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We theoretically investigate the phenomena of adiabatic quantum charge pumping through a normal-insulator-
superconductor-insulator-normal (NISIN) setup of silicene within the scattering matrix formalism. Assuming a
thin barrier limit, we consider the strength of the two barriers (χ1 and χ2) as the two pumping parameters in
the adiabatic regime. Within this geometry, we obtain crossed Andreev reflection (CAR) with probability unity
in the χ1-χ2 plane without concomitant transmission or elastic co-tunneling. Tunability of the band gap at the
Dirac point by applying an external electric field perpendicular to the silicene sheet and variation of the chemical
potential at the normal silicene region, open up the possibility of achieving either a perfect CAR or transmission
process through our setup. This resonant behavior is periodic with the barrier strengths. We analyze the behavior
of the pumped charge through the NISIN structure as a function of the pumping strength and angles of the
incident electrons. We show that large (Q ∼ 2e) pumped charge can be obtained through our geometry when
the pumping contour encloses either the CAR or transmission resonance in the pumping parameter space. We
discuss possible experimental feasibility of our theoretical predictions.
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I. INTRODUCTION

In recent years, a close cousin to graphene [1,2], silicene
[3–11] consisting of a monolayer honeycomb structure of
silicon atoms, has attracted a lot of research interest in the
condensed matter community due to its unique Dirac-like band
structure which allows one to realize a rich variety of topologi-
cal phases [12–17] and Majorana fermion [16] in it under suit-
able circumstances. Moreover, this band structure is shown to
be tunable by an external electric field applied perpendicular to
the silicene sheet [18,19]. Dirac fermions, in turn, become mas-
sive at the two valleys K and K′ in this material. These prop-
erties have enabled silicene to be a promising candidate for re-
alizing spintronics [20–24], valleytronics [14,25–27] devices,
as well as a silicon-based transistor [28] at room temperature.

Very recently, the superconducting proximity effect in
silicene has been investigated theoretically in Refs. [29–31].
Although, up to now, no experiment has been put forwarded
in the context of proximity effect in silicene. In Ref. [29],
a unique possibility of acquiring pure crossed Andreev
reflection (CAR) without any contamination from normal
transmission/co-tunneling (CT) has been reported in
normal-superconductor-normal (NSN) junction of silicene
where elastic co-tunneling as well as Andreev reflection can be
suppressed to zero by properly tuning the chemical potential
and band gap at the two normal sides. However, in such an NSN
junction, the maximum value of CAR probability does not
reach 100% because normal reflection does not vanish. This
naturally motivates us to study an NISIN junction of silicene
and explore whether incorporating an insulating barrier at each
NS interface can give rise to resonant CAR in such a setup.

On the other hand, adiabatic quantum pumping is a transport
phenomenon in which low-frequency periodic modulations of
at least two system parameters [32–35] with a phase difference
lead to a zero bias finite dc current in meso- and nanoscale
systems. Such zero-bias current is obtained as a consequence
of the time variation of the parameters of the quantum system,

which explicitly breaks time-reversal symmetry [36–38]. It is
necessary to break time-reversal symmetry in order to get net
pumped charge, but it is not a sufficient condition. Indeed, in
order to obtain a finite net pumped charge, parity or spatial
symmetry must also be broken. Finally, to reach the adiabatic
limit, the required condition to satisfy is that the period T of
the oscillatory driving signals has to be much larger than the
dwell time τdwell � L/vF of the electrons inside the scattering
region of length L, i.e., T = 2π/ω � τdwell [34]. In this limit,
the pumped charge in a unit cycle becomes independent of the
pumping frequency. This is referred to as “adiabatic quantum
charge pumping” [34].

During the past decades, quantum charge and spin pumping
has been studied extensively in mesoscopic setups including
quantum dots and quantum wires both at the theoretical
[36,37,39,39–53] as well as experimental [54–59] level with
focus on both the adiabatic and nonadiabatic regime. In recent
times, quantum pumping has been explored in Dirac sys-
tems like graphene [38,50,51,60,61] and topological insulator
[62,63]. However, the possible quantization of pumped charge
[64] during a cycle through noninteracting open quantum
systems has been investigated so far based on the resonant
transmission process [38,43,65,66]. In more recent times,
quantized behavior of pumped charge has been predicted in
superconducting wires with Majorana fermions [67], fractional
fermions [66], and topological insulators in enlarged parameter
spaces [68]. Although, to date, quantum pumping phenomena
through the resonant CAR process has not been investigated
to the best of our knowledge.

Motivated by the above mentioned facts, in this article, we
study adiabatic quantum charge pumping either through the
resonant CAR process or the resonant transmission process,
under suitable circumstances, in the silicene NISIN junction.
We model our pump setup within the scattering matrix
formalism [33,34] and consider the strength of the two barriers
(in the thin barrier limit) as our pumping parameters. We show
that CAR probability can be unity in the pumping parameter
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FIG. 1. A schematic sketch of our silicene NISIN setup. A
silicene sheet with hexagonal lattice structure is deposited on a
substrate (orange, light gray). Here N indicates the normal region,
I denotes the thin insulating barrier region (gray, light gray). A
bulk superconducting material of length L, denoted by S (pink, light
gray), is placed in close proximity to the silicene sheet to induce a
superconducting correlation in it. Two gates G1 and G2 (dark green,
dark gray) are connected to the two normal regions (N) of the silicene
sheet to tune the chemical potential (doping) there. Two extra gates
(blue and red, light gray) indicated by χ1 and χ2 are symbolically
denoted to modulate the barrier strengths.

space. Moreover, resonant CAR is periodic in the pumping
parameter space due to the relativistic nature of the Dirac
fermions. Similar periodicity is present, in the case of the
resonant tunneling process as well, under suitable conditions.
Adiabatic quantum pumping through these processes, with
the modulation of two barrier strengths, can lead to large
pumped charge from one reservoir to the other. We investigate
the nature of pumped charge through the NISIN structure as
a function of the pumping strength and angle of incidence
of incoming electrons choosing different types of pumping
contours (circular, elliptic, lemniscate [66], etc.).

