different scattering processes.
One possibility is the scattering process where two particle-
hole pairs become excited. Another possibility is to obtain
three Bogoliubov quasiparticles in the final state and one
particle-hole pair. However, we have verified that on the mass
shell, the matrix element for these processes vanishes.

Using the conservation laws (21), we can express k and k′
as functions of q and q ′:

k(q,q ′) = M
εq − εq ′

q − q ′ − q − q ′

2
, (23)

k′(q,q ′) = M
εq − εq ′

q − q ′ + q − q ′

2
. (24)

We can then reexpress the matrix element (22) as

Aq ′,k′
q,k = 
(q,q ′)δq+k,q ′+k′ . (25)

The conditions |k(q,q ′)| < kF and |k′(q,q ′)| > kF impose
certain constraints on q ′ for a given q and kF . We find that q ′
has to satisfy q ′

min < q ′ < q ′
max, where the bounds are defined

by (see Appendix B)

k(q,q ′
max) = −k(q,q ′

min) = kF for kF < q, (26)

k(q,q ′
max) = k′(q,q ′

min) = kF for kF > q. (27)

For q ′ outside of the interval (q ′
min,q

′
max), the scattering process

shown in Fig. 1 cannot occur, and formally one should define
the scattering matrix element to be zero (in the considered
order of the perturbation theory) for such region of momenta.

In the above analysis, we have taken into account
that kF is sufficiently low, such that fermions are slow:
|k(q,q ′)|,|k′(q,q ′)| < Mv for all allowed q ′. This means that
we could safely use the bare fermionic spectrum. The condition

for kF is given by

kF < Mv − q + q ′
∗, (28)

where q ′
∗ is defined by the expression k′(q,q ′

∗) = Mv (see
Appendix B).

If the inequality (28) is satisfied, only the backscattering
of the Bogoliubov quasiparticle is allowed. We can assume
positive initial momentum q > 0, and hence q ′ < 0. Since
kF > 0, Eq. (28) implies Mv − q + q ′

∗ > 0, which imposes a
condition on q. In the following, we discuss in more detail
the two regimes, q � q0 and q � q0, where we recall q0 =√

8mv.

A. Small momenta

We consider the case where the initial Bogoliubov quasipar-
ticle has momentum q � q0. This implies also the smallness of
the backscattered quasiparticle momentum, |q ′| � q0. In this
regime, the Bogoliubov spectrum can be expanded as εq =
v|q|(1 + q2/q2

0 + · · · ). For q > 0, we expand the scattering
matrix element (22) at q ′ < 0 and obtain


(q,q ′) = G

8L

(q − q ′)2

mv
√|qq ′|

(
1 − Gm

gM

)
+ O

(
q3

q3
0

)
. (29)

Here we assumed that the mass of fermions is of the same
order or greater than the mass of bosons, M � m. Note that
only the linear part of the Bogoliubov spectrum is necessary to
derive Eq. (29). The matrix element (29) is valid for momenta
q ′

min < q ′ < q ′
max. Solving Eqs. (26) and (27), we find

q ′
min/max = −q

[
1 − 2kF

Mv + kF

± 2M2v2q

(Mv + kF )3
+ O

(
q2

q2
0

)]
,

(30)

for q < kF , and

q ′
min/max = −q

[
1 − 2(q ∓ kF )

Mv
+ O

(
q2

q2
0

)]
, (31)

for q > kF . The Fermi momentum is assumed to satisfy kF <

Mv − O(q), which is obtained by analyzing Eq. (28). We
note that in the case q → kF , one must expand Eq. (30) in
small kF /Mv. This occurs because q � q0 and M � m imply
q � Mv and thus kF � Mv. After that expansion, one obtains
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the consistency between q ′
min/max of Eqs. (30) and (31). On the

other hand, Eq. (30) is valid at any ratio kF /Mv.

B. Small momenta, the case Gm = gM

The expanded scattering matrix element (29) equals zero for
Gm = gM . For these particular parameters, there is no reason
a priori to obtain nullification since it does not correspond to
an integrable model. Thus, the scattering matrix element (22)
should not nullify. Indeed, for Gm = gM , we obtain


(q,q ′) = G

128L

(q − q ′)4

(mv)3
√|qq ′|

(
1 − m2

M2

)
+ O

(
q5

q5
0

)
. (32)

Here we assumed that the mass of fermions is of similar order
to or greater than the mass of bosons, M � m. We point out
that in order to obtain Eq. (32), one needs to take into account
the nonlinear part of the Bogoliubov spectrum, whereas in
Eq. (29), only the linear part was needed. However, we have
the same constraints on q ′ and kF as in the previous subsection.
In the integrable case M = m (implying G = g), Eq. (32)
nullifies, as it must be the case.

