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Gap engineering in strained fold-like armchair graphene nanoribbons
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Strained fold-like deformations on armchair graphene nanoribbons (AGNRs) can be properly engineered in
experimental setups, and could lead to a controlling tool for gaps and transport properties. Here, we analyze
the electronic properties of folded AGNRs relating to the electronic responses and the mechanical deformation.
An important and universal parameter for the gap engineering is the ribbon percent-width variation, i.e., the
difference between the deformed and undeformed ribbon widths. AGNRs band gap can be tuned mechanically
in a well-defined bounded range of energy values, eventually leading to a metallic system. This characteristic
provides a controllable degree of freedom that allows manipulation of electronic currents. We show that the
numerical results are analytically predicted by solving the Dirac equation for the strained system.
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I. INTRODUCTION

Graphene nanoribbons are known as excellent counterparts
of graphene due to the possibility of exhibiting accessible
and modeled energy gaps [1–3]. In particular, ribbons with
an armchair edge belong to different semiconducting families,
with a gap size depending essentially on the nanoribbon width.
Zigzag ribbons, otherwise, show metallic behavior due to the
presence of edge-localized states at the Fermi energy [4]. The
presence of roughness, mainly at the edges of the ribbons, can
be responsible for important transport suppressions and the
formation of conductance gaps, leading to some restrictions
for the use of graphene in ballistic devices [5]. Differently
from what could be expected, some particular deformations
can, however, strengthen transport properties as it happens in
the case of strained-fold graphene systems.

When graphene samples are deposited on SiO2 or hexago-
nal BN substrates, deformations such as bubbles and wrinkles
may accidentally arise, mainly due to the difference in the
thermal expansion coefficients of the constituent materials
[6,7]. Deformations can then be produced, leading to the
formation of homogeneous pseudomagnetic fields [8]. Other
routes are based on patterning not the graphene itself but the
supporting substrates that induce different strain profiles [9].
Physical scenarios have been explored where strain-induced
pseudo-Landau levels are observed [6,10–12]. In addition,
the controlled creation of periodic ripples in suspended
graphene sheets may also be achieved by thermally generated
strains [13]. Alternatively, strained folds can be generated by
pressuring a gas inside a sealed container with a slit covered
by graphene [14] or by the presence of a gate voltage, below
or on top of graphene on an extended trench to induce the
deformation [15]. A large quantity of theoretical works have
discussed the coupling between mechanical deformations and
electronic responses for particular deformations in graphene
[16–24]. Experimentally, laser ablation, scanning tunneling
microscope (STM) and atomic force microscope (AFM)
have been used for manipulation and detection of these
deformations [7,10,25].

Recently the electronic transport along fold-like deformed
areas was explored in zigzag nanoribbons [23,24,26]. When
a Gaussian-like deformation parallel to the zigzag direction is

considered, strain-induced pseudomagnetic fields are formed
exhibiting stripped spatial distribution. It was shown that
folded zigzag graphene nanoribbons (GNRs) behave as natural
waveguides for electronic transport and provide a splitting of
an incident current, which results in valley-polarized currents
moving along different parts of the structure [23]. The spatial
separation of valley currents is preserved when disorder at the
edge is included in the model, giving rise to novel quasiballistic
transport characteristics. On the other hand, folded armchair
nanoribbons do not generate pseudomagnetic fields like the
zigzag GNRs.

As the fold axis changes from the zigzag to the armchair
direction, with the fold parallel to the nanoribbon edge, the
pseudomagnetic changes from a maximum value to zero field.
As such, the armchair GNRs do not support the previously
mentioned electronic waveguides. Then the natural question
that arises is how the electronic transport is affected in strained
fold armchair GNRs.

The effects of in-plane strain, uniaxial and shear, on
graphene nanoribbon band structures have been discussed
[27,28]. The induced vector potential changes the distance
between the Dirac valleys affecting the gap at the � point. The
energy gap of armchair ribbons with N carbon atoms along the
ribbons width, N -armchair graphene nanoribbons (AGNRs),
are found to vary linearly or periodically with uniaxial strain
for weak and large intensities, respectively. Interestingly, the
two semiconducting families exhibit different behavior as a
function of the uniaxial strain; while for family 3m + 1 the
gap energy increases with the deformation, the gap decreases
as a function of increasing strain for the 3m family.