The remainder of the paper is organized as follows. In
Sec. II, we describe our pump setup based on the silicene
NISIN junction and the formula for computing pumped charge
within the scattering matrix framework. Section III is devoted
to the numerical results obtained for the pumped charge as
a function of various parameters of the systems. Finally, we
summarize our results and conclude in Sec. IV.

II. MODEL AND METHOD

In this section we describe our pump setup in which we
consider a normal-insulator-superconductor-insulator-normal
(NISIN) structure of silicene in the x-y plane as depicted in
Fig. 1. Here, the superconducting region being located between
0 < x < L, while the insulating barriers are situated on its left,
−d < x < 0, and on its right, L < x < L + d. The normal
region of silicene occupies at the extreme left, i.e., x < −d

and extreme right ends, x > L + d. Here, superconductivity
is assumed to be induced in the silicene sheet via the proximity
effect, where a bulk s-wave superconductor is placed in close
proximity to the sheet in the region 0 < x < L. The two insu-
lating regions in silicene have gate tunable barriers of strength
χ1 and χ2 in the thin barrier limit [30,31]. Two additional gate
voltages G1 and G2 can tune the chemical potential in the left
and right normal silicene regions, respectively.

The silicene NISIN junction can be described by the Dirac
Bogoliubov–de Gennes (DBdG) equation of the form [29,30],

[
Ĥη̃ �1̂
�†1̂ −Ĥη̃

]
� = E�, (1)

where E is the excitation energy, and � is the proximity
induced superconducting pairing gap. The Hamiltonian Hη̃

describes the low energy physics close to each K and K′ Dirac
points and reads as [19]

Hη̃ = �vf (η̃kx τ̂ x − kyτ̂ y) + (elEz − η̃σλSO)τ̂ z − μ1̂, (2)

where vf is the Fermi velocity of the electrons, μ is the
chemical potential, λSO is the spin-orbit term and Ez is the
external electric field applied perpendicular to the silicene
sheet. Here η̃ = ±1 denotes the K and K′ valley. In Eq. (2), σ is
the spin index and τ̂ correspond to the Pauli matrices acting on
the sublattices A and B where 1̂ is the 2 × 2 identity operator.

The potential energy term elEz in the low energy Hamilto-
nian Hη̃ originates due to the buckled structure of silicene in
which the A and B sublattices are noncoplanar (separated by a
distance of length l) and therefore acquire a potential difference
when an external electric field Ez is applied perpendicular
to the plane. It turns out that at a critical electric field
Ec

z = λSO/el, the band gap at each of the valleys become
zero with the gapless modes of one of the valley being up-spin
polarized and the other being down-spin polarized [18,19].
Away from the critical field, the bands (corresponding to Hη̃)
at each of the valleys K and K′ split into two conduction
and valence bands with the band gap being |elEz − η̃σλSO|.
Note that, in silicene, the pairing occurs between η̃ = 1, σ = 1
and η̃ = −1, σ = −1 as well as η̃ = 1, σ = −1 and η̃ = −1,
σ = 1 for an s-wave superconductor.

Here we set up the equations to analyze the quantum pump-
ing phenomena through our NISIN structure. Solving Eq. (1)
we find the wave functions in three different regions. The wave
functions for the electrons (e) and holes (h) moving in the ±x

direction in the left or right normal silicene region N reads

ψe±
Nm = 1

A

⎡
⎢⎢⎣

±η̃ke
1me±iη̃αem

τ e
1m

1
0
0

⎤
⎥⎥⎦ exp

[
i
(±ke

1xm
x + ke

1y
y
)]

,

(3)

ψh±
Nm = 1

B

⎡
⎢⎢⎣

0
0

∓η̃kh
1me±iη̃αhm

τh
1m

1

⎤
⎥⎥⎦ exp

[
i
(±kh

1xm
x + kh

1y
y
)]

,

where the index m = L/R stands for the left or right normal
silicene region and we use this symbol for the rest of the
paper. In Eq. (3) the normalization factors are given by

A =
√

2(E+μm)
τ e

1m

, B =
√

2(E−μm)
τh

1m

, and

k
e(h)
1m =

√(
k

e(h)
1xm

)2 + (
k

e(h)
1y

)2
, (4)

k
e(h)
1xm

=
√

(E±μm)2 − (elEzm − η̃σλSO)2 − (
k

e(h)
1y

)2
, (5)

τ
e(h)
1m = E±μm∓(elEzm − η̃σλSO). (6)

Here μm indicates the chemical potential in the left (μL)
or right (μR) normal silicene region. E is the energy of the
incident particle.