C. Large momenta

Next we consider the case of high momentum of the
Bogoliubov quasiparticle, q � q0. At such high momenta,
the Bogoliubov spectrum simplifies as εq  q2/2m. The
scattering matrix element (22) becomes


(q,q ′) = G

L

[
1 + 2m2v2

qq ′

(
1 + 2Mm

M2 − m2

G

g

)]
+ O

(
q4

0

q4

)
.

(33)

Here, in order to obtain the dependance on q and q ′, we have
kept the first subleading term. This result assumes that q ′ is
bounded by q ′

min/max that read as

q ′
min/max =

[
−q + 2(kF ∓ q)

M/m ∓ 1

][
1 + O

(
q4

0

q4

)]
, (34)

for q < kF , and

q ′
min/max =

[
−q + 2(q ∓ kF )

M/m + 1

][
1 + O

(
q4

0

q4

)]
, (35)

for q > kF . Since the fermions are slow, in the case of large
q momenta the masses have to satisfy M � m, as illustrated
in Fig. 2. Then, analyzing Eq. (28), we find the constraint on
the Fermi momentum, kF < Mv − 2q[1 + O(m/M)]. Since
kF is positive, the latter inequality implies that the Bogoliubov

FIG. 2. Schematic representation of the decay of a Bogoliubov
quasiparticle at momenta q � mv and k,k′ < Mv.

quasiparticle must be of sufficiently small momentum, q <

Mv/2.

IV. DECAY RATE

The scattering matrix element calculated in the previous
section can be used for analysis of different kinetic phenomena.
Here we focus on the decay rate of a Bogoliubov excitation
of momentum q > 0. It is given by the Fermi golden rule
expression,

1

τ
= 2π

�

∑
q′,k,k′

|k|<kF <|k′ |

∣∣Aq ′,k′
q,k

∣∣2
δ(εq + Ek − εq ′ − Ek′), (36)

where Aq ′,k′
q,k is the scattering matrix element (22). Using the

energy and momentum conservation laws, the momenta of
fermions can be expressed in terms of q and q ′ by Eqs. (23)
and (24). Then the decay rate (36) becomes

1

τ
= ML2

2π�3

∫ q ′
max

q ′
min

dq ′ |
(q,q ′)|2
q − q ′ , (37)

where q ′
min/max are determined by Eqs. (26) and (27).

Although the lower bound of integration q ′
min is given by

different equations for q > kF and q < kF , the decay rate is a
continuous function of q. However, it is not a smooth function
at q = kF . As a result, at q = kF there is a nonanalytic behavior
of the decay rate which originates from the abrupt change of
the Fermi distribution at the Fermi level at zero temperature.
Finite temperature will smoothen this nonanalyticity. Since we
consider slow fermions, the Fermi momentum is assumed to
satisfy Eq. (28). In Appendix C, we present another way to
calculate the decay rate.

A. Small momenta

Now we evaluate the decay rate for q � q0. We use the
scattering matrix element (29) in the expression for the decay
rate (37) and obtain, at leading order in q/q0,

1

τ
= MG2

4π�3

(
G

g
− M

m

)2

×

⎧⎪⎪⎨
⎪⎪⎩

q3(Mv)3

(Mv − kF )(Mv + kF )5
if q < kF ,

kF q2

(Mv)3
if q > kF .

(38)

Here, kF < Mv − O(q). The fermion mass satisfies M � m.
For kF � q0, one can expand Eq. (38) and demon-

strate the continuity of the decay rate at q = kF . Since
the result (38) applies for M � m, the condition kF � q0

implies kF � Mv and, at leading order in q/q0, the expres-
sion q3(Mv)3/(Mv − kF )(Mv + kF )5  q3/(Mv)3. How-
ever, Eq. (38) shows the lack of smoothness at q = kF caused
by the change of the lower bound of integration q ′

min at q = kF

in Eq. (37). As expected, when all fermions are removed from
the mixture (i.e., kF = 0), the decay rate vanishes since bosons
do not have any fermions to interact with. In the integrable case,
M = m and G = g, the decay rate (38) vanishes, as expected.
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B. Small momenta, the case Gm = gM

For gM = Gm, the leading-order term of the scattering
matrix element (29) vanishes and one has to take into account
the subleading contribution given by Eq. (32). This drastically
changes the behavior of the decay rate. The scattering matrix
element (32) is inserted in Eq. (37) and one obtains, at leading
order,

1

τ
= MG2

64π�3

M2

m2

(
M2

m2
− 1

)2

×

⎧⎪⎪⎨
⎪⎪⎩

q7(Mv)3

(Mv − kF )(Mv + kF )9
if q < kF ,

kF q6

(Mv)7
if q > kF .

(39)

The fermion mass satisfies M � m. Also, we assume kF <

Mv − O(q).
Comparing the rates (38) and (39), we find that Eq. (39) is

the dominant contribution in the decay rate at

∣∣∣∣1 − mG

Mg

∣∣∣∣ <
1

4

∣∣∣∣M2

m2
− 1

∣∣∣∣
(

q

Mv + kF

)2

. (40)

Note that for M/m = G/g = 1, our system is integrable and
the decay rate (39) vanishes, as expected. We finally note that
Eq. (39) applies at momenta that are not particularly small,
q � mv/

√
K . In the opposite case of very small momenta,

the Bogoliubov spectrum does not correctly describe good
quasiparticle excitations of the bosonic subsystem [28].