In this paper, similar results are found for fold-like out-plane
deformations in armchair GNRs. However, we show that the
energy gap can be drastically modulated by changing the
deformation parameters, amplitude, and extension of the fold
deformation. Moreover, we discuss that the relative length of
the deformed structure plays a key role in determining the
energy gap and its maximum values. Simple tight-binding
calculations using real-space renormalization techniques for
obtaining the system Green’s functions are compared to
analytical predictions done by solving the Dirac equation. We
also discuss the possibility of a semiconducting AGNR to turn
on a metallic ribbon. In addition, we analyze the difference and
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FIG. 1. Schematic view of an (a) unstrained and a (b) strained-
fold AGNR of width W given by 45 carbon atoms. (c) Colored plot of
the hopping energy distribution for a strained ribbon with Gaussian
parameters A = 2.68acc and b = 6.0acc.

similarities of the band-structure results and of the probability
density distributions between a natural metallic nanoribbon
and an original semiconducting ribbon that becomes metallic.

II. STRUCTURES AND MODEL

The system is composed of a central conductor connected
by top and bottom leads, with all three parts being perfect
armchair graphene nanoribbons. The ribbon width is W =
(N + 1)

√
3acc/2, with acc = 1.42 Å being the interatomic

distance and N the number of carbon atoms along the
nanoribbon width. A schematic view of the armchair ribbon is
shown in Fig. 1(a). A single π -band tight-binding Hamiltonian
is used to describe the system, given by

H =
∑
〈i,j〉

γi,j c
†
l cm + H.c. (1)

with c
†
i (ci) being the creation (destruction) operator for an

electron in site i and γi,j the nearest-neighbor hopping, that in
the case of pristine graphene is γo ≈ 2.75 eV. In our model,
the fold-like mechanical deformation is described using the
linear elasticity theory [29,30], with the strain tensor written
in terms of the in- and out-of-plane deformations, uμ and h,
respectively [19,20],

εμν = 1
2 (∂νuμ + ∂μuν + ∂μh∂νh). (2)

Within the microscopic approach, there is a change in the
distance between first-neighbor carbon atoms, compared to the
interatomic distance of the unstrained system acc, expressed
as

lij = 1

acc

(
a2

cc + εxxx
2
ij + εyyy

2
ij + 2εxyxij yij

)
, (3)

where xij and yij are the horizontal and vertical projections
of the lattice vectors in the undeformed ribbon, respectively.
This change in distance is included in the modified nearest-
neighbor hopping energy γij = γo exp[−β( lij /acc − 1)],

with β being the electromechanical coupling strength, β =
|∂ log to/∂ log a| � 3.

In the continuum description, the effect of the deformation
usually appears as an inhomogeneous pseudo-gauge field
[21,31–33]. The hopping modifications give origin to gauge
fields in the Dirac equation [34], with the pseudo-vector
potential written in terms of the strain tensor elements

(Ax,Ay) = β�vf

2acc

(εxx − εyy ; −2εxy), (4)

and raising a pseudomagnetic field �B = ∇ × �A(�r). A scalar
deformation potential V = g(εxx + εyy) can be also consid-
ered in the Hamiltonian, with additional diagonal contribu-
tions. The parameter g describes the coupling to acoustical
phonons in graphene systems, and a wide range of values
(0 to −20 eV) has been adopted in different calculations [35],
providing an effective way to take into account the potential
screening in graphene.

We consider an extended Gaussian deformation along the
whole system, as illustrated in Fig. 1(b) and described by

h(xi) = A exp

(
− (xi − x0)2

b2

)
, (5)

which runs over the finite-size confined direction x. Here,
A and b parametrize the Gaussian amplitude and width,
respectively, and x0 = W/2 defines the position of the ribbon
central axis. Figure 1(b) shows a strained 45-AGNR with
A = 2.68acc and b = 6.0acc.