Due to the translational invariance in the y direction,
corresponding momentum k

e(h)
1y

is conserved. Hence, the angle
of incidence αem and the Andreev reflection (AR) angle αhm
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are related via the relation,

kh
1m sin(αhm) = ke

1m sin(αem). (7)

In the insulating region I , the corresponding wave functions
can be inferred from normal region wave functions [Eq. (3)]
by replacing μm → μm − V0(V ′

0) where V0 and V ′
0 are the

applied gate voltages at the left and right insulating regions,
respectively. We define dimensionless barrier strengths [30,31]
χ1 = V0d/�vF and χ2 = V ′

0d/�vF which we use as pumping
parameters for our analysis. Here d is the width of the
insulating barriers assumed to be the same for both of them.

In the superconducting region S, the wave functions of
DBdG quasiparticles are given by

ψe±
S = 1√

2

⎡
⎢⎣

u1

±η̃u1e
i η̃θe

u2

±η̃u2e
i η̃θe

⎤
⎥⎦ exp[±(iμS − κ)x + iqe

yy],

(8)

ψh∓
S = 1√

2

⎡
⎢⎣

u2

∓η̃u2e
−i η̃θh

u1

∓η̃u1e
−i η̃θe

⎤
⎥⎦ exp[±(−iμS − κ)x + iqh

y y].

Here the coherence factors are given by

u1(2) =
[

1

2
±

√
E2 − �2

2E

] 1
2

and κ =
√

�2 − E2. (9)

As before, the translational invariance along the y direction
relates the transmission angles for the electronlike and holelike
quasiparticles via the following relation given by

qβ sin θβ = ke
1m sin αem, (10)

for β = e,h. The quasiparticle momentum can be written as

qe(h) = μS ±
√

E2 − �2, (11)

where μS = μm + U0, and U0 is the gate potential applied
to the superconducting region in order to tune the Fermi
wavelength mismatch [69] between the normal and supercon-
ducting regions. The requirement for the mean-field treatment
of superconductivity is justified in our model as we have taken
μS � � [69,70] throughout our calculation.

We consider electrons with energy E incident from the left
normal region of the silicene sheet in the subgapped regime
(E < �). Considering normal reflection, Andreev reflection,
co-tunneling (normal transmission), and crossed Andreev
reflection from the interface, we can write the wave functions
in five different regions of the junction as

�L
N = ψe+

NL + reψ
e−
NL + rAψh−

NL,

�L
I = p1ψ

e+
IL + q1ψ

e−
IL + m1ψ

h+
IL + n1ψ

h−
IL ,

�S = t1ψ
e+
S + t2ψ

e−
S + t3ψ

h+
S + t4ψ

h−
S , (12)

�R
I = p2ψ

e+
IR + q2ψ

e−
IR + m2ψ

h+
IR + n2ψ

h−
IR ,

�R
N = teψ

e+
NR + tAψh+

NR,

where re, rA, te, tA correspond to the amplitudes of normal
reflection, AR, transmission, and CAR in the N silicene
regions, respectively. The transmission amplitudes t1, t2, t3,
and t4 denote the electronlike and holelike quasiparticles in the

S region. Using the boundary conditions at the four interfaces,
we can write

�L
N |x=−d = �L

I |x=−d , �L
I |x=0 = �S |x=0,

(13)
�S |x=L = �R

I |x=L, �R
I |x=L+d = �R

N |x=L+d ,

which yields a set of 16 linearly independent equations.
Solving these equations numerically, we obtain re, rA, te, tA
which are required for the computation of pumped charge
through our setup.

In order to carry out our analysis for the pumped charge
in silicene NISIN structure, we choose the two dimensionless
insulating barrier strengths χ1 and χ2 as our pumping param-
eters. They evolve in time either as (offset circular contours)

χ1 = χ0 + P cos(ωt − η),
(14)

χ2 = χ0 + P cos(ωt + η),

or as (“lemniscate” contours),

χ1 = χ10 + PL

(
cos θ cos ωt − 1

2 sin θ sin 2ωt
)
/(1 + sin2 ωt),

χ2 = χ20 + PL

(
cos θ cos ωt + 1

2 sin θ sin 2ωt
)
/(1 + sin2 ωt),

(15)

respectively. In the circular contours χ0 and in the lem-
niscate contours χ10 , χ20 correspond to the mean value of
the amplitude, respectively, around which the two pumping
parameters are modulated with time. P and PL are called the
pumping strengths for the two types of contours, respectively.
Furthermore, 2η and θ represent the phase offset between the
two pumping signals for the circular and lemniscate contours,
respectively. Here ω is the frequency of oscillation of the
pumping parameters.

We, in our analysis, only consider the adiabatic limit of
quantum pumping where the time period of the pumping
parameters T = 2π/ω is much longer than the dwell time
τdwell � L/vF of the Dirac fermions inside the proximity
induced superconducting region.

