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Thermoelectric transport in monolayer phosphorene
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We apply the generalized Boltzmann theory to describe thermoelectric transport properties of monolayer
phosphorene in the presence of short- and long-range charged impurity interactions. First, we propose a low-
energy Hamiltonian to explore the accurate electronic band structure of phosphorene in comparison with those
results obtained by density-functional simulations. We explain the effect of the coupling between the conduction
and valence bands on the thermoelectric properties. We show that the electric conductivity of phosphorene is
highly anisotropic, while the Seebeck coefficient and figure of merit, without being influenced via either the
presence or absence of the coupling term, are nearly isotropic. Furthermore, we demonstrate that the conductivity
for the n type of doping is more influenced by the coupling term than that of the p type. Along with thermopower
sign change, profound thermoelectric effects can be achieved.
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I. INTRODUCTION

Thermoelectric materials, based on a fundamental inter-
play between their electronic and thermal properties, have
attracted much interest for application in energy conversion
devices [1–11]. The efficiency of the thermoelectric devices
is quantified by a dimensionless figure of merit ZT , which
relates the Seebeck coefficient (thermopower) to the thermal
conductivity. The small thermal conductivity and relatively
high thermopower and electrical conductivity are required
for high efficiency thermoelectric materials. Even if the
Seebeck coefficient becomes large, a heat current inevitably
accompanies a temperature gradient and thus makes a tradeoff.
The main stream to prevail this issue is based on other
materials with high power factor, such as doped narrow-gap
semiconductors [4–6], or on nanostructuring, such as PbTe
(1.5 nm)/Pb0.927Eu0.073Te (45 nm) multiple quantum well
[1,2] and Bi2Te3 [3]. It is well understood that this efficiency
improvement is due to the sharp peaked electronic density
of states (DOS) in low-dimensional materials [1,12], which
is the optimal way toward high thermoelectric efficiency
[13]. Low dimensional systems could have dramatically larger
ZT values than the corresponding bulk materials because of
decreased thermal conductivity caused by phonon boundary
scattering and improved power factors on account of quantum
confinement. Although the efficiency is largely enhanced
via dimensionality reduction, however, it typically affects
electronic properties of conventional materials. Large efforts in
improving thermoelectric performance target energy filtering,
which provides a way to increase the Seebeck coefficient by
introducing a strongly energy-dependent scattering mecha-
nism [13–16]. Recent advances in fabrication technologies
have made exploring two-dimensional materials possible for
thermoelectric applications [7–11].

Recently, isolated two-dimensional black phosphorus (BP),
known as phosphorene with a puckered structure, received
tremendous interest owing to its extraordinary electronic and
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optical properties in engineering applications [17–20]. The
optical and transport properties of monolayer of BP exhibit
strong in-plane anisotropy as bulk BP for two distinct zigzag
and armchair directions. These anisotropic features mostly
originate from anisotropic bands, like silicon [21]. A nearly di-
rect band gap of BP increases with decreasing number of layers
from 0.3 eV in bulk to 0.8 eV < Eg < 2 eV for a monolayer
[22–29]. According to theoretical predictions, phosphorene
has a high carrier mobility of around 1000 cm2 V−1 s−1 [30]
and a high on/off ratio of 104 in phosphorene field-effect
transistor at room temperature [31]. Besides the bulk BP, it has
also predicted that the phosphorene may have unique potential
thermoelectric applications [32–40].

In this paper, we first propose an accurate low-energy
model Hamiltonian protected all needed symmetries and
compare that with those that appeared in literature. Then, we
investigate the electronic contribution to the thermoelectric
transport of the monolayer of phosphorene. We consider a
phosphorene sheet in diffusive transport regime when thermal
gradients and bias voltages are applied to the system. The
generalized Boltzmann transport equation is applied to obtain
the conductivity, Seebeck coefficient, and the figure of merit.
Moreover, the diffusive transport coefficients are calculated by
considering a short-range potential and a long-range charge-
charge Coulomb potential with a Thomas-Fermi screening
as the source of scattering. Our calculations show that
although the electrical conductivity of phosphorene is highly
anisotropic, the Seebeck coefficient and the corresponding
figure of merit are nearly isotropic. The figure of merit, which
is a measure of thermoelectric efficiency, reaches to ∼1.2 at
low temperatures, irrespective of the underlying scattering
mechanisms. We also investigate the effect of the interband
coupling term on thermoelectric transport coefficients. These
results propose that a monolayer of phosphorene could be a
promising material for the thermoelectric applications.