The new atomic distance for the strained fold deformation,
along the zigzag direction, is given by

lij = 1

acc

(
a2

cc + εxxx
2
ij

) = acc

(
1 + 3(x − x0)2h2(x)

2b4

)
, (6)

evaluated for xij = √
3/2acc. It is possible to obtain the

maximum distance variation between the atoms, that is
	lm/acc = (lij − acc)/acc = 3α/4e, for x = ±b/

√
2, where

α = (A/b)2 and e is the Euler’s number (e = 2.71828 . . .).
Then, in what follows, we use the variable α to indicate
the strain intensity considered in the system. The spatial
dependence of the hopping energies γij for the strained- fold
AGNR is shown in Fig. 1(c). The colored diagram maps the
hopping energy at the mean distance between atoms i and j .
For the strain parameters considered (α = 20%), the maximum
distance variation between neighbor sites is 	lm = 5.5%,
while the highest hopping modification is 15%.

Differently from the case of a strained fold nanoribbons
with zigzag edges, which presents a pseudomagnetic field
configuration in the central part of the ribbon [23], a strained
fold armchair nanoribbon does not give rise to pseudomag-
netic fields, although the vector and scalar potential are
nonnull quantities. For the extended Gaussian deformation
considered, the vector potential and the scalar potential are
given, respectively, by (Ax,Ay) = (εxx,0) and V (x) = gεxx .
It is also possible to understand these electronic properties’
modifications in terms of the local metric and curvature
invariants of the system geometrical distortion, which indicate
how much it curves with respect to a nondeformed system
[36]. In particular, the Gaussian curvature (K) is null because
the out-of-plane fold deformation varies only on the horizontal
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direction x, while the mean curvature is H = εxx/2(1 + εxx),
depending locally on the strain at the ribbon.

It is easy to show that, due to the geometric characteristics of
the hexagonal lattice, no changes in the interatomic distances
are expected for a Gaussian deformation along the armchair
transport direction. As such, AGNR ribbons are not supposed
to provide extra conductance channels with localized states
along the strained fold-like area as predicted for strained fold
zigzag GNRs [23]. Nevertheless, the armchair GNRs present
interesting variations of the electronic transport that depends
on the sizes of the system and on the deformation intensity, as
we discuss in the next sections. In particular, the conductance
gap size is an important quantity that can be mechanically
modulated.

To calculate the conductance for the AGNR ribbons, we use
the Landauer approach within the Green’s function formalism
[37], written as

G(ε) = 2e2

h
T r[�T (ε)gr (ε)�B(ε)ga(ε)], (7)

where gr(a) is the retarded (advanced) Green’s function of the
central conductor and �T (B)(ε) = i[

∑r
T (B))(ε) − ∑a

T (B))(ε)] is
written in terms of the top (bottom) lead energy �

a,r
T (B)σ .

The Green’s functions of the leads are calculated using
recursive methods, largely explored in different carbon sys-
tems [3,38,39], while for the central system, circular real-
renormalization procedures [40] are employed. As expected,
due to the translation symmetry on the y direction, the
conductances of such fold-deformed ribbons are still marked
by a sequence of plateaux as in the case of pristine graphene
nanoribbons, but with energy shifts determined by the strain
parameters of the theoretical model, as seen in Fig. 2.
The results are obtained considering a null scalar potential.
Calculating the corresponding conductance we obtain the
transport energy gap of each strain configuration. In the inset
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FIG. 2. Conductance as a function of energy for a 45-AGNR
with different strained fold amplitudes and fixed width b = 4.0 acc,
and null scalar potential. Inset: Conductance for different values of
the coupling parameter g and α = 20%. The colored dashed lines
mark the new Fermi energy positions corresponding to the g values.
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FIG. 3. Electronic band structures of undeformed AGNRs (blue
dashed curves) and strained N -AGNRs with α = 20% (red curves),
for N = 43, 45, and 47 atoms along the ribbon width (left, center, and
right panels, respectively). Parameters: A = 1.34 acc and b = 3.0 acc.

of Fig. 2 we present conductance results for a particular strain
configuration (α = 20%) taking into account now the scalar
deformation potential V (spatial dependent) that changes the
onsite energies of the tight-binding Hamiltonian. For the g

values considered, we note a shifted of the gap position and
also of the corresponding Fermi energies. However, the size
of the conductance gaps, and the semiconducting nature of the
AGNR are essentially not altered and then, in what follows,
we neglected this potential contribution.