C. Large momenta

Next we consider the decay of a Bogoliubov quasiparticle
at large momenta, q � q0. Using the scattering matrix ele-
ment (33) in the decay rate (37), we obtain

1

τ
= MG2

2π�3

{
ln

(
M+m
M−m

)
if q < kF ,

ln
(

qM+kF m

qM−kF m

)
if q > kF .

(41)

This result applies to slow fermions kF <

Mv − 2q[1 + O(m/M)]. Since Mv/2 > q � q0, this
imposes M � m. The decay rate (41) is therefore expanded
in m/M and, at the leading order, becomes

1

τ
= mG2

π�3

{
1 if q < kF ,
kF

q
if q > kF .

(42)

D. The crossover regime

In the previous sections, we have evaluated the decay rate
for Bogoliubov quasiparticles at small and large momenta.
However, Eq. (37) contains the decay rate at arbitrary
momenta, which covers the full crossover between the two
limiting regimes. It is given by the expression

1

τ
= MG2

2π�3
F

(
q

2mv

)
, (43)

0.01 0.1 1 10 100
q 2m

10 8

10 6

10 4

F q 2mv

(a) kF /2mv = 0.01

0.01 0.1 1 10 100
q 2m

10 9

10 7

10 5

0.001

F q 2mv

(b) kF /2mv = 20

v

v

FIG. 3. Plot of the crossover function F (q/2mv) for G/g = 1,
M/m = 100 for two different values of kF /2mv. The dashed lines
are the decay rates (38) and (41) in units of MG2/2π�

3.

where the dimensionless crossover function F (X) is given by

F (X) =
∫ xmax

xmin

dx
(X − x)3

εXεx

[
Xx(1 + 2Xx) + 2εXεx

ε2
X−x − (εX − εx)2

+ GM

gm

X2x2

X2x2(X − x)2 − M2

m2 (xεX − Xεx)2

]2

.

(44)

Here, εz = √
z2 + z4, while the dimensionless momenta are

X = q/2mv, x = q ′/2mv, and xmin/max = q ′
min/max/2mv. The

bounds of the integration are given by Eqs. (26) and (27), while
we assume that Eq. (28) is satisfied.

In Fig. 3, we show the decay rate as a function of q using
Eq. (43), which is compared with previously obtained results
for q � q0 and q � q0. The decay rate is a nonmonotonic
function of the quasiparticle momentum q, which reaches
the maximum for momenta of the order of q0 ∼ mv. At the
momentum q = kF , the decay rate is a smooth, but nonanalytic
function.

V. DISCUSSION AND CONCLUSION

A one-dimensional Bose-Fermi mixture can exhibit differ-
ent phases at zero temperature [9,10,19,21,26]. In the case
of weak interaction, several approaches [9,10,21,26] have
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shown that a uniform Bose-Fermi mixture is stable against
the creation of density fluctuations if the Fermi momentum is
not particularly small. This occurs at

kF >
MG2

π�g
. (45)

Therefore, if the condition (45) is satisfied, our system is
uniform and the study of the quasiparticle decay is justified.
Throughout this paper, we thus assumed that the condition (45)
is valid. On the other hand, we obtained that our system
is well described by the microscopic theory as long as the
Fermi momentum is not too high [see Eq. (28)], which can be
approximately expressed as kF < Mv at low momenta. The
above two conditions on kF give G < g

√
K , which is always

satisfied if one considers a weakly interacting Bose-Fermi
mixture (see the discussion in Appendix E).

We have found that the weakly interacting Bose-Fermi
mixture has completely different scaling of the decay rate as a
function of the momentum in the case

m

M
= g

G
�= 1. (46)

This is revealed in the matrix element (29), which nullifies
under the condition (46). However, in this case, one does not
expect to have the integrable model. Once we evaluated the
matrix element (22) under the condition (46), we indeed found
a nonzero result [see Eq. (32)]. The corresponding decay rate
is given by Eq. (39), which is the dominant contribution in the
region defined by Eq. (40).