This paper is organized as follows. In Sec. II, we first
introduce the system and then explain the method which
is used to calculate the conductivity and thermoelectric
coefficients using the generalized Boltzmann method. In
Sec. III, we present and describe our numerical results for the
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conductivity and thermoelectric coefficients for phosphorene.
Finally, we conclude and summarize our main results in
Sec. IV.

II. MODEL AND BASIC FORMALISM

A. Hamiltonian of monolayer phosphorene

Phosphorene has an orthorhombic puckered structure. The
lattice constants of the conventional unit cell, considering four
atoms per unit cell in x (armchair) and y (zigzag) directions,
are respectively ax = 4.63 Å and ay = 3.3 Å. Notice that the
primitive unit cell’s lattice constants are a0

x/y = ax/y/2. The
spin degeneracy of the system is gs = 2 and possesses no
valley degeneracy.

We consider a monolayer of phosphorene at low tempera-
ture. The electronic band structure of phosphorene has been
calculated based on VASP package density-functional theory
[41]. The VASP package provides the first conduction band
in the vicinity of the � point, which is the exact position of
the conduction band minimum. However, the VASP package
suggests a slightly indirect band gap with its actual valance
maximum occurring along the �-Y high symmetry line [42].
Having ignored this slight shift, we can write down a low-
energy model Hamiltonian. For this purpose, the electronic
band structure basically could be described by a four-band
model in the tight-binding model, however, it can be expressed
by a two-band model owing to the C2h point group invariance.
Expanding the tight-binding model [25,43] around the � point,
one obtains the low-energy k · p model of phosphorene [44]
as,

Heff =
(

Ec + ηck
2
x + νck

2
y γ kx + αk2

x + βk2
y

γ kx + αk2
x + βk2

y Ev − ηvk
2
x − νvk

2
y

)
(1)

in the conduction and valence band basis. Parameter α is
usually ignored because of the existence of the linear leading
order term γ kx . Odd crosses terms of momentum components
in the dispersion relation due to simultaneously nonzero γ

and β break the time reversal (TR) symmetry. Within the
Löwdin partitioning procedure the γ kx term comes from
the unperturbed Hamiltonian [44] and must be valid. We
obtain the TR invariant low-energy Hamiltonian of monolayer
phosphorene as

Heff =
(

Ec + ηck
2
x + νck

2
y γ kx

γ kx Ev − ηvk
2
x − νvk

2
y

)
, (2)

where Ec(v) is the band edge at the � point with direct
energy gap Eg = Ec − Ev , and the off-diagonal γ kx element
is the interband coupling term with the real parameter γ .
Other parameters can be extracted from the knowledge of
DFT results [41] where we have Eg = 0.912 eV, ηc = 0.008,
ηv = 0.038 in units of eV nm2, νc = 0.030 and νv = 0.005
in units of eV nm2 which implies that effective masses
have values mcx = 0.146, mvx = 0.131, mcy = 1.240 and
mvy = 7.857 in units of the electron bare mass m0. Notice
that the hole mass along the zigzag (y direction) is much
(almost 10 times) greater than that along the armchair (x
direction) which induces strong in-plane anisotropy. The only
parameter which remains to identify is the γ , and we find
γ = 0.480 eV nm, by fitting the low-energy dispersion of

FIG. 1. Phosphorene band energy dispersion along the Y -�-X
direction in the Brillouin zone. The conduction and valence bands
are compared with those theoretical works in Refs. [45] and [44] and
with simulation results obtained within DFT-VASP (black curves) in
Ref. [41].

the model Hamiltonian to that obtained by DFT-VASP results.
Notice that due to the time-reversal symmetry, the off-diagonal
term includes only γ kx and other terms like βk2

y might be
zero.