To calculate the pumped charge, we employ Brouwer’s
formula [34] which relies on the knowledge of the parametric
derivatives of the S-matrix elements. Following Ref. [71], the
S matrix for the NISIN structure of silicene for an incident
electron with energy E, can be written as

S =

⎡
⎢⎢⎣

|re|eiγe |rA|eiγh |te|eiδe |tA|eiδh

|rA|eiγh |re|eiγe |tA|eiδh |te|eiδe

|te|eiδe |tA|eiδh |re|eiγe |rA|eiγh

|tA|eiδh |te|eiδe |rA|eiγh |re|eiγe

⎤
⎥⎥⎦. (16)

We write here the complex S-matrix elements Sij in polar
form, with modulus and phase explicitly shown, since the
phase is going to play a major role in the determination of the
pumped charge. For a single channel S matrix, the formula for
the pumped charge becomes [71]

Q = e

2π

∫ T

0
dt[−|rA|2(γ̇h cos αhL + γ̇e cos αeL)

−|tA|2(δ̇h cos αhR + γ̇e cos αeL)

+|te|2(δ̇e cos αeR − γ̇e cos αeL) + γ̇e cos αeL]. (17)

045420-3



GANESH C. PAUL AND ARIJIT SAHA PHYSICAL REVIEW B 95, 045420 (2017)

Here, we have redefined the complex scattering amplitudes
rA and tA to satisfy the conservation of probability current
[29]. On the other hand, the other two scattering amplitudes
re and te remain unchanged. Hence, the redefined scattering
probabilities |rA|2 and |tA|2 become

|rA|2 ≡ kh
1x

ke
1x

[
2(E + μL)(E − μL − λL)

|ηkh
1x

− ike
1y

|2 + (E − μL − λL)2

]
|rA|2,

|tA|2 ≡ kh
1x

ke
1x

[
(E + μL)

(E − μR)

]
|tA|2. (18)

Furthermore, γe, γh, δe, δh are the phases of redefined
re, rA, te, and tA, respectively. Here, αeL, αeR correspond to
the incident and transmitted angles of electrons while αhL,
αhR represent the reflected and transmitted angles of holes,
respectively. Note that, if αeL = 0, then the last term of Eq. (17)
consisting of the time derivative of reflection phase is called
“topological part” [46] while the rest is termed as “dissipative
part” [46]. The last term is called “topological” because for
αeL = 0, it has to return to itself after the full period. Hence, the
only possible change in γe in a period can be integer multiples
of 2π , i.e., γe(T ) → γe(0) + 2πn. On the other hand, the rest
of the terms in Eq. (17) are together called “dissipative” since
their cumulative contribution prevents the perfect quantization
of pumped charge.

III. NUMERICAL RESULTS

In this section we present and discuss our numerical results
for the pumped charge based on Eq. (17). The quantum
mechanical scattering amplitudes are all functions of the
incident electron energy E, length of the superconducting
silicene region L, the strengths χ1, χ2 of the two thin insulating
barriers, chemical potential μm (m = L/R) of the left and right
normal silicene region, external electric field Ezm (m = L/R),
and spin-orbit coupling λSO. We denote the band gaps at the left
and right normal silicene side as 2λL and 2λR , respectively (see
Fig. 2), where λm = (elEzm − η̃σλSO). In addition, we have
set � = 1 throughout our analysis.

For clarity, we divide this section into two subsections. In
the first one, we discuss quantum pumping via the resonant
CAR process with unit probability in the χ1-χ2 plane. The
corresponding results are demonstrated in Figs. 3–7. The sec-
ond one is devoted to the discussion of the same via the perfect
transmission/CT process. We present the corresponding results
in Figs. 8–12.

A. Pumping via CAR in the χ1-χ2 plane

Silicene is a material where a large value of the nonlocal
CAR process can be obtained due to its unique band structure
[29]. The band gaps and Fermi level (chemical potential) in
silicene can be tuned by applying electric fields only. By tuning
the both, very recently, Linder et al. in Ref. [29] showed that
one can completely block elastic co-tunneling in the silicene
NSN junction in the subgapped regime. Consequently, the
pure CAR process is possible for a broad range of energies.
However, maximum probability of CAR found in Ref. [29]
was ∼96.2% while the rest was normal reflection probability.

KK K
F

V
0

2

N I S

K
L

L

K
FK K

R

R

-K

I N

0
V

FIG. 2. A schematic sketch of the band structure of our silicene
NISIN setup is depicted. For the normal regions of silicene (N ) as
well as superconducting (S) silicene region, both K and K′ valleys
are presented. In contrast, only the K valley is shown for both the
insulating regions (I ) for simplicity. Blue solid line indicates the
conduction band while the valence bands are represented by red solid
lines. At the right normal silicene side, the chemical potential is set
at the top of the valance band (μR = −5�, dotted line) to obtain the
resonant CAR process. On the other hand, for resonant transmission
to take place, chemical potential in the right normal side is set at the
bottom of the conduction band (μR = 5�, dot-dashed line).