In this paper, we studied the zero-temperature decay rate
of excitations in a one-dimensional weakly interacting Bose-
Fermi mixture. The quasiparticles on the Bogoliubov branch
of excitations decay due to the interaction with fermions in the
filled Fermi sea. Starting from the hydrodynamic approach,
we built a microscopic theory to describe the excitations of the
system and their residual interaction. We have shown that the
main process of the decay is the backscattering of the Bogoli-
ubov quasiparticle off the Fermi sea producing a particle-hole
pair. We calculated the scattering matrix element using the
perturbation theory and then, applying the Fermi golden rule,
we evaluated the decay rate. The decay rate has different
behavior for the momentum of the quasiparticle below or above
the Fermi momentum. The reason is the change of the available
phase space for the backscattered Bogoliubov quasiparticle;
see Eqs. (26), (27), and (37). This can also be seen in terms
of the available phase space for the hole. For the quasiparticle
momentum below the Fermi momentum, q < kF , only some
part of the states below the Fermi sea can be excited, while
in the opposite case, q � kF , all the fermionic states below
the Fermi sea are excited (this can be easily seen from the
consideration done in Appendix C). The abrupt change of the
Fermi distribution function at kF is directly seen in the decay
rate, which at the momentum q = kF shows the nonanalytic
behavior.

We found that for the low-momentum Bogoliubov quasi-
particles, the decay rate scales as q3 at q < kF , while it scales
as q2 for q > kF ; see Eq. (38). We found a dramatic change
of the decay rate when the ratio of the masses of fermions
and bosons is equal to the ratio of the boson-fermion and
boson-boson interaction strengths. In this case, the decay

rate scales as q7 for q < kF and as q6 at higher momenta
q > kF ; see Eq. (39). For quasiparticles at momenta above
mv, where the Bogoliubov spectrum practically becomes
quadratic, we found a momentum-independent decay rate for
q < kF , while the rate scales as 1/q for q > kF ; see Eq. (42).
We provided the analytic expression for the crossover function
describing the decay rate between the mentioned regimes
of slow and fast quasiparticles, given by Eq. (43). In the
integrable case, the decay rate vanishes. Our results could
be experimentally detected by measuring the broadening of
the dynamic structure factor in one-dimensional Bose-Fermi
mixtures.

APPENDIX A: CALCULATION OF THE SCATTERING
MATRIX ELEMENT

In this appendix, we explain some of the technical details
of the calculation leading to Eq. (22). In order to calculate
the scattering matrix element Af

i from an initial state |i〉 to a
final state |f 〉 at second-order perturbation theory in V , for the
standard expression

Af

i =
∑
m

〈f |V |m〉〈m|V |i〉
Ei − Em

, (A1)

we use another form,

Af

i = lim
δ→0+

∫ ∞

0

dt

i�
〈f |V (0)V (−t)|i〉e−δt/�. (A2)

Here, Ei = 〈i|HB0 + HF |i〉 is the energy of the initial state
and Em = 〈m|HB0 + HF |m〉 is the energy of the intermediate
state. Instead of performing the summation over intermediate
states in Eq. (A1), we evaluate the time-dependent matrix
element 〈f |V (0)V (−t)|i〉 and then integrate over time as in
Eq. (A2) to obtain the final result for the matrix element. The
time evolution of the operators in Eq. (A2) is

V (t) = eit(HB0+HF )/�V e−it(HB0+HF )/�, (A3)

bp(t) = e−itεp/�bp, (A4)

ap(t) = e−itEp/�ap, (A5)

in the interaction representation.
In the case of the scattering matrix element (20) that we

want to evaluate in the main text, the initial and final states are

|i〉 = a
†
kb

†
q |0〉, (A6)

|f 〉 = a
†
k′b

†
q ′ |0〉, (A7)

where |0〉 denotes the vacuum. We now want to calculate
〈f |V (0)V (−t)|i〉 and then integrate over time to get the
scattering matrix element (22). We recall V = V1 + V3. Since
the number of bosons and fermions in the initial and final
state are the same, respectively, only terms which conserve the
number of each particle are kept in the product V (0)V (−t).
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These terms are

〈f |V (0)V (−t)|i〉 =
∑

q1,q2,q3
q ′

1,q
′
2,q

′
3

δq ′
1+q ′

2+q ′
3,0δq1+q2+q3,0

{
3 |q ′

1q
′
2q

′
3|√

εq ′
1
εq ′

2
εq ′

3

	(q3)f−(q ′
1,q

′
2,q

′
3)〈0|ak′a

†
−q2

aq1a
†
k|0〉

× [〈0|bq ′b
†
−q ′

1
bq ′

2
bq ′

3
b
†
−q3

b†q |0〉e−it(Eq2 −Eq1 +εq3 )/� + 〈0|bq ′bq3b
†
q ′

3
b
†
q ′

2
b−q ′

1
b†q |0〉e−it(εq′

3
+εq′

2
−εq′

1
)/�]

+	(q3)	(q ′
3)〈0|ak′a

†
−q ′

2
aq ′

1
a
†
−q2

aq1a
†
k|0〉[〈0|bq ′b

†
−q ′

3
bq3b

†
q |0〉eitεq3 /� + 〈0|bq ′bq ′

3
b
†
−q3

b†q |0〉

× e−itεq3 /�
]
e−it(Eq2 −Eq1 )/�

}
. (A8)

We now perform Wick contractions in order to evaluate the
different matrix elements. We take care not to contract b