As discussed in Ref. [30] based on the symmetry of the
system, it is necessary to have a finite value of the νv albeit
it is zero in Ref. [44]. Remarkably, due to the time-reversal
symmetry β possibly being zero, however, it is finite in the
other parameterized Hamiltonian.

We demonstrate the band dispersion of the conduction
(upper panel) and valence bands (lower panel) in Fig. 1 where
we compare our results with theoretical works in Refs. [44] and
[45] and VASP-DFT simulations [41]. All parameters are given
in Table I. In the vicinity of the � point, all discussed models
capture the physics of the low energy along one direction
of the momentum. In the 2D case, the isofrequency profiles
are obtained by horizontally cutting the dispersion surface
separately calculated by means of a plane wave model. We
illustrate an isofrequency contour surface in the k space to
explore their symmetries for Es(�kF) = 0.05–0.5 eV with a step
of 0.05 eV in both the electron and hole doped cases in Fig. 2.
The first and second rows (a) and (b) refer to the Fermi surfaces
with parameters used in Refs. [45] and [44], respectively.
As we stated before, the mass values in Ref. [45] are not
entirely suitable for phosphorene, although the isofrequency
counter Fermi surfaces are quite like elliptic structure for
Es(�kF) < 0.5 eV and predict that the interband coupling term
can be ignored. This is also the case in the dispersion relation
structure of proposed low-energy Hamiltonian in Ref. [25].
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TABLE I. The effective band masses, mcx , mcy , mvx , and mvy (in units of the electron bare mass m0), gap energy Eg (in units of eV), and
γ = ϑa0

x/π (in units of eV nm) where ϑ = 4 or 6.85, β = θ (a0
x/π )2 (in units of eV nm2) where θ = 2 or 7, ηs = η0/msx − γ 2/Eg (in units of

eV nm2) and ν (in units of eV nm2) based of theoretical works in Refs. [45] and [44]. The values of ϑ and θ differ in those references. In this
work we use parameters presented in Ref. [41], the first row.

Eg mcx mvx mcy mvy γ β ηc ηv νc νv

Present 0.912 0.146 0.131 1.240 7.857 0.480 0 0.008 0.038 0.030 0.005
Ref. [45] 2.00 0.15 0.15 0.70 1.00 0.2839 0.0101 0.2137 0.2137 0.0544 0.0381
Ref. [44] 0.70 0.1128 0.1080 1.5123 ∞ 0.4862 0.0353 0 0.0151 0.0252 0

On the other hand, the counter plot of Ref. [44] breaks the
time-reveal symmetry even at low electron or hole density. This
is basically based on the extra off-diagonal terms that appeared
in the low energy of their model Hamiltonian. Finally, we
present the isofrequency counter surface in the k space based
on our parameters and importantly the shape of the Fermi
surfaces in our model are almost an elliptic shape especially
at low charge density. Our results predict that the interband
coupling term plays a role.

(a)

(b)

(c)

FIG. 2. Isofrequency contour surface in the k space at zero
temperature for Es(�kF) = 0.05–0.5 eV with a step of 0.05 eV in
both the electron and hole doped cases. The first and second rows (a)
and (b) refer to parameters used in Refs. [45] and [44], respectively.
The last row, (c) plots are based on our model Hamiltonian.

By diagonalizing the Hamiltonian Eq. (2), we end up with
two energy bands given by

Eτ = 1
2

[
Hc + Hv + τ

√
4H 2

cv + (Hc − Hv)2
]

(3)

with Hc = Ec + ηck
2
x + νck

2
y , Hv = Ev − ηvk

2
x − νvk

2
y ,

Hcv = γ kx , and τ = ±1 denotes the conduction (valence)
band. The corresponding eigenvector reads

�c(v) = 1√
1 + |χc(v)|2

(χc(v)

1
)
, (4)

where χc(v) = [Hc − Hv + τ
√

4H 2
cv + (Hc − Hv)2]/2Hcv .