III. RESULTS

A. Gap dependence: Numerical results

We start by focusing on the changes of the gap size
according with the geometrical parameter of the ribbon
deformation. As the fold deformation is also considered in
the leads, the translation symmetry along the nanoribbon
fold-axis is preserved, and it is possible to obtain the electronic
band structure of the infinite strained ribbon. Results for the
electronic structure for the N -AGNR families, N = 3m +
1,3m, and 3m + 2, under the same deformation are presented
in Fig. 3. An additional evidence of gap modulation can be
inferred by comparing the unperturbed system (dashed blue
lines) with the strained fold AGNRs (red continuous curves).
Another interesting point is the gap-size evolution for the
different armchair families. For this particular set of A and
b parameters, corresponding to a maximum strain of 5.5%, the
gap size increases for the 3m + 1 and 3m + 2 cases while it
decrease s for the 3m family.

We present in Fig. 4, the gap-size evolution for the two
semiconducting N -AGNR families, N = 3m + 1 and 3m, as
a function of the deformation parameter α. The results for
family N = 3m + 1 are displayed on the left panels, while the
results for the family 3m are presented on the right panels.
Different combinations of the fold-deformation parameters,
A and b, are considered. In Fig. 4(a), the fold width b is
constant and the amplitude A varies for different curves. As
previously expected, for the 3m + 1 AGNRs the gap increases
with α intensity, while the opposite behavior occurs for the 3m
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FIG. 4. Evolution of the energy gap (halfwidth) with respect to
fold deformation α, of two semiconducting N -AGNR families, N =
3m + 1 (left panels) and 3m (right panels). (a) Each curve is for a
fixed value of standard deviation b, marked in the right legend, for
N = 43 (left) and 45 (right) atoms. (b) b = 5.5acc and different values
of the nanoribbon width. (c) Fixed values of amplitude A, marked in
the legend, for N = 43 (left) and 45 (right) atoms.

semiconducting family. This profile is expected to be modified
for higher values of strain as the curves change slope signs.

One can also notice that the gap depends linearly on the
α parameter, with the magnitude of the slope increasing for
higher values of b. Another interesting feature is that for the
3m + 1 family the same maximum gap value is achieved at
different α values for fixed b width, while for the 3m family, a
null gap is obtained for different strain intensities and fixed
b. As expected, and not shown here, the metallic family
3m + 2 behaves similarly to the 3m + 1 AGNRs for a fixed
b parameter, increasing the gap energy size from zero as the
deformation is turned on until a maxima value and then going
down again.

In Fig. 4(b), we verify the dependence of the gap size as a
function of α, with fixed Gaussian width b, for different ribbons
sizes, for both families. The ribbons considered for 3m + 1
family are N = 43,67, and 85 atoms, and for 3m family are:
N = 45,69, and 87, and b = 5.5 acc. It can easily be seen that
the maximum gap for each manoribbon size is different, but
they are obtained for the same α parameter for 3m + 1 family.
Similarly, for the 3m family, the null gap is achieved for a fixed
α, independently of the nanoribbon width. The dependence of
the gap on the parameter b, for fixed values of the amplitude
A is shown in Fig. 4(c). The gap values do not vary linearly
anymore. This shows an additional dependence of the gap on
the parameter b rather than just on α. We did not estimate
numerically the dependence for small values of α because, in
this range, b is of the same order as the width of the ribbon, but
the curve profiles are expected to vary continuously until they
reach the band gap for unstrained ribbons, marked as a green
dot in each panel. For the 3m + 1 family, the gap values are
also expected to be bigger for higher deformations, while for
the 3m family, the gap values are expected to be smaller than
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FIG. 5. Evolution of the energy gap (half width) as a function
of the percent differential length 	W (%), for two semiconducting
N -AGNR families, (a) N = 3m + 1 (N = 45 atoms) and (b) N = 3m

(N = 43 atoms). Fixed values of width b are considered.

the one in the unstrained case. These dependencies are further
discussed in comparison to the analytical results shown in the
continuum description section.