†
q with

bq ′ and a
†
k with ak′ since it would imply that the initial boson

or the initial fermion did not interact during the process, which
is not the process we are considering. The evaluation of the
different matrix elements in Eq. (A8) leads to

〈0|ak′a
†
−q2

aq1a
†
k|0〉 = δk,q1δk′,−q2 , (A9)

〈0|bq ′b
†
−q ′

3
bq3b

†
q |0〉 = δq,q3δq ′,−q ′

3
, (A10)

〈0|bq ′bq ′
3
b
†
−q3

b†q |0〉 = δq,q ′
3
δq ′,−q3 , (A11)

and

〈0|ak′a
†
−q ′

2
aq ′

1
a
†
−q2

aq1a
†
k|0〉 = δk,q1δ−q2,q

′
1
δ−q ′

2,k
′ . (A12)

For the last two bosonic matrix elements, we use the symmetry
of the function f−(q1,q2,q3) under the permutation q2 ↔ q3,
which implies

〈0|bq ′b
†
−q ′

1
bq ′

2
bq ′

3
b
†
−q3

b†q |0〉 = 2δq ′,−q ′
1
δq ′

2,q
δq ′

3,−q3 , (A13)

〈0|bq ′bq3b
†
q ′

3
b
†
q ′

2
b−q ′

1
b†q |0〉 = 2δq ′,q ′

2
δq ′

3,q3δ−q ′
1,q

. (A14)

We did not contract b
†
−q ′

1
with bq ′

2
or bq ′

3
in Eq. (A13)

because the remaining momentum would cancel due to the
conservation of momentum [the same reasoning applies to
Eq. (A14)]. We insert Eqs. (A9)–(A14) back into Eq. (A8),
then integrate over time and obtain the scattering matrix
element (22).

APPENDIX B: THE PHASE SPACE FOR q ′

Using the energy and momentum conservation, we can
express k and k′ as functions of q and q ′; see Eqs. (23) and (24).
Here we provide the detailed analysis of the phase space
available for q ′, such that |k(q,q ′)| < kF and |k′(q,q ′)| > kF .
We assume Mv > q > 0. We can show that k′(q,q ′) > Mv for
0 < q ′ < q. Since we consider slow fermions (|k′|,|k| < Mv),
we are only interested in the region −q < q ′ < 0. The function
k′ is an increasing function of q ′. In the following, we shorten
the notation and keep the explicit dependence only on q ′,
i.e., we use k(q ′) and k′(q ′). The minimum of k′ is given
by k′(−q) = q and its maximum by k′(0) = Mεq/q + q/2 >

Mv. We can show that k is an increasing function of q ′ with
a minimum k(−q) = −q and a maximum k(0) = Mεq/q −

q/2 > 0. One can define two regions, kF < q and kF > q.
In the region kF < q, the condition k′ > kF is automatically
satisfied; we only need to satisfy −kF < k < kF . It implies
that the minimal and maximal values of q ′ are given by the
intersection of k with ∓kF , as given by Eq. (26). In the region
kF > q, the condition −kF < k is automatically satisfied; we
only need to satisfy k′ > kF and k < kF . The minimal and
maximal values of q ′ are determined by the intersection of k′
and k with kF , as given by Eq. (27). See Fig. 4 for a graphic
representation of the determination of q ′

min/max.
We now discuss the constraint on kF . Since k′(q ′ = 0) is

bigger than Mv and the minimum of k′ is less than Mv, i.e.,
q < Mv, the equation k′(q ′) = Mv admits the unique solution
q ′ = q ′

∗. Since k′ is an increasing function of q ′, Mv > k′
implies that the allowed values for q ′ should be below q ′

∗, and
therefore q ′

∗ > q ′
max. k is also an increasing function of q ′ and

therefore k(q ′
∗) > k(q ′

max) = kF [where the last equality comes
from Eqs. (26) and (27), while it leads to Eq. (28)]. Notice that
k(q ′

∗) should be positive, which may impose a constraint on q.
At large momenta, we find q < Mv/2; see Sec. III C.

APPENDIX C: AN ALTERNATIVE WAY TO
OBTAIN DECAY RATE

Here we give a somewhat different way than the one
presented in Sec. IV to obtain the decay rate of a Bogoliubov
quasiparticle. We start from the expression for the decay
rate (36) given by the Fermi golden rule where we replace
the matrix element Aq ′,k′

q,k by its expression in Eq. (25). We

(a) (b)

FIG. 4. Plots of k′ and k in the case where 0 < q < Mv. The
green dashed line represents the Fermi momentum kF . (a) kF < q,
(b) kF > q. The red dashed lines determine q ′

min and q ′
max.
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then sum over q ′ to get rid of the Kronecker δ. We obtain
1

τ
= 2π

�

∑
|k| < kF

k′ > kF

|
(q,q + k − k′)|2δ(εq

+Ek − εq+k−k′ − Ek′). (C1)

Note that from conservation of momentum and energy, if q > 0
then k′ > 0. In order to integrate over k′, we now deal with the
conservation of energy which is ensured by the Dirac δ,

δ(εq + Ek − εq+k−k′ − Ek′) =
∣∣∣∣∂k′εq+k−k′ + k′

M

∣∣∣∣
−1

δ(k′ − k′
0).