Furthermore, having calculated the band energy dispersion
given by Eq. (3), the x and y components of the velocity can
be calculated as

vx = kx

[
ηc − ηv + τ

2γ 2 + (Hc − Hv)(ηc + ηv)√
4H 2

cv + (Hc − Hv)2

]
(5)

vy = ky

[
νc − νv + τ

(Hc − Hv)(νc + νv)√
4H 2

cv + (Hc − Hv)2

]
. (6)

B. Anisotropic transport framework

In this section we use the generalized semiclassical Boltz-
mann formalism for an anisotropic system to establish the
transport coefficients in the diffusive regime. In particular, we
take into account two important cases of short-range (SR)
impurities (e.g., defects or neutral adatoms) with Dirac delta
potential and long-range (LR) Coulomb impurities in our
investigation. The thermoelectric properties of phosphorene
in the presence of both the electric field and the temperature
gradient will be found.

In the diffusive regime, the transport coefficients can be
obtained from the charge current and the energy flux density.
More details are provided in Appendix. The nonequilibrium
distribution function in the presence of driving forces is needed
to calculate the current densities. For this purpose, we take the
Boltzmann equation up to a linear order in the presence of
thermoelectric fields. The collision integral is given by(

df

dt

)
coll.

=
∫

d2k′

(2π )2
w(k,k′)[f (k,E,T ) − f (k′,E,T )], (7)

where w(k,k′) is the scattering rate from state k to state k′
which needs to be specified according to the microscopic
origin of the scattering mechanisms. As the relaxation time
approximation provides an inadequate explanation for the full
aspects of the anisotropic features of the transport properties,
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an exact integral equation approach might be implemented
[46–48]. The scattering w(k,k′) rates using the Fermi golden
rule within the lowest order of the Born approximation are
given by

w(k,k′) = 2π

�
nimp|〈k′|V̂ |k〉|2δ(εk − εk′), (8)

where nimp is the areal density of randomly distributed
scatterers and V̂k−k′ is the Fourier transformation of the
interaction potential between an electron and a single impurity.
The short-ranged impurities are approximated with a zero-
range hard-core potential V̂k−k′ = V0. On the other hand,
the long-ranged Coulombic interaction owing to the charged
impurities is screened by other electrons of the system like
the Thomas-Fermi approach. The generalized conductivity
σ (ε; θ,θ ′) is given by

σ (ε; θ,θ ′) = e2
∫

d2k

(2π )2
δ(ε − ε(k))v2(φ)

× [a(φ) cos θ + b(φ) sin θ ] cos (θ − ξ (φ)) (9)

with θ = θ ′ = 0 for σxx and θ = θ ′ = π/2 for σyy . We
concentrate on low enough temperatures where only electrons
contribute effectively in thermal transport and disregard
phonon contribution.

III. NUMERICAL RESULTS AND DISCUSSION

In this section our numerical results for the thermoelectric
transport in phosphorene are presented. We investigate the
electrical conductivity, Seebeck coefficient (S), and its corre-
sponding figure of merit ZT , considering both the SR and LR
potentials. It should be noted that we set T ∼ 20 K in all calcu-
lated quantities. Moreover, nimp. = 1010 cm−2 corresponding
to the chemical potential approximately μ ∼ 10−4 eV is used
for the impurity concentration of both short-range and long-
range potentials to ensure that the diluteness criteria is satisfied.
It is worthwhile to mention that there are essential criteria for
utilizing the Boltzmann equation. These criteria are listed as
follows. Particles might interact via binary collisions, impurity
density is low in terms of the charge carriers, an external field
might has long-range wavelength, and all collisions are elastic
and involve only uncorrelated particles.