The probability of the nonlocal CAR process can be
enhanced to unity (100%) (see Fig. 4) by introducing two
insulating barriers at each NS interfaces. We have considered
μL = 5�, μR = −5�, and λL = λR = 5�, which reflects the
fact that the Fermi level touches the bottom of the conduction
band in the left normal silicene side while it touches the top
of the valance band in the right normal silicene side. This
is illustrated in Fig. 2. The superconducting silicene side
is doped with μS = 20� to satisfy mean-field condition for
superconductivity μS � � [29]. The band gaps λL and λR at
the two normal sides can be adjusted by the external electric
field Ezm (m = L/R). The chosen value of the band gaps and
doping levels permits one to neglect the contribution from the

0 1 2 3 4 5 6
t

-2

-1

0

1

2

P
ha

se

P = 0.4

η = π/4

γ
δ

h

e

FIG. 3. The plot shows the variation of the normal reflection
phase γe and CAR phase δh, with time t , along a chosen pumping
contour in the χ1-χ2 plane.
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other valley (K′) which has a much higher band gap compared
to the other energy scales in the system (see Fig. 2). Under
such circumstances, we obtain pure CAR in this setup choosing
length of the superconducting side, L = 2.1ξ (ξ = �vF /π� is
the phase coherence length of the superconductor) and incident
electron energy, E = 0.9�. Note that, for our analysis, we
choose the same parameter values as used in Ref. [29].

The reason behind obtaining the pure CAR process in
our NISIN setup is as follows. As there is a band gap
2λL = 2(elEzL − η̃σλSO) > � in the left normal silicene side,
probability for AR to take place is vanishingly small [29,31].
On the other hand, 2λR = 2(elEzR − η̃σλSO) is the energy gap
between the conduction band and valance band in the right
(R) normal silicene region as illustrated in Fig. 2. Moreover,
the chemical potential μR in the right (R) normal silicene
is chosen to be at the top of the valence band. Hence, only
hole states are available in the right normal side. Therefore,
an electron incident from the conduction band of the left
normal silicene region encounters a gap and unavailability of
electronic states to tunnel into the right normal region which
essentially block the co-tunneling probability. Hence, the only
possible scattering processes remaining are normal reflection
and CAR. This allows our system to possess completely
the pure CAR process with probability one in the χ1-χ2

plane as shown in Fig. 4. These resonant CAR peaks are
π/2 periodic in nature and they appear in pairs. Such a
periodic nature, and the fact that resonances appear in pairs,
affect the pumped charge behavior which will be discussed
later. The oscillatory behavior of the CAR resonance can
be explained as follows. Nonrelativistic free electrons with
energy E incident on a potential barrier with height V0

are described by an exponentially decaying (nonoscillatory)
wave function inside the barrier region if E < V0, since
the dispersion relation is k ∼ √

E − V0. On the contrary,
relativistic free electrons satisfies a dispersion k ∼ (E − V0),
consequently corresponding wave functions do not decay
inside the barrier region [30,72,73]. Instead, the transmittance
of the junction displays an oscillatory behavior as a function
of the strength of the barrier. Hence, the undamped oscillatory
behavior of CAR is a direct manifestation of the relativistic
low-energy Dirac fermions in silicene. The periodicity depends
on the Fermi wavelength mismatch between the normal and
superconducting region [30,31].

Note that the Fermi energy (chemical potential) does not
need to necessarily exactly touch valance band maxima or
conduction band minima nor does it need to have the same
magnitude at the two normal regions to obtain resonant CAR.
A small deviation, from the numerical values that we have

taken, also leads to the resonant CAR probability to take
place within the subgapped regime. Previously, the possibility
of obtaining CAR was also reported in the p-n junction of
graphene [74] at a specific value of the parameters. However,
a small deviation from that leads to CT along with CAR
contaminating that possibility.

As phases of the scattering amplitudes play a major role in
the determination of the pumped charge, we show the behavior
of phases of normal reflection and CAR amplitudes (γe and
δh, respectively) as a function of time for one full cycle in
Fig. 3. We observe that both γe and δh exhibit four abrupt
jumps for a full period of time (along a chosen contour). These

a1

a2

a3

a4

- 2 0 2 4 6

- 2

0

2

4

6

Χ1

Χ
2

0

0.2

0.4

0.6

0.8

1.0

FIG. 4. Plot of CAR probability |tA|2 in the χ1-χ2 plane. The
contours a1, a2 represent η = π/4 and P = 1.51, P = 3.35, respec-
tively. On the other hand, the contours a3, a4 are for η = π/6 and
P = 1.82, P = 4.56, respectively. The value of the other parameters
are chosen to be L = 2.1ξ , E = 0.9�, ω = 1, χ0 = 1.7, μL = 5�,
μR = −5�, μS = 20�, and λL = λR = 5�.

jumps play a significant role in determining the pumped charge
which we emphasize later. In addition, throughout our analysis,
we have considered incident electrons to be normal to the
interface, i.e., αeL = 0 for simplicity. Later for completeness,
we demonstrate angle dependence of the pumped charge.

Under such a scenario where the only possible scattering
processes are normal reflection and CAR, Eq. (17) simplifies
to

Q = e

2π

∫ T

0
dt[−|tA|2(δ̇h cos αhR + γ̇e cos αeL)

+γ̇e cos αeL]. (19)

The behavior of pumped charge Q as a function of the
pumping strength P is shown in Fig. 5 for η = π/4, π/6 which
correspond to circular and elliptic contours, respectively. The
features of Q, depicted in Fig. 5, can be understood from
the behavior of CAR probability |tA|2 in the χ1-χ2 plane. For
small values of P , pumped charge Q becomes vanishingly
small in magnitude as the pumping contours do not enclose
any |tA|2 = 1 point. When a pumping contour encloses one of
the resonant peaks of |tA|2, the topological part of the pumped
charge gives rise to ne (n is the winding number) due to the
integration around a singular point. At this point the reflection
phase γe becomes ill-defined. However, the dissipative part
nullifies the topological part resulting in small values of Q