(C2)

Here, ∂k denotes the partial derivative with respect to k and k′
0

stands for a function of q and k, i.e., k′
0(k,q), that is defined

by the following equation:

εq + Ek − εq+k−k′
0
− Ek′

0
= 0. (C3)

The summations are then replaced by integrations over
momenta using

∑
q → L/2π�

∫
dq. After the integration

over k′, the decay rate takes the following form:

1

τ
= ML2

2π�3

∫ kF

ω

dk
|
(q,q + k − k′

0)|2∣∣M∂k′
0
εq+k−k′

0
+ k′

0

∣∣ . (C4)

The lower bound ω is needed since not all |k| < kF satisfy the
condition k′

0(k,q) > kF . It is given by

ω =
{−kF if q > kF

k0 if q < kF ,
(C5)

where k0 depends on q and is determined by the equation
kF = k′

0(k0,q). For q = 0, one finds k0 = kF and the decay rate
vanishes. Also, note that for q = kF , one has k0 = −kF . Thus
the lower bound of integration ω is the continuous function of
q, but not a smooth one.

1. Small momenta

Now we evaluate the decay rate for q � q0. We can
linearize the Bogoliubov dispersion, εq  vq (we consider
q > 0). Since quasiparticles can only be backscattered, we
have εq ′  −vq ′. The conservation of momentum and energy
leads to

k′
0 = k + 2qMv

k + Mv
+ O

(
q2

q2
0

)
, (C6)

k0 = kF − 2qMv

kF + Mv
+ O

(
q2

q2
0

)
. (C7)

In the linear part of the quasiparticle spectrum, the denominator
in Eq. (C4) becomes simply k′

0 + Mv [where k′
0 is given by

Eq. (C6)]. We use the scattering matrix element (29) in the
expression of the decay rate (C4) and obtain, at leading order
in q/q0, the result from Eq. (38). The assumption on kF is the
same as in the main text.

2. Small momenta when Gm = gM

Here, k′
0,k0 are the same as in Eqs. (C6) and (C7); one only

needs to replace the matrix element in Eq. (C4) by Eq. (32)

leading to the decay rate (39). The assumption on kF is the
same as in the main text.

3. Large momenta

Let us consider the decay of a quasiparticle with high
momentum, q � q0. There we can approximate the Bogoli-
ubov spectrum by the quadratic dispersion, εq  q2/2m. We
obtain

k′
0 = k(M − m) + 2Mq

M + m
+ O

(
q3

0

q3

)
, (C8)

k0 = kF (M + m) − 2Mq

M − m
+ O

(
q3

0

q3

)
. (C9)

Being in the quadratic part of the excitation spectrum, the de-
nominator in Eq. (C4) becomes (qM/m − k)[1 + O(q4

0/q4)].
Then, using the scattering matrix element (33) in the decay
rate (C4), we obtain, at leading order, the same expression as
in Eq. (41). The assumptions on kF and M/m are the same as
in the main text, which allows for the expansion of the decay
rate as in Eq. (42).

APPENDIX D: CORRECTION TO THE ENERGY OF
FERMIONS DUE TO INTERACTION WITH BOSONS

In this appendix, we calculate the leading correction to
the spectrum of fermions, δEk , induced by the interaction
with bosons using perturbation theory. We show that δEk has
a divergent behavior as k approaches Mv. This divergence
indicates the breakdown of perturbation theory and therefore
allows us to describe only slow fermions.

The energy of a fermionic excitation interacting with bosons
is given by

ETot
k = Ek + Gn0 + δEk + · · · , (D1)

where δEk is the leading correction to the fermionic spectrum.
The first-order perturbation in V = V1 + V3 vanishes (i.e.,
〈k|V |k〉 = 0) since the initial and final states do not contain
any bosons and V does not conserve the number of bosons.
Therefore, we look for the leading correction in second-order
perturbation theory,

δEk =
∑
m

〈k|V |m〉〈m|V |k〉
E|k〉 − Em

, (D2)

where E|k〉 = 〈k|HF |k〉 and Em = 〈m|HB0 + HF |m〉. We con-
sider an excitation above the Fermi sea (k > kF ) since it is
relevant to the process studied in the main text. The state |k〉
is defined by

|k〉 = a
†
k|�〉, |�〉 =

∏
|q|�kF

a†
q |0〉. (D3)