Figure 3 shows the variation of the electrical conductivity
of phosphorene versus the chemical potential μ in the
presence of short-range impurity interaction with Vk−k′ =
V0 = 1000 eV Å2 [49], in the zigzag, σyy , and armchair, σxx ,
directions. The influence of the interband coupling term γ is
also indicated. While at the presence of the coupling term γ the
electrical conductivity in the armchair direction σxx is greater
than the conductivity in the zigzag direction σyy , for both n-
and p-doped regimes, however the conductivity in the armchair
direction is smaller than that of the zigzag direction σxx < σyy

for the n-doped regime. Intriguingly, the conductivity in the
armchair direction σxx is more influenced by the inclusion
of the coupling term γ and enhanced significantly. In both
doping regimes, the coupling term does not alter notably the
conductivity in the zigzag direction σyy . All these behaviors
are the characteristics of the dispersion of monolayer phos-
phorene, as indicated in Fig. 4. In the absence of the coupling

FIG. 3. The conductivity of monolayer phosphorene as a function
of the chemical potential μ at the presence of short-range impurity
potential along the zigzag, σyy , and armchair, σxx , directions. The
effect of the coupling term γ is also shown. Note that the chemical
potential is measured from the middle of the gap value.

term γ = 0, phosphorene dispersion relation reduces to two
separate ovals for the conduction and valence bands. In order to
understand aforementioned features, we use the intuition based
on the Drude formula with an effective mass tensor, σ ∼ 1/m∗,
of the transport. Around the � point, the components of
the effective mass for γ 	= 0 are m−1

c,xx = 0.333 > m−1
c,yy =

0.06145, and m−1
v,yy = −0.00969 
 m−1

v,xx = −0.393, while
for the γ = 0 are m−1

c,xx = 0.01637 < m−1
c,yy = 0.061452, and

m−1
v,xx = −0.07613 > m−1

v,yy = −0.00969. It is worth noting
that unlike the graphene [50], the conductivity of phosphorene
has an explicit energy dependence when only short-range
scatterers are present.

Due to the fact that the long-range charge-impurity
Coulomb interactions are mostly the dominant scatterers
in samples, we also consider the Coulomb interaction. To
this end, we use an interaction potential including static
Thomas-Fermi screening, as is commonly used for a 2D
electron gas [52] to account partially for screening, as
Vk−k′ = 2πe2/(ε(|k − k′| + qTF )) where qTF = 2πe2N (μ)/ε
is the Thomas-Fermi screening vector with the density of states
of the system, N (μ). We use the dielectric constant of the
common substrate SiO2 which is about ε = 2.45. In Fig. 5, the
conductivity of phosphorene as a function of doping is plotted
in the presence of LR potentials, for both the zigzag, σyy , and
armchair, σxx , directions. The overall energy dependence is
the same as SR interactions which indicated that despite the
details of scattering phenomena, the dispersion of phosphorene
plays a main role in the conductivity. However, there is a clear
discrepancy between two scattering mechanisms for the role
of the coupling parameter γ . Interestingly, the conductivity in
the zigzag direction σyy is more affected by the coupling term
than the σxx , in contrary to SR interactions where σxx is more
altered by the coupling term. On the other hand, while the
σxx is enhanced by the coupling for SR potentials, here σyy is
suppressed due to the coupling term. We should mention that
at very low temperatures the variation of thermal conductivity
will be similar to the charge conductivity K ≈ (π2/3)kBT σ .
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(a)

(b)

FIG. 4. The band structure of phosphorene in the first Brillouin
zone, indicated by the gray square plane. Dispersion of phosphorene
is depicted in the planes of X-�-X and Y -�-Y . The corresponding
constant-energy contour plots in the Brillouin zone are shown in both
n- and p-doped cases. The influence of the coupling term γ is also
indicated in panels (a) and (b).