[see Eq. (17)] for both η = π/4, π/6. On the other hand,
when a contour encloses both |tA|2 resonances, the relative
integration direction around the two singular points plays an
important role. Namely, when two resonances are enclosed in a
path with the same orientation, then the two contributions have
the opposite sign and tend to cancel each other. For example,
when η = π/4 (black circular contours a1 and a2), the pumped
charge is zero for P = 1.51 (see Fig. 5) as the contour a1
encloses both the peaks resulting in zero pumped charge. A
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FIG. 5. The pumped charge Q in units of the electron charge e,
for pumping in the χ1-χ2 plane, is shown as a function of the pumping
strength P for circular and elliptic contours. The value of the other
parameters are chosen to be the same as mentioned in Fig. 4.

similar feature was found in the case of resonant transmission
in Refs. [43,47,65,66] where pumped charge was found to be
zero when the pumping contour encloses both the resonances.
Q approaches almost quantized value 2e for P = 3.35 and
the corresponding contour a2 encloses an even number of
resonance pairs in the same orientation. Hence the topological
part of pumped charge is almost zero and the contribution to
Q arises from the dissipative part. The large contribution from
the dissipative part arises due to the total drop of the CAR
phase δh by a factor of 4π during its time evolution along the
contour a2 (see Fig. 3). Similarly, when η = π/6, Q is zero at
P = 1.82 which corresponds to the a3 contour which encloses
four peaks (two pairs) in total, resulting in zero contribution
from the topological part. On the other hand, pumped charge
reaches its maximum when P = 4.56 (a4 contour) where also
the entire contribution originates from the dissipative part (see
Fig. 5). Pumped charge Q exceeds the value +2e as pumping
strength P increases (see Fig. 5) for both η = π/4 and π/6.
Physically, the contribution of the dissipative part in pumped
charge increases nonmonotonically with the pumping strength.
Hence, as the pumping contour encloses more numbers of
pairs of resonant CAR peaks, due to the enhancement of the
dissipative part, pumped charge can exceed +2e with further
increase of P . Pumped charge can change sign depending on
the sense of enclosing of the resonances, i.e., whether it is
clockwise or anticlockwise.

The behavior of pumped charge Q with respect to the
pumping strength PL for lemniscate contours with θ = π/4
and π/3 is presented in Fig. 7 and the corresponding contours
are shown in Fig. 6. The pumped charge is small for small
values of PL where the contribution from the topological
part is canceled by the dissipative part. As PL increases, the
corresponding pumping contour encloses both the |tA|2 peaks
within opposite integration orientations and as a consequence,
the two contributions for the pumped charge sum up. This is
exactly the reason that motivates us to choose the lemniscate
contours. However, the dissipative part effectively reduces the
total pumped charge. Such a feature arises for lemniscate
contours of the type b1 and b3. Moreover, we observe that

b1

b2

b3

b4

0 1 2 3 4
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2

3
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Χ1

Χ
2

0

0.2

0.4

0.6

0.8

1.0

FIG. 6. Plot of CAR probability |tA|2 along with lemniscate
contours are shown in the χ1-χ2 plane. The contours b1, b2 represent
θ = π/4 and the contours corresponding to θ = π/3 are b3, b4. We
have chosen the mean values χ10 = 1.69 and χ20 = 1.75. The value
of the other parameters are chosen to be the same as mentioned in
Fig. 4.

the pumped charge becomes zero for PL = 2.06 at θ = π/4,
where both the bubbles of the b2 contour enclose two |tA|2
peaks from the two adjacent resonances in the χ1-χ2 plane
and hence their combined contribution to pumped charge get
canceled for each bubble separately. The qualitative behavior
of Q remains similar for θ = π/3 where maximum value of
Q is achieved when each bubble of the lemniscate contour of
type b4 encloses an odd number of resonance pairs while Q

tends to zero as an even number of pairs are enclosed by each
bubble of the contour.

B. Pumping via transmission/CT in the χ1-χ2 plane

In this subsection we present our numerical results for the
adiabatic quantum pumping through pure CT, i.e., resonant

0 1 2 3 4 5 6
P

L

-1.5

-1

-0.5

0

Q

θ = π/4
θ = π/3

FIG. 7. Pumped charge Q in units of electon charge e, for
pumping in the χ1-χ2 plane, is shown as a function of the pumping
strength PL for the lemniscate contours. All other parameters are
identical to those used in Fig. 4.
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FIG. 8. The variation of the normal reflection phase γe and
transmission phase δe, with time t , is shown along a chosen pumping
contour in the χ1-χ2 plane.

transmission process. The latter can be achieved by tuning
the Fermi level (chemical potential) at the bottom of the
conduction band in both the normal silicene regions (see
Fig. 2). The numerical values of all the parameters are identical
to those used before except now μR = 5�, L = 2.2 ξ , and
E = 0.93�.

As before, due to the presence of a gap (2λL > �) in
the left normal side, AR is forbidden while CAR cannot
take place because of the unavailability of the hole states in
the right normal region in the low-energy limit. An incident
electron thus only encounters two scattering processes which
are normal reflection and transmission. The presence of
insulating barriers between the NS interfaces allows both these
scattering probabilities to be oscillatory as a function of the
dimensionless barrier strengths χ1 and χ2 which is depicted in
Fig. 9.

In this regime, as AR and CAR probabilities are always
zero, hence Eq. (17) reduces to

Q = e

2π

∫ T

0
dt[|te|2(δ̇e cos αeR − γ̇e cos αeL)

+γ̇e cos αeL], (20)

In Fig. 10, pumped charge Q is presented as a function of
pumping strength P for η = π/4 (circular contour) and π/6
(elliptic contour). To understand the behavior of the pumped
charge, we also investigate the transmission probability |te|2
in χ1 − χ2 plane (see Fig. 9). We observe qualitatively similar
features of the pumped charge as depicted in the previous
subsection. Here also the topological part of pumped charge
becomes zero when pumping contour encloses an even number
of resonance pairs in the same orientation. Finite contribution
from the dissipative part, in Q, emerges due to the total jump
of the transmission phase δe by a factor of 2π during its time
evolution along the contour c2 (see Fig. 8). On the other hand,
for contour c1, the dissipative part vanishes because over a
full period of time, reflection, and transmission phases γe and
δe respectively, cancel each other [see Eq. (20)]. Although, Q

c 1

c 2

c 3

c 4

- 2 0 2 4 6

- 2
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Χ1

Χ
2
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0.2

0.4

0.6

0.8

1.0

FIG. 9. Transmission probability |te|2 along with circular and
elliptic contours are shown in the χ1-χ2 plane. The contours c1, c2

represent η = π/4 and P = 1.5, P = 3.34, respectively. On the other
hand, the contours c3, c4 correspond to η = π/6 and P = 1.55,
P = 4.65, respectively. The value of the other parameters are chosen
to be L = 2.2ξ , E = 0.93�, ω = 1, χ0 = 1.7, μL = 5�, μR = 5�,
μS = 20�, and λL = λR = 5�.

approaches to −e for pumping via the resonant CT process
compared to 2e via the resonant CAR process.

In Fig. 12, we show the behavior of pumped charge Q as a
function of the pumping strength PL with lemniscate contours.
To understand the corresponding behavior of Q, we also show
|te|2 in the χ1-χ2 plane along with different lemniscate contours
(see Fig. 11). Here also the features of Q remain similar as the
previous subsection for both θ = π/4 and π/3.

As we mention earlier, the above mentioned results are valid
for normal incidence of the incoming electron, i.e., αeL = 0.

0 1 2 3 4 5 6
P

-1

-0.5

0

0.5

Q

η = π/4
η = π/6

FIG. 10. Pumped charge Q in units of electron charge e, for
pumping in the χ1-χ2 plane, is shown as a function of the pumping
strength P for the circular and elliptic contours. We choose the same
values of the other parameters as mentioned in Fig. 9.
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FIG. 11. Transmission probability |te|2 together with different
lemniscate contours are shown in the χ1-χ2 plane. The contours d1, d2

represent θ = π/4 and the contours d3, d4 correspond to θ = π/3.
We choose the values of χ10 and χ20 as χ10 = χ20 = 1.68. All other
parameters are identical to those used in Fig. 9.

Here, we explore the dependence of the pumped charge on
the angle of incident electrons. In Fig. 13, pumped charge Q

as a function of incident angle αeL is presented when either
the CAR probability |tA|2 or transmission probability |te|2 is
enclosed by the circular pumping contour. The αeL dependence
is shown up to the critical angle αc. Above αc, the AR and CAR
processes cannot take place [69]. Rather, normal reflection is
the dominating scattering mechanism above αc. It is evident
from Fig. 13 that as the angle of incidence αeL increases, Q

decreases monotonically for enclosing |tA|2 or |te|2 in either
cases. The reason can be attributed to the fact that both |tA|2
and |te|2 in the two different scenarios, acquire the maximum
value at normal incidence, i.e., αeL = 0 and decreases slowly

0 1 2 3 4 5 6
P

L

-1.5
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0

Q

θ = π/4
θ = π/3

FIG. 12. Pumped charge Q, in units of electron charge e, is
depicted as a function of the pumping strength PL for the lemniscate
contours. All other parameters are identical to those used in Fig. 9.
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μ   = −5Δ

μ   =   5Δ
R

R

FIG. 13. Pumped charge Q, in units of electron charge e, is shown
as a function of the incident angle αeL for both μR = −5� and
μR = 5�. Here we choose η = π/4, P = 3.35 for μR = −5� and
P = 3.34 for μR = 5�, respectively.

with the increase of αeL. Also, for 0 < αeL < αc, normal
reflection probability |re|2 also contributes to Eq. (17) and the
interplay between all the quantum mechanical amplitudes and
their phases results in a smaller value of pumped charge. Note
that, in the case of pumping via the CAR resonance process in
the χ1-χ2 plane, Q approaches zero as αeL proceeds towards
αc. However, Q is finite even at αc in the case of pumping
via resonant transmission in the same parameter space, This
is because at αc, |tA|2 vanishes while |te|2 still has small
probability which gives rise to small pumped charge arising
from the dissipative part [see Eq. (20)].

IV. SUMMARY AND CONCLUSIONS

To summarize, in this article, we have investigated the
possibility of enhancing the CAR probability |tA|2 in silicene
NSN set up by introducing the thin insulating barrier [30,31] I

at each NS interface. We show that, for electrons with normal
incidence, resonant CAR can be obtained in our setup by tuning
the band gap in both the normal silicene regions by applying
an external electric field as well as adjusting the chemical
potential by additional gate voltages. We also show that |tA|2
is periodic in the χ1-χ2 plane due to the relativistic nature
of Dirac fermions. On the other hand, it is also possible to
attain transmission probability |te|2 of magnitude unity in the
silicene NISIN junction under suitable circumstances. Owing
to the Dirac nature of particles, |te|2 also exhibits periodic
behavior in the space of barrier strengths χ1 and χ2.

We then explore adiabatic quantum charge pumping
through our NISIN setup and show that the behavior of
pumped charge as a function of the pumping strength P is
closely related to the features of CAR probability |tA|2 or
transmission probability |te|2 in the pumping parameter space.
For electrons with normal incidence, large pumped charge
with value close to Q ∼ 2e can be obtained when particular
circular or elliptic pumping contour encloses the resonant CAR
in the χ1-χ2 plane, although the major contribution to Q, in
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this case, arises from the dissipative part. On the other hand,
large pumped charge can also be obtained with lemniscate
contour when an odd number of |tA|2 peaks are enclosed by
each of their bubbles. In contrast, pumped charge approaches
to Q ∼ −e when various pumping contours enclose |te|2
resonance in the same parameter space. However, pumped
charge decreases monotonically as we increase the angle of
incidence of the incoming electron. In experimental situations,
the measurable quantity should be the angle averaged pumped
charge analogous to angle averaged conductance [75]. From
our analysis, we expect that the qualitative nature of angle
averaged pumped charge as a function of the pumping
strength will remain similar to the αeL = 0 case. Although the
quantitative value of Q will be smaller than the angle resolved
case as Q decreases monotonically with αeL.

Note that our calculation is valid for zero temperature.
Nevertheless, in our case, temperature Tp must be smaller than
the proximity induced superconducting gap �. We expect that
the qualitative features of our results for the pumped charge
will survive in the presence of low temperatures. For nonzero
yet small temperatures, Tp 
 �, the pairs of resonant peaks
in the parameter space will have a slight broadening due to
thermal smearing. Therefore, we believe that the qualitative
features of pumped charge Q with respect to the pumping
strength P will still be captured in our model, although there
can be quantitative change in Q. On the other hand, if Tp > �,
then the CAR process from the interface will decay and
pumped charge will become vanishingly small due to thermal
fluctuation.

As far as practical realization of our silicene NISIN quan-
tum pumping setup is concerned, superconductivity in silicene
may be possible to induce by proximity coupled to an s-wave
superconductor for, e.g., Al, NbSe2 analogous to graphene
[75–77]. Once such proximity induced superconductivity in
silicene is realized, fabrication of the silicene NISIN junction
can be feasible. The strength of the two oscillating barriers
can be possible to tune by applying ac gate voltages. Typical
spin-orbit energy in silicene is λSO ∼ 4 meV and the buckling
parameter is l ≈ 0.23 Å [3,5]. Considering Refs. [76,78],
typical proximity induced superconducting gap in silicene
would be � ∼ 0.2 meV. For such an induced superconducting
gap, chemical potential is μS ∼ 20� ∼ 4 meV and we
obtain ξ ∼ 580 nm and length of the superconducting region
L ∼ 1.2 μm. Hence, an insulating barrier of thickness d ∼
10–20 nm may be considered as the thin barrier and the
gate voltage V0 ∼ 500 meV can therefore justify the needs
of our model [30]. To achieve both the resonances, λL =
λR = 5� ∼ 1 meV which can be tuned by an external electric
field EzL = EzR ∼ 200 V/μm. For both resonant processes,
typical dwell time of the electrons inside the superconducting
region is ∼2.2 fs while the time period of the oscillating
barriers is T ∼ 30 ps and the corresponding frequency of
modulation parameters turns out to be ∼230 GHz. Thus the
dwell time τdwell is much smaller than the time period T

of the modulation parameters, hence satisfying the adiabatic
condition of the quantum pump. Pumped current through our
setup should be in the range of ∼10–15 nA which can be
measurable in the modern day experiment.
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genschlögl, Phys. Status Solidi RRL 10, 133 (2016).
[8] B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B.

Ealet, and B. Aufray, Appl. Phys. Lett. 97, 223109 (2010).
[9] P. D. Padova et al., Appl. Phys. Lett. 96, 261905 (2010).

[10] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis,
M. C. Asensio, A. Resta, B. Ealet, and G. L. Lay, Phys. Rev.
Lett. 108, 155501 (2012).

[11] C.-L. Lin, R. Arafune, K. Kawahara, N. Tsukahara, E.
Minamitani, Y. Kim, N. Takagi, and M. Kawai, Appl. Phys.
Exp. 5, 045802 (2012).

[12] C. C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett. 107, 076802
(2011).

[13] M. Ezawa and N. Nagaosa, Phys. Rev. B 88, 121401(R) (2013).
[14] M. Ezawa, Phys. Rev. B 87, 155415 (2013).
[15] M. Ezawa, Eur. Phys. J. B 85, 363 (2012).
[16] M. Ezawa, Phys. Rev. Lett. 114, 056403 (2015).

[17] T. P. Kaloni, N. Singh, and U. Schwingenschlögl, Phys. Rev. B
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