We did not use the Fermi sea as background up to now in
this paper; however, the results we obtained for the different
scattering matrix elements are the same up to a global factor
±1 depending on how the initial and final states are defined.
Since Eq. (D2) has the same structure as Eq. (A1) with |i〉 =
|f 〉 = |k〉, we use the same method as in Eq. (A2) to evaluate
δEk . We want to evaluate 〈k|V (0)V (−t)|k〉 and then integrate
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over time to obtain δEk . The only nonzero term arises from V1

perturbation, 〈k|V1(0)V1(−t)|k〉. It is given by

〈k|V1(0)V1(−t)|k〉
=

∑
q1,q2,q3
q ′

1,q
′
2,q

′
3

δq ′
1+q ′

2+q ′
3,0δq1+q2+q3,0

×	(q3)	(q ′
3)〈0|bq ′

3
b
†
−q3

|0〉e−it(Eq2 −Eq1 +εq3 )/�

×〈�|aka
†
−q ′

2
aq ′

1
a
†
−q2

aq1a
†
k|�〉. (D4)

We now perform Wick contractions. The bosonic matrix
element is simply 〈0|bq ′

3
b
†
−q3

|0〉 = δq ′
3,−q3 . For the matrix

element involving fermionic operators, we do not contract ak

with a
†
k since it would imply that the initial fermion did not

interaction with bosons. We do not contract aq1 with a
†
−q2

(or

aq ′
1

and a
†
−q ′

2
) because it would imply q3 = 0 (q ′

3 = 0). The
fermionic matrix element reads

〈�|aka
†
−q ′

2
aq ′

1
a
†
−q2

aq1a
†
k|�〉

= θ (|q2| − kF )δk,−q ′
2
δq ′

1,−q2δq1,k

− θ (kF − |q1|)δk,−q2δ−q ′
2,q1δq ′

1,k
, (D5)

where the Heaviside functions θ account for the Fermi sea at
zero temperature. After the integration over time, one obtains

δEk =
∑

q

	(q)2

Ek − Ek−q − εq

−
∑

q

|k−q|<kF

[
	(q)2

Ek − Ek−q − εq

− 	(q)2

Ek − Ek−q + εq

]
.

(D6)

We define the first line of the previous equation by δE0
k =

δEk|kF =0, while the remaining term we denote by δEF
k =

δEk − δE0
k . The expression (D6) can be evaluated exactly,

as we explain now. We start with δE0
k . Transforming the sum

into an integral
∑

q → L/2π�
∫

dq, and using the change of
variable q → 2mv sinh x, one obtains

δE0
k = mv2

2K

G2

g2
I, (D7)

where

I =
∫ ∞

−∞
dx[sgn(x)(a − b sinh x) − cosh x]−1, (D8)

with a = k/Mv and b = m/M for notational convenience.
Using the change of variable x → ln t , one has

I = −2
∫ 1

0
dt[1 + b + 2at + (1 − b)t2]−1

+ 2
∫ ∞

1
dt[−1 + b + 2at − (1 + b)t2]−1

= − 2

�

M

m
arctanh(�), (D9)

where

� =
√

1 − M2

m2

[
1 −

(
k

Mv

)2]
. (D10)

For the second term, we again use the change of variable
q → 2mv sinh x and obtain

δEF
k = −mv2

2K

G2

g2
I ′, (D11)

where

I ′ =
∫ x+

x−
dx[(a − b sinh x − cosh x)−1

+ (−a + b sinh x − cosh x)−1]. (D12)

The bounds of integration are x± = sinh−1[(k ± kF )/2mv] >

0 since k > kF . Now we perform the change of variable x →
ln t and have

I ′ =−2
∫ t+

t−
dt{[−1 + b + 2at − (1 + b)t2]−1

− [1 + b + 2at + (1 − b)t2]−1}, (D13)

where t± = (k ± kF )/2mv +
√

1 + [(k ± kF )/2mv]2. We fi-
nally obtain

I ′ = − 2

�

M

m
arctanh

[
4kF Mv�

(k2 − kF
2)

(
M2

m2 − 1
) + 4M2v2

]
.

(D14)

The leading correction to the fermionic spectrum eventually
reads

δEk = −Mv2

K�

G2

g2

{
arctanh(�)

− arctanh

[
4kF Mv�

(k2 − kF
2)

(
M2

m2 − 1
) + 4M2v2

]}
, (D15)

where we recall the definition for � in Eq. (D10).
One has to notice that δE0

k diverges as k approaches
Mv, which signifies a breakdown of the perturbation theory
since δEk becomes of the same order as Ek at momenta
very close to Mv. This signals that the fermionic spectrum
Ek = k2/2M is not correct at such high momenta. This allows
us to use microscopic theory only to describe slow fermions of
momenta, k < Mv. The latter condition is actually a simplified
version of a more precise condition, k < Mv(1 − α), where
α > 0 is very small and thus neglected for our purposes.

In the process studied in the main text, a Bogoliubov
quasiparticle is backscattered and excites a particle-hole pair
(k′ > kF , |k| < kF ). In order to avoid the problem of the
divergence of δE0

k when k′ → Mv, one should consider
fermions k′ < Mv, which constrains the Fermi momentum
kF to small values, as discussed in Appendix B. The second
term, δEF

k , is finite if we consider slow fermions.