As one of the main results, we show that it is possible to
summarize the gap dependence on the fold parameters as a
function of the percent width variation of the ribbons after
the deformation [	W/W = 	W (%)]. We define the width
variation as 	W = (WS − W ), where WS is the strained and W

is the unstrained ribbon width. In Fig. 5 we show the gap-size
dependence on the percent width variation of the ribbons. The
results show a universal behavior in terms of the deformation
parameters for both semiconducting families. This general
result indicates that the important parameter to tune the energy
gap size, independently of the ribbon width, is the differential
length conformed by the out-of-plane mechanical deformation.

B. Gap dependence: Continuum description

It is possible to understand these results by consider-
ing analytically the electron dynamics in strained graphene
nanoribbons, which is determined by the Dirac equation
in the presence of the gauge field with specific boundary
conditions [9]. The gauge field is defined in Eq. (5). Then,
for a given valley, the Dirac equation takes the form vf σ ·
( p − A/vf ) = ε, where σ = (σx,σy),  = (A,B) is
the wave function defined for both A and B sublattices,
and energy εn = ±�vf

√
k2
n + k2

y , with kn being the quantized
transversal momentum. The electronic wave function for both
the K and K ′ valleys is then derived, taking into account the
out-of-plane deformation, given by h(x). Specifically in the
present strained-fold case, the gauge field A is oriented along
the x direction, and it provides corrections in the mechani-
cal momentum kn. To calculate the transversal momentum,
boundary conditions at the edges of the armchair nanoribbon
are applied [4], and the following relations are obtained:

kn = nπ − 2αλ(0)

W
− K, (8)
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with K = 4π/3
√

3acc, n labeling the transversal modes and
λ(x) given by

λ(x) = β

16acc

[
4h2(x)

A2
(x − W/2)

− b
√

2πErf

[√
2(x − W/2)

b

]]
, (9)

with the error function defined as:

∂x

(
Erf

[√
2(x)

b

])
= 2

b

√
2

π
exp− 2x2

b2 . (10)

In the limit case considered, where W/b 
 1, the error
function can be approximated by Erf [(−W/

√
2b)] ≈ −1.

Moreover, the first term in Eq. (9) has a small contribution
in this limit because of its exponential dependence, and then
λ(0) may be written as

λ(0) = β

16acc

[b
√

2π ] . (11)

The effect of the deformation on the electronic gaps are
then obtained via the energy relation assuming ky = 0, and
the energy dependence for the nth band is given by

εn = �vf

(
s

2λ(0)

W
α +

∣∣∣∣nπ

W
− K

∣∣∣∣
)

, (12)

with s = +1 when (nπ/W − K) < 0 and s = −1, otherwise.
Notice that (i) εn has a linear dependence on α, and fixed

b, as shown in the numerical results presented in Fig. 4(a).
(ii) In the case of the 3m + 1 armchair nanoribbon family,
a band crossing is observed. There is a change of the band
index value n that corresponds to the minimum energy value.
This leads to a slope change in the linear dependence of
the gap size on α, as shown in the Fig. 4 (left panel).
(iii) The maximum gap value (εg) can be evaluated obtain-
ing the α value where the lowest two bands cross, αg =
[π (n + 1/2) − KW ]/2λ(0), with the same value for different
3m + 1 armchair nanoribbons. For this case εg = π�vf /2W ,
and therefore, the maximum gap value depends only on
the nanoribbon width [see Fig. 4(b)]. (iv) The additional
dependence of the gap size on α, but for a fixed A value and
varying b width, shown in Fig. 4(c), may be derived from Eq.
(12), showing the radical dependence found in the numerical
calculation. (v) Similar results can be obtained for the other
families, but band crossings do not take place in the 3m case,
and the gap evolution is fully described by Eq. (12) with a
single n band. The lowest energy band decreases in energy,
reaching null gap, and increases in energy according with the
deformation considered.