Figure 6 shows the anisotropy ratio calculated using the
SR and LR potentials. First of all, as seen in the figure,
the ratio is significantly large specially at low charge carrier
density. The curves are monotonic in terms of the chemical
potential and find that the ratio slightly changes with the type
of impurity. In the inset, we show the anisotropic ratio of
the hole doped case. We also compare our numerical results
with those obtained by Liu et al., [51] in the case that d = 0,
the distance between charged impurity with phosphorene,
in which they computed the mobility within the Boltzmann
transport equation under detailed balance condition together
with the anisotropy in momentum. As seen in the figure, there
is a discrepancy between our fully self-consistent method with
the approximated relaxation time result. This predicts that the
Boltzmann transport equation with the anisotropic momentum

FIG. 5. The conductivity of monolayer phosphorene as a function
of doping μ at the presence of long-range charged impurity potential
for the zigzag, σyy , and armchair, σxx , directions. The effect of
coupling term γ is also shown.

cannot provide a full description of the transport properties in
phosphorene, except at very low doping regime.

The variation of the Seebeck coefficients (thermopower) S,
as a more feasible quantity in real experiments, with doping at
the presence of SR and LR potentials is obtained as shown in
Fig. 7. When the Fermi level lies in the valence band thermally
activated holes, which move along the same direction as the
temperature gradient owing to the positive charge, it results in
a positive thermopower, however thermally activated electrons
in the conduction band lead to a negative thermopower.
Moreover, the figure of merit attains its maximum value around
the chemical potential as can be seen in Fig. 8 where the ZT

is depicted as a function of the carrier density n2D for both
scatterers. The figure of merit becomes large where the power

FIG. 6. The anisotropy ratio of the conductivity, σxx/σyy , of
monolayer phosphorene as a function of electron doping μ at the
presence of short- and long-range impurity potentials. Inset: the ratio
of the conductivity as a function of the hole chemical potential. Solid
line refers to data calculated in Ref. [51] for long-ranged impurity
potential at d = 0.
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FIG. 7. Seebeck coefficient of phosphorene as a function of
carrier density n2D at the presence of short- and long-range Coulomb
potentials. The effect of the coupling term γ is also depicted. Despite
the γ , the Seebeck coefficients are nearly isotropic for both directions.

factor S2σ is very strong while the thermal transport K is
not. Our results reveal that, in contrast to highly anisotropic
electrical and thermal conductivities, the Seebeck coefficient
and the thermoelectric figures of merit are nearly isotropic,
consistent with the prior work [34]. In fact, for the charge
carrier density less than about 1 × 1014 cm−2, both σ and its
derivative with respect to the energy have approximately the
same anisotropic behavior, consequently it leads to a nearly
isotropic behavior of the Seebeck coefficient. Interestingly,
in spite of underlying scattering mechanisms, thermopower
and its corresponding figure of merit are not affected by the
coupling term γ , on the contrary the charge conductivity.
In Fig. 9, the figures of merit as a function of doping are
plotted at T = 300 K in the presence of LR potentials, for
both the zigzag and armchair directions. Notice that in this
case, we calculate Eq. (A7) in the Appendix numerically.

FIG. 8. The variation of corresponding figures of merit are
depicted as a function of the carrier density at the presence of short-
and long-range charge-impurity potentials. The effect of the coupling
term γ is also depicted. Figures of merit are also nearly isotropic.

FIG. 9. The variation of figures of merit along the armchair
and zigzag directions as a function of the carrier density at the
presence of long-range charge-impurity potential at room temperature
T = 300 K. The effect of only electron contribution in the thermal
conductivity Kel is illustrated by symbols while the full effect of
the electron and phonon contributions in the thermal conductivity
Kel + Kph (which is ∼ 13 and ∼ 30 Wm−1 K−1 along armchair and
zigzag, respectively) are shown by solid and dashed lines.

The contribution of the phonon in the thermal conductivity
Kph ∼ 20–40 Wm−1 K−1 [34,53–55] can only affect the figure
of merit, and the thermopower is not altered by the presence
of the phonon. At high temperatures, the phonon becomes
important but it only results in the overall decline of the figures
of merit, without affecting their qualitative behavior.