045426-10
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APPENDIX E: CORRECTION TO THE ENERGY OF
BOGOLIUBOV QUASIPARTICLES DUE TO INTERACTION

WITH THE FERMI SEA

In this appendix, we calculate the leading correction to
the spectrum of Bogoliubov quasiparticles, δεF

q , due to their
interaction with the Fermi sea at zero temperature. We also
discuss the leading correction to the sound velocity due to the
same interaction, δvF .

The leading correction to εq is obtained in second order,

δεF
q =

∑
m

〈q|V1|m〉〈m|V1|q〉
E|q〉 − Em

, (E1)

where E|q〉 = 〈q|HB0 + HF |q〉 and Em = 〈m|HB0 + HF |m〉.
The initial and final states are |q〉 = b

†
q |0〉|�〉, where |�〉 is

the Fermi sea defined in Eq. (D3). Equation (E1) has the same
structure as Eq. (A1) with |i〉 = |f 〉 = |q〉. We thus evaluate

〈q|V1(0)V1(−t)|q〉
=

∑
q1,q2,q3
q ′

1,q
′
2,q

′
3

δq ′
1+q ′

2+q ′
3,0δq1+q2+q3,0

×	(q ′
3)	(q3)〈�|a†

−q ′
2
aq ′

1
a
†
−q2

aq1 |�〉e−it(Eq2 −Eq1 )/�

× (〈0|bqb
†
−q ′

3
bq3b

†
q |0〉eitεq3 /� + 〈0|bqbq ′

3
b
†
−q3

b†q |0〉e−itεq3 /�
)
.

(E2)

We now perform Wick contractions. For the fermionic matrix
element, we have

〈�|a†
−q ′

2
aq ′

1
a
†
−q2

aq1 |�〉
= θ (kF − |q1|)θ (|q2| − kF )δq1,−q ′

2
δq ′

1,−q2 , (E3)

where we did not contract a†
−q2

with aq1 (or a
†
−q ′

2
with aq ′

1
) since

it would imply q3 = 0 (q ′
3 = 0) because of the conservation

of momentum. The Heaviside functions account for the Fermi
sea. The bosonic matrix elements are given by

〈0|bqb
†
−q ′

3
bq3b

†
q |0〉 = δq,q3δq,−q ′

3
, (E4)

〈0|bqbq ′
3
b
†
−q3

b†q |0〉 = δq,−q3δq,q ′
3
, (E5)

where we did not contract b
†
q with bq . Inserting Eqs. (E3)–

(E5) into Eq. (E2) and integrating over time, one

obtains

δεF
q = − 	(q)2

∑
p

θ (kF − |p|)θ (|q + p| − kF )

×
(

1

Eq+p − Ep − εq

+ 1

Eq+p − Ep + εq

)
. (E6)

After integration over p, the correction to the energy of
Bogoliubov quasiparticles due to the interaction with the Fermi
sea can be written in the following form:

δεF
q = εq

2K

MG2

mg2

mv

|q|
1

1 + q2

4m2v2

× arctanh

[
kF |q|

M2v2 − kF
2 − q2

4

(
1 − M2

m2

)
]
. (E7)

The correction δεF
q in Eq. (E7) is small unless the momentum

of the Bogoliubov quasiparticle is high. We find that δεF
q

diverges at

q = 2
kF − (M/m)

√
kF

2 + m2v2[1 − (M/m)2]

(M/m)2 − 1
, (E8)

where we assumed q > 0. We note that at small Fermi
momenta, kF < Mv

√
1 − m2/M2, the correction (E7) does

not diverge at any q, and thus it is small at weak interaction.
In the context of the process studied in the main text,

this correction is always finite since we consider slow
fermions. Indeed, one can see that Eq. (E7) diverges for
kF = Mεq/q − q/2 which corresponds to kF = k(q ′ = 0).
However, the intersection of kF with k determines q ′

max (see
Appendix B) and kF = k(q ′ = 0) would imply q ′

max = 0. Since
we consider slow fermions (k′,|k| < Mv), q ′

max < 0 during the
process, and therefore δεF

q is finite.
From Eq. (E7), one can obtain the leading correction to

the sound velocity of bosons due to their interaction with the
Fermi sea. The sound velocity v is given by the slope of the
Bogoliubov spectrum at q → 0. The correction to v from the
interaction with fermions is given by

δvF = ∂qδε
F
q

∣∣∣∣
q→0

= vF

2K

G2

g2

1

1 − (
vF

v

)2 , (E9)

where vF = kF /M . We note that δvF � v for vF < v and at
weak interaction. The latter occurs at Bose-Fermi coupling
G � g

√
K . We also require the condition K � 1 to have a

weakly interacting bosonic subsystem, which is well described
by the Bogoliubov excitation spectrum.
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