The strained ribbon width WS may be calculated consider-
ing the infinitesimal element in x direction which is modified
by a scaling factor, dx ′ = (1 + εxx)dx, given by

WS =
∫ W

0
(1 + εxx)dx ≈ W + A2

b

√
2π

4
, (13)

Notice that we have once more used the limit W/b 
 1 to
approximate the integration. In this way and using Eq. (11), the
width variation is 	W = αλ(0)4acc/β. The energy for each
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FIG. 6. (a) Comparison between the electronic band structures of
a metallic 47-AGNR (dashed blue curves) and a semiconducting 45-
AGNR (continuous red curves) with a mechanical fold deformation in
which the gap is closed (α = 18.9%). Electronic probability density
for the (b) metallic 47-AGNR and for the (c) semiconducting 45-
AGNR under the mechanical deformation α = 18,9%, both at the
energy 0.02 eV, marked with green dotted line in (a). The unitary
cells for each AGNR are show at the bottom of (b) and (c).

single band is then simplified written as

εn = �vf

(
sβ

2acc

	W

W
+

∣∣∣∣nπ

W
− K

∣∣∣∣
)

. (14)

Therefore the gap value depends linearly on the ribbon percent
differential length 	W (%), as predicted in the numerical
results shown in Fig. 5, with an angular coefficient independent
of the deformation parameters A and b.

C. Metallic AGNRs: Unstrained and strained ribbons

We have also investigated the main differences between
an unstrained metallic AGNR and an original semiconducting
ribbon that under a particular strain closes the conductance
gap and behaves like a metallic system. This is the case of
the 45-AGNR that under the mechanical deformation given
by α = 18.9% (b = 5.5 acc) exhibits null gap. Both electronic
band structures are shown in Fig. 6(a): the similarity between
the electronic bands are remarkable in the energy range close to
the Fermi energy. Substantial differences are found, however,
in the electronic probability density, given by the electronic
wave function coefficients |ci |2. The electronic probability
densities for both unstrained and strained metallic AGNRs,
are shown in Figs. 6(b) and 6(c), respectively, at the energy
E = 0.02γ0. The strain considered in the 45-AGNR induces a
probability enhancement at the center of the ribbon for all
energies investigated in the first band. These findings are
evident in the results of the local density of states at the
same energy (E = 0.02γ0) depicted in Figs. 7(a) and 7(b),
for the 47-AGNR and 45-AGNR, respectively, and for the
same strain parameters considered in the previous figure.
The electronic concentration of charge at the central part
of the fold deformation may allow, for instance, better
conditions for functionalization of the ribbon. To go further
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FIG. 7. Contour plot of the Local electronic density of states for
the (a) metallic 47-AGNR and the (b) semiconducting 45-AGNR
under the mechanical deformation α = 18,9%, at the energy 0.02γ0.
White dots represent the atomic positions in the unstrained lattice.

in this direction, a self-consistent calculation is sometimes
required [41,42] to properly take into account the probable
redistribution of the π electrons caused by the deformation and
the foreign molecule that may induce an electrostatic Coulomb
potential. In the present case of armchair nanoribbons, such
self-consistent calculation is not essential since we are consid-
ering soft mechanical deformations that do not induce robust
charge redistribution.

IV. CONCLUSION

In summary, possible electromechanical applications could
be engineered by straining AGNRs, eventually turning them
into metallic or semiconducting ribbons by tuning with

appropriate folding parameters. Numerical results for the
conductance gap were derived by following recursive Green’s
function protocols. The numerical results were well explained
by following an analytical description within the Dirac
equation. We have found that the energy range of the band
gaps are well bounded by the deformation parameters. Also,
the results show that the same maximum band gap is reached by
the 3m + 1 AGNR family at a certain deformation, at different
amplitudes for different but fixed fold widths, and that the
maximum bandgap is defined by the AGNRs width.

By using the same system, a bounded band gap can
be tuned just by being strained as a folded ribbon. Then
the desired gap energy may be obtained by appropriately
adjusting the strained-fold parameter. On the other hand, the
semiconducting 3m family turns out metallic for a particular
deformation, independently of the AGNRs undeformed width.
These findings are summed out in an universal behavior for the
band gap with respect to a percent width difference, verified in
both tight-binding and continuum model descriptions. Finally,
even though AGNRs cannot be used as electronic waveguides
as strained fold ZGNRs due to the null induced pseudomag-
netic fields, it may alternatively be applied as sensor devices as
it opens the possibility for better functionalization scenarios.
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and N. Sandler, Phys. Rev. B 94, 125422 (2016).

[24] D. Rainis, F. Taddei, M. Polini, G. Leon, F. Guinea, and V. I.
Fal’ko, Phys. Rev. B 83, 165403 (2011).

045425-6

https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1088/1468-6996/11/5/054504
https://doi.org/10.1088/1468-6996/11/5/054504
https://doi.org/10.1088/1468-6996/11/5/054504
https://doi.org/10.1088/1468-6996/11/5/054504
https://doi.org/10.1103/PhysRevB.77.195443
https://doi.org/10.1103/PhysRevB.77.195443
https://doi.org/10.1103/PhysRevB.77.195443
https://doi.org/10.1103/PhysRevB.77.195443
https://doi.org/10.1103/PhysRevB.73.235411
https://doi.org/10.1103/PhysRevB.73.235411
https://doi.org/10.1103/PhysRevB.73.235411
https://doi.org/10.1103/PhysRevB.73.235411
https://doi.org/10.1103/PhysRevB.79.075407
https://doi.org/10.1103/PhysRevB.79.075407
https://doi.org/10.1103/PhysRevB.79.075407
https://doi.org/10.1103/PhysRevB.79.075407
https://doi.org/10.1126/science.1191700
https://doi.org/10.1126/science.1191700
https://doi.org/10.1126/science.1191700
https://doi.org/10.1126/science.1191700
https://doi.org/10.1038/ncomms9601
https://doi.org/10.1038/ncomms9601
https://doi.org/10.1038/ncomms9601
https://doi.org/10.1038/ncomms9601
https://doi.org/10.1063/1.4950879
https://doi.org/10.1063/1.4950879
https://doi.org/10.1063/1.4950879
https://doi.org/10.1063/1.4950879
https://doi.org/10.1103/PhysRevLett.103.046801
https://doi.org/10.1103/PhysRevLett.103.046801
https://doi.org/10.1103/PhysRevLett.103.046801
https://doi.org/10.1103/PhysRevLett.103.046801
https://doi.org/10.1126/science.1220335
https://doi.org/10.1126/science.1220335
https://doi.org/10.1126/science.1220335
https://doi.org/10.1126/science.1220335
https://doi.org/10.1103/PhysRevB.92.245302
https://doi.org/10.1103/PhysRevB.92.245302
https://doi.org/10.1103/PhysRevB.92.245302
https://doi.org/10.1103/PhysRevB.92.245302
https://doi.org/10.1038/nphys1420
https://doi.org/10.1038/nphys1420
https://doi.org/10.1038/nphys1420
https://doi.org/10.1038/nphys1420
https://doi.org/10.1038/nnano.2009.191
https://doi.org/10.1038/nnano.2009.191
https://doi.org/10.1038/nnano.2009.191
https://doi.org/10.1038/nnano.2009.191
https://doi.org/10.1021/nl801457b
https://doi.org/10.1021/nl801457b
https://doi.org/10.1021/nl801457b
https://doi.org/10.1021/nl801457b
https://doi.org/10.1103/PhysRevLett.101.226804
https://doi.org/10.1103/PhysRevLett.101.226804
https://doi.org/10.1103/PhysRevLett.101.226804
https://doi.org/10.1103/PhysRevLett.101.226804
https://doi.org/10.1103/PhysRevB.91.161407
https://doi.org/10.1103/PhysRevB.91.161407
https://doi.org/10.1103/PhysRevB.91.161407
https://doi.org/10.1103/PhysRevB.91.161407
https://doi.org/10.1103/PhysRevB.84.195427
https://doi.org/10.1103/PhysRevB.84.195427
https://doi.org/10.1103/PhysRevB.84.195427
https://doi.org/10.1103/PhysRevB.84.195427
https://doi.org/10.1103/PhysRevB.80.045401
https://doi.org/10.1103/PhysRevB.80.045401
https://doi.org/10.1103/PhysRevB.80.045401
https://doi.org/10.1103/PhysRevB.80.045401
https://doi.org/10.1103/PhysRevB.88.035446
https://doi.org/10.1103/PhysRevB.88.035446
https://doi.org/10.1103/PhysRevB.88.035446
https://doi.org/10.1103/PhysRevB.88.035446
https://doi.org/10.1103/PhysRevB.90.041411
https://doi.org/10.1103/PhysRevB.90.041411
https://doi.org/10.1103/PhysRevB.90.041411
https://doi.org/10.1103/PhysRevB.90.041411
https://doi.org/10.1103/PhysRevB.87.241403
https://doi.org/10.1103/PhysRevB.87.241403
https://doi.org/10.1103/PhysRevB.87.241403
https://doi.org/10.1103/PhysRevB.87.241403
https://doi.org/10.1021/nl400872q
https://doi.org/10.1021/nl400872q
https://doi.org/10.1021/nl400872q
https://doi.org/10.1021/nl400872q
https://doi.org/10.1103/PhysRevB.94.125422
https://doi.org/10.1103/PhysRevB.94.125422
https://doi.org/10.1103/PhysRevB.94.125422
https://doi.org/10.1103/PhysRevB.94.125422
https://doi.org/10.1103/PhysRevB.83.165403
https://doi.org/10.1103/PhysRevB.83.165403
https://doi.org/10.1103/PhysRevB.83.165403
https://doi.org/10.1103/PhysRevB.83.165403


GAP ENGINEERING IN STRAINED FOLD-LIKE . . . PHYSICAL REVIEW B 95, 045425 (2017)

[25] P. Xu, Y. Yang, S. D. Barber, M. L. Ackerman, J. K. Schoelz, D.
Qi, I. A. Kornev, L. Dong, L. Bellaiche, S. Barraza-Lopez, and
P. M. Thibado, Phys. Rev. B 85, 121406 (2012).

[26] E. Prada, P. San-Jose, and L. Brey, Phys. Rev. Lett. 105, 106802
(2010).

[27] Y. Lu and J. Guo, Nano Res. 3, 189 (2010).
[28] L. Sun, Q. Li, H. Ren, Q. W. Shi, and J. Yang, J. Chem. Phys.

129, 074704 (2008).
[29] L. Landau and E. M. Lifshitz, Theory of Elasticity (Volume 7

of A Course of Theoretical Physics) (Pergamon, Cambridge,
England, 1970).

[30] M. I. Katesnelson, Graphene: Carbon in Two Dimen-
sions (Cambridge University Press, Cambridge, England,
2012).

[31] Z. Qi, A. L. Kitt, H. S. Park, V. M. Pereira, D. K. Campbell, and
A. H. Castro Neto, Phys. Rev. B 90, 125419 (2014).

[32] J. V. Sloan, A. A. Pacheco Sanjuan, Z. Wang, C. Horvath, and
S. Barraza-Lopez, Phys. Rev. B 87, 155436 (2013).

[33] M. Settnes, S. R. Power, and A.-P. Jauho, Phys. Rev. B 93,
035456 (2016).

[34] H. Suzuura and T. Ando, Phys. Rev. B 65, 235412 (2002).
[35] M. Vozmediano, M. Katsnelson, and F. Guinea, Phys. Rep. 496,

109 (2010).
[36] A. A. Pacheco Sanjuan, Z. Wang, H. P. Imani, M. Vanević, and
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