IV. CONCLUSION

In conclusion, the thermoelectric transport in phosphorene
in the presence of short- and long-ranged charged impurity
potentials is studied using the generalized semiclassical
Boltzmann approach for anisotropic systems. The charge
conductivity, which is slightly different for n- and p-doped
cases mostly owing to the unique dispersion of phosphorene,
is found to be highly anisotropic, while the Seebeck coefficient
and the corresponding figure of merit, without being affected
either by type of scatterers or the presence/absence of coupling
term, are nearly isotropic. Intriguingly, the conductivity for
n-doped cases is more influenced by the coupling term, albeit
in a dissimilar manner for different scatterers, than p-doped
cases. Furthermore, it is shown that thermopower changes sign
due to the conversion of electrons to holes and vice versa at
the edge of the bands. We also reveal that phosphorene could
be a very promising material for thermoelectric studies and
applications.

Since several works on thermodynamics in 2D crystalline
material systems are available, a proper comparison with those
results seems to be in order. Recent investigations, based
on DFT calculations, showed that the ZT value of BP can
only reach 0.22 at room temperature, while for monolayer
phosphorene it reaches to 1.78 [36]. It has been argued that
applying strain is a practical way to enhance the thermoelectric
efficiency of BP, and the largest ZT value of 0.87 can be
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TABLE II. Reported values of the Seebeck coefficients and
their corresponding figures of merit for monolayer of phosphorene,
silicene, graphene, and MoS2 systems.

T [K] S[μV K−1] ZT

Phosphorene [36] 300 3000 1.78
Phosphorene [34] 300, 500 2000, 2800 1.5, 3.8
Phosphorene [57] 300 500, 600 1.65, 2.12
Phosphorene [56] 300, 500 450, 500 0.1, 0.14
Phosphorene [32] 300 1400 up to 6.5
Silicene [58] 300–600 up to 858 2.8–4.9
Graphene 300 up to 80 0.79–1
[7,8,59,60]
Graphene [61] 150, 300 up to 60, 120
Graphene [62] T<40, 300 up to 12, 50
MoS2 [10] 300, 500 up to 105 0.5, 1
Present 20 ∼175 ∼1.2

achieved [35]. Although the ZT values obtained for BP are
very small to compete with typical thermoelectric materials,
e.g., Bi2Te3, Fei et al. using first principle simulations showed
that both the electrical and thermal conductance of monolayer
phosphorene are highly anisotropic and theZT value is greater
than 1.0 at room temperature and can attain up to 2.5 at
500 K [34], due to the optimal ratio of conductances with
orthogonally preferred conducting directions. Zhang et al.
demonstrated, based on first principle calculations, that the
ZT value for phosphorene nanoribbons can achieve up to 6.4
at room temperature [32]. Liao et al. implying first principle
calculations reported ZT values of 0.1, 0.14 at 300, 500 K,
respectively, for p-doped samples [56]. Lv et al., based on
the semiclassical Boltzmann equation and DFT calculations,
showed that ZT value of phosphorene at room temperature by
strain can reach up to 1.65 [57].

Pan et al., using the nonequilibrium Green’s function
method and molecular dynamics simulations, predicted that
the ZT value of zigzag silicene nanoribbon can achieve up
to 4.9 [58]. Experimentally, the thermopower of graphene has
been varied from 20 to 90 μV K−1 while the temperature
is changed from 10 to 300 K [8]. Wei et al., experimentally
achieved up to 50 μV K−1 for the thermopower of graphene at a
temperature range of 11–255 K [7]. Checkelsky et al. reported
measurement of thermopower in graphene that reaches up to ∼
100 μV K−1 at room temperature [59]. By means of atomistic
simulation, Mazzamuto et al. predicted that the thermopower
of graphene nanoribbons attain the value of 300 μV K−1 [60].
The investigation based on self-consistent Born approximation
predicted the value of 0.4 μV K−2 for the thermoelectric power
of graphene S/T , at the presence of charged impurity scat-
terers [61]. Bao et al., by presenting a balance-equation-based
theoretical examination of thermoelectric power in graphene,
found that S changes from 1 to 50 μV K−1 as temperature
goes from 10 to 300 K [62]. Buscema et al., by scanning
photocurrent microscopy, have observed a thermopower as
high as 105 μV K−1 for a single-layer MoS2, which is tunable
via an external electric field [10]. Finally, the predicted and
measured values of the Seebeck coefficient and ZT of 2D
materials are listed in Table II.
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APPENDIX

In the diffusive regime, the transport coefficients can be
obtained from the following expression for the charge current
j and energy flux density jq ,[

j
jq

]
=

∫
d2k

(2π )2

[ −e

ε(k) − μ

]
v(k)f (k), (A1)

where v(k) is the semiclassical velocity of the carriers which
is related to the energy dispersion εk through v = (1/�)∇kεk.
The nonequilibrium distribution function f (k) describes the
evolution of the charge distribution in the presence of thermo-
electric forces. In the linear response theory we seek a solution
of Eq. (6) in the form of

f (k,E,T ) − f0 = Ex∂Ex
f + Ey∂Ey

f

+∇Tx∂∇Tx
f + ∇Ty∂∇Ty

f + · · · (A2)

by parameterizing E , k, and v as E = E(cos θ, sin θ ), k =
k(cos φ, sin φ), and v(k) = v(φ)(cos ξ (φ), sin ξ (φ)), respec-
tively; we end up for nonequilibrium distribution function
with,

f (θ,α) − f0 = [A(φ) cos θ + B(φ) sin θ )]E
+ [C(φ) cos θ + D(φ) sin θ ]∇T (A3)

where, A(φ) = ∂Ex
f , B(φ) = ∂Ey

f , C(φ) = ∂∇Tx
f , and

D(φ) = ∂∇Ty
f . By invoking Eq. (A3) into Eq. (7) we obtain

the following set of linear integral equations [46–48]

cos ζ (φ) = w̄(φ)a(φ) −
∫

dφ′ v(φ′)
v(φ)

w(φ,φ′)a(φ′), (A4)

sin ζ (φ) = w̄(φ)b(φ) −
∫

dφ′ v(φ′)
v(φ)

w(φ,φ′)b(φ′), (A5)

with similar relations for c(φ) and d(φ). Here
w(φ,φ′) = (2π )−1

∫
k′dk′w(k,k′) and w̄(φ) = ∫

dφ′w(φ,φ′).
Also, the quantities A(φ) = −ev(φ)[−∂εf0]a(φ),
B(φ) = −ev(φ)[−∂εf0]b(φ), C(φ) = v(φ)( ε−μ

T
)[−∂εf0]c(φ),

and D(φ) = v(φ)( ε−μ

T
)[−∂εf0]d(φ) are defined. Inserting

solutions of Eqs. (A4) and (A5) into Eq. (A3) yields the exact
solution of the Boltzmann equation up to the linear order in E
and ∇T .

By invoking the expression for f (θ,φ) into Eq. (A1) for the
charge and heat currents, the response matrix, which relates
the resulting generalized currents to the driving forces, can
be expressed in terms of some kinetic coefficients Lα as the
following,(

j
jq

)
=

(
L0 −L1/eT

L1/e −L2/e2T

)(
E

−∇T

)
. (A6)

Diagonal response elements explain the electrical σ and
thermal K conductivities, and the two off-diagonal thermo-
electric coefficients are related to each other through the
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Onsager relation. The Seebeck coefficient (thermopower)
S = − 1

eT
(L0)−1 · L1 describes the voltage generation due to

the temperature gradient while Peltier coefficient � = T S
accounts for the heat current induction due to the charge
current, respectively. The figure of merit, which is the ability
of a material to efficiently produce thermoelectric power,
is described by a dimensionless quantity denoted by ZT =

σS2

K T . All of the coefficients obey the relation

Lα(θ,θ ′) =
∫

dε

[−∂f0

∂ε

]
(ε − μ)ασ (ε; θ,θ ′). (A7)

All of the thermoelectric properties described by Lα can be
found by calculating the generalized conductivity